Snow Albedo Reduction in the Colombian Andes Mountains Due to 2000 to 2020 Saharan Dust Intrusions Events
Abstract
:1. Introduction
2. Materials and Methods
2.1. Studied Area
2.2. Data
2.3. Methods
3. Results and Discussion
3.1. Saharan Dust Intrusion Event in Colombia
3.2. Snow Albedo and Dust Deposition Variation in Colombian Glacial Areas
3.3. Saharan Dust Intrusions Effects on Snow Albedo Decrease in Colombia
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Varga, G. Changing Nature of Saharan Dust Deposition in the Carpathian Basin (Central Europe): 40 Years of Identified North African Dust Events (1979–2018). Environ. Int. 2020, 139, 105712. [Google Scholar] [CrossRef]
- Dastrup, D.B.; Carling, G.; Collins, S.A.; Nelson, S.; Fernandez, D.P.; Tingey, D.G.; Hahnenberger, M.; Aanderud, Z.T. Aeolian Dust Chemistry and Bacterial Communities in Snow Are Unique to Airshed Locations across Northern Utah, USA. Atmos. Environ. 2018, 193, 251–261. [Google Scholar] [CrossRef]
- Couto, F.T.; Cardoso, E.H.C.; Costa, M.J.; Salgado, R.; Guerrero-Rascado, J.L.; Salgueiro, V. How a Mesoscale Cyclonic Vortex over Sahara Leads to a Dust Outbreak in South-Western Iberia. Atmos. Res. 2021, 249, 105302. [Google Scholar] [CrossRef]
- Mamun, A.; Chen, Y.; Liang, J. Radiative and Cloud Microphysical Effects of the Saharan Dust Simulated by the WRF-Chem Model. J. Atmos. Sol.-Terr. Phys. 2021, 219, 105646. [Google Scholar] [CrossRef]
- Shen, J.; Xie, X.; Cheng, X.; Liu, X. Effects of Dust-in-Snow Forcing over the Tibetan Plateau on the East Asian Dust Cycle during the Last Glacial Maximum. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 542, 109442. [Google Scholar] [CrossRef]
- Cruz-Núñez, X.; Cruz-Núñez, X. Black Carbon Radiative Forcing in South Mexico City, 2015. Atmósfera 2019, 32, 167–179. [Google Scholar] [CrossRef]
- Skiles, S.M.; Painter, T.H.; Deems, J.; Landry, C.; Bryant, A. Dust Radiative Forcing in Snow of the Upper Colorado River Basin. Part II: Interannual Variability in Radiative Forcing and Snowmelt Rates. Water Resour. Res. 2012, 48, W07522. [Google Scholar] [CrossRef]
- Wei, T.; Dong, Z.; Kang, S.; Qin, X.; Guo, Z. Geochemical Evidence for Sources of Surface Dust Deposited on the Laohugou Glacier, Qilian Mountains. Appl. Geochem. 2017, 79, 1–8. [Google Scholar] [CrossRef]
- Jiao, X.; Dong, Z.; Brahney, J.; Parteli, E.J.R.; Li, F.; Marcelli, A.; Wei, T. Uranium Isotopes of Aeolian Dust Deposited in Northern Tibetan Plateau Glaciers: Implications for Tracing Aeolian Dust Provenance. Fundam. Res. 2022, 2, 716–726. [Google Scholar] [CrossRef]
- Francis, D.; Fonseca, R.; Nelli, N.; Bozkurt, D.; Picard, G.; Guan, B. Atmospheric Rivers Drive Exceptional Saharan Dust Transport towards Europe. Atmos. Res. 2022, 266, 105959. [Google Scholar] [CrossRef]
- Shi, T.; Cui, J.; Wu, D.; Xing, Y.; Chen, Y.; Zhou, Y.; Pu, W.; Wang, X. Snow Albedo Reductions Induced by the Internal/External Mixing of Black Carbon and Mineral Dust, and Different Snow Grain Shapes across Northern China. Environ. Res. 2022, 208, 112670. [Google Scholar] [CrossRef]
- Livneh, B.; Deems, J.S.; Buma, B.; Barsugli, J.J.; Schneider, D.; Molotch, N.P.; Wolter, K.; Wessman, C.A. Catchment Response to Bark Beetle Outbreak and Dust-on-Snow in the Colorado Rocky Mountains. J. Hydrol. 2015, 523, 196–210. [Google Scholar] [CrossRef]
- Reynolds, R.L.; Goldstein, H.L.; Moskowitz, B.M.; Bryant, A.C.; Skiles, S.M.; Kokaly, R.F.; Flagg, C.B.; Yauk, K.; Berquó, T.; Breit, G.; et al. Composition of Dust Deposited to Snow Cover in the Wasatch Range (Utah, USA): Controls on Radiative Properties of Snow Cover and Comparison to Some Dust-Source Sediments. Aeolian Res. 2014, 15, 73–90. [Google Scholar] [CrossRef]
- Painter, T.H.; Skiles, S.M.; Deems, J.S.; Bryant, A.C.; Landry, C.C. Dust Radiative Forcing in Snow of the Upper Colorado River Basin: 1. A 6 Year Record of Energy Balance, Radiation, and Dust Concentrations. Water Resour. Res. 2012, 48, W07521. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, L.; Pan, M.; Zhong, X.; Zhao, E.; Wang, Y.; Du, C. Black Carbon and Mineral Dust in Snow Cover across a Typical City of Northeast China. Sci. Total Environ. 2022, 807, 150397. [Google Scholar] [CrossRef]
- Wu, G.; Zhang, C.; Zhang, X.; Xu, T.; Yan, N.; Gao, S. The Environmental Implications for Dust in High-Alpine Snow and Ice Cores in Asian Mountains. Glob. Planet. Change 2015, 124, 22–29. [Google Scholar] [CrossRef]
- Tieber, A.; Lettner, H.; Bossew, P.; Hubmer, A.; Sattler, B.; Hofmann, W. Accumulation of Anthropogenic Radionuclides in Cryoconites on Alpine Glaciers. J. Environ. Radioact. 2009, 100, 590–598. [Google Scholar] [CrossRef]
- Dong, Z.; Kang, S.; Qin, D.; Li, Y.; Wang, X.; Ren, J.; Li, X.; Yang, J.; Qin, X. Provenance of Cryoconite Deposited on the Glaciers of the Tibetan Plateau: New Insights from Nd-Sr Isotopic Composition and Size Distribution. J. Geophys. Res. Atmos. 2016, 121, 7371–7382. [Google Scholar] [CrossRef]
- Stibal, M. Algae Drive Enhanced Darkening of Bare Ice on the Greenland Ice Sheet. Geophys. Res. Lett. 2017, 44, 11463–11471. [Google Scholar] [CrossRef]
- Dong, Z.; Qin, D.; Chen, J.; Qin, X.; Ren, J.; Cui, X.; Du, Z.; Kang, S. Physicochemical Impacts of Dust Particles on Alpine Glacier Meltwater at the Laohugou Glacier Basin in Western Qilian Mountains, China. Sci. Total Environ. 2014, 493, 930–942. [Google Scholar] [CrossRef]
- Redmond, H.E.; Dial, K.D.; Thompson, J.E. Light Scattering and Absorption by Wind Blown Dust: Theory, Measurement, and Recent Data. Aeolian Res. 2010, 2, 5–26. [Google Scholar] [CrossRef]
- Adame, J.A.; Notario, A.; Cuevas, C.A.; Saiz-Lopez, A. Saharan Air Outflow Variability in the 1980–2020 Period. Sci. Total Environ. 2022, 839, 156268. [Google Scholar] [CrossRef]
- Bigio, L.; Mayol-Bracero, O.L.; Santos, G.; Fishman, A.; Angert, A. Are the Phosphate Oxygen Isotopes of Saharan Dust a Robust Tracer of Atmospheric P Source? Atmos. Environ. 2020, 235, 117561. [Google Scholar] [CrossRef]
- Jiménez-Espejo, F.J.; García-Alix, A.; Jiménez-Moreno, G.; Rodrigo-Gámiz, M.; Anderson, R.S.; Rodríguez-Tovar, F.J.; Martínez-Ruiz, F.; Giralt, S.; Delgado Huertas, A.; Pardo-Igúzquiza, E. Saharan Aeolian Input and Effective Humidity Variations over Western Europe during the Holocene from a High Altitude Record. Chem. Geol. 2014, 374–375, 1–12. [Google Scholar] [CrossRef]
- Pérez-Martínez, C.; Rühland, K.M.; Smol, J.P.; Jones, V.J.; Conde-Porcuna, J.M. Long-Term Ecological Changes in Mediterranean Mountain Lakes Linked to Recent Climate Change and Saharan Dust Deposition Revealed by Diatom Analyses. Sci. Total Environ. 2020, 727, 138519. [Google Scholar] [CrossRef]
- Francis, D.; Eayrs, C.; Chaboureau, J.-P.; Mote, T.; Holland, D.M. A meandering polar jet caused the development of a Saharan cyclone and the transport of dust toward Greenland. Adv. Sci. Res. 2019, 16, 49–56. [Google Scholar] [CrossRef]
- Di Mauro, B.; Garzonio, R.; Rossini, M.; Filippa, G.; Pogliotti, P.; Galvagno, M.; Morra Di Cella, U.; Migliavacca, M.; Baccolo, G.; Clemenza, M.; et al. Saharan Dust Events in the European Alps: Role in Snowmelt and Geochemical Characterization. Cryosphere 2019, 13, 1147–1165. [Google Scholar] [CrossRef]
- Lawrence, C.R.; Painter, T.H.; Landry, C.C.; Neff, J.C. Contemporary Geochemical Composition and Flux of Aeolian Dust to the San Juan Mountains, Colorado, United States. J. Geophys. Res. Biogeosci. 2010, 115, G03007. [Google Scholar] [CrossRef]
- Deems, J.S.; Painter, T.H.; Barsugli, J.J.; Belnap, J.; Udall, B. Combined Impacts of Current and Future Dust Deposition and Regional Warming on Colorado River Basin Snow Dynamics and Hydrology. Hydrol. Earth Syst. Sci. 2013, 17, 4401–4413. [Google Scholar] [CrossRef]
- Fassnacht, S.R.; Duncan, C.R.; Pfohl, A.K.D.; Webb, R.W.; Derry, J.E.; Sanford, W.E.; Reimanis, D.C.; Doskocil, L.G. Drivers of Dust-Enhanced Snowpack Melt-Out and Streamflow Timing. Hydrology 2022, 9, 47. [Google Scholar] [CrossRef]
- Tanaka, T.Y.; Chiba, M. A Numerical Study of the Contributions of Dust Source Regions to the Global Dust Budget. Glob. Planet. Change 2006, 52, 88–104. [Google Scholar] [CrossRef]
- Pandis, S.N.; Wexler, A.S.; Seinfeld, J.H. Dynamics of Tropospheric Aerosols. J. Phys. Chem. 1995, 99, 9646–9659. [Google Scholar] [CrossRef]
- Niedermeier, N.; Held, A.; Müller, T.; Heinold, B.; Schepanski, K.; Tegen, I.; Kandler, K.; Ebert, M.; Weinbruch, S.; Read, K.; et al. Mass Deposition Fluxes of Saharan Mineral Dust to the Tropical Northeast Atlantic Ocean: An Intercomparison of Methods. Atmos. Chem. Phys. 2014, 14, 2245–2266. [Google Scholar] [CrossRef]
- Wang, Q.; Gu, J.; Wang, X. The Impact of Sahara Dust on Air Quality and Public Health in European Countries. Atmos. Environ. 2020, 241, 117771. [Google Scholar] [CrossRef]
- Ridley, D.A.; Heald, C.L.; Ford, B. North African Dust Export and Deposition: A Satellite and Model Perspective. J. Geophys. Res. Atmos. 2012, 117, D02202. [Google Scholar] [CrossRef]
- Shi, T.; He, C.; Zhang, D.; Zhang, X.; Niu, X.; Xing, Y.; Chen, Y.; Cui, J.; Pu, W.; Wang, X. Opposite Effects of Mineral Dust Nonsphericity and Size on Dust-Induced Snow Albedo Reduction. Geophys. Res. Lett. 2022, 49, e2022GL099031. [Google Scholar] [CrossRef]
- Zhao, D.; Chen, S.; Chen, Y.; Gong, Y.; Lou, G.; Cheng, S.; Bi, H. Influence of Dust Aerosols on Snow Cover Over the Tibetan Plateau. Front. Environ. Sci. 2022, 10, 839691. [Google Scholar] [CrossRef]
- Kaspari, S.; Painter, T.H.; Gysel, M.; Skiles, S.M.; Schwikowski, M. Seasonal and Elevational Variations of Black Carbon and Dust in Snow and Ice in the Solu-Khumbu, Nepal and Estimated Radiative Forcings. Atmos. Chem. Phys. 2014, 14, 8089–8103. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, S.; Sprenger, M.; Cong, Z.; Gao, T.; Li, C.; Tao, S.; Li, X.; Zhong, X.; Xu, M.; et al. Black Carbon and Mineral Dust in Snow Cover on the Tibetan Plateau. Cryosphere 2018, 12, 413–431. [Google Scholar] [CrossRef]
- Sarangi, C.; Qian, Y.; Rittger, K.; Ruby Leung, L.; Chand, D.; Bormann, K.J.; Painter, T.H. Dust Dominates High-Altitude Snow Darkening and Melt over High-Mountain Asia. Nat. Clim. Change 2020, 10, 1045–1051. [Google Scholar] [CrossRef]
- Réveillet, M.; Dumont, M.; Gascoin, S.; Lafaysse, M.; Nabat, P.; Ribes, A.; Nheili, R.; Tuzet, F.; Ménégoz, M.; Morin, S.; et al. Black Carbon and Dust Alter the Response of Mountain Snow Cover under Climate Change. Nat. Commun. 2022, 13, 5279. [Google Scholar] [CrossRef] [PubMed]
- Painter, T.H.; Barrett, A.P.; Landry, C.C.; Neff, J.C.; Cassidy, M.P.; Lawrence, C.R.; McBride, K.E.; Farmer, G.L. Impact of Disturbed Desert Soils on Duration of Mountain Snow Cover. Geophys. Res. Lett. 2007, 34, L12502. [Google Scholar] [CrossRef]
- Bolaño-Ortiz, T.R.; Castro, L.; Ruggeri, M.F.; Fadic, X.; Hernandez, T.G.; Vidal, V.; Flores, R.; Cereceda-Balic, F. Snow Albedo Variation Due to Light Absorbing Particles from the Period 2000 to 2020 in the El Yeso Basin, Chile. In Proceedings of the 114th (2021) A&WMA Annual Conference, Online, 14–17 June 2021. [Google Scholar]
- Schmitt, C.G.; All, J.D.; Schwarz, J.P.; Arnott, W.P.; Cole, R.J.; Lapham, E.; Celestian, A. Measurements of Light-Absorbing Particles on the Glaciers in the Cordillera Blanca, Peru. Cryosphere 2015, 9, 331–340. [Google Scholar] [CrossRef]
- Lindau, F.G.L.; Simões, J.C.; Delmonte, B.; Ginot, P.; Baccolo, G.; Paleari, C.I.; Di Stefano, E.; Korotkikh, E.; Introne, D.S.; Maggi, V.; et al. Giant Dust Particles at Nevado Illimani: A Proxy of Summertime Deep Convection over the Bolivian Altiplano. Cryosphere 2021, 15, 1383–1397. [Google Scholar] [CrossRef]
- de Magalhães, N.; Evangelista, H.; Condom, T.; Rabatel, A.; Ginot, P. Amazonian Biomass Burning Enhances Tropical Andean Glaciers Melting. Sci. Rep. 2019, 9, 16914. [Google Scholar] [CrossRef] [PubMed]
- Bolaño-Ortiz, T.R.; Diaz-Gutiérrez, V.L.; Camargo-Caicedo, Y. ENSO and Light-Absorbing Impurities and Their Impact on Snow Albedo in the Sierra Nevada de Santa Marta, Colombia. Geosciences 2020, 10, 437. [Google Scholar] [CrossRef]
- Mendez, J.F.; Herrera, L.C.P.; Cerón, L.C.B. Study of a Saharan Dust Intrusion into the Atmosphere of Colombia. Rev. Ing. Univ. Medellín 2018, 17, 17–34. [Google Scholar] [CrossRef]
- Gilardoni, S.; Di Mauro, B.; Bonasoni, P. Black Carbon, Organic Carbon, and Mineral Dust in South American Tropical Glaciers: A Review. Glob. Planet. Change 2022, 213, 103837. [Google Scholar] [CrossRef]
- Schauwecker, S.; Rohrer, M.; Huggel, C.; Endries, J.; Montoya, N.; Neukom, R.; Perry, B.; Salzmann, N.; Schwarb, M.; Suarez, W. The Freezing Level in the Tropical Andes, Peru: An Indicator for Present and Future Glacier Extents. J. Geophys. Res. Atmos. 2017, 122, 5172–5189. [Google Scholar] [CrossRef]
- Clow, D.W.; Williams, M.W.; Schuster, P.F. Increasing Aeolian Dust Deposition to Snowpacks in the Rocky Mountains Inferred from Snowpack, Wet Deposition, and Aerosol Chemistry. Atmos. Environ. 2016, 146, 183–194. [Google Scholar] [CrossRef]
- Vuille, M.; Carey, M.; Huggel, C.; Buytaert, W.; Rabatel, A.; Jacobsen, D.; Soruco, A.; Villacis, M.; Yarleque, C.; Elison Timm, O.; et al. Rapid Decline of Snow and Ice in the Tropical Andes—Impacts, Uncertainties and Challenges Ahead. Earth-Sci. Rev. 2018, 176, 195–213. [Google Scholar] [CrossRef]
- Veettil, B.K.; Kamp, U. Global Disappearance of Tropical Mountain Glaciers: Observations, Causes, and Challenges. Geosciences 2019, 9, 196. [Google Scholar] [CrossRef]
- Bohn, N.; Painter, T.H.; Thompson, D.R.; Carmon, N.; Susiluoto, J.; Turmon, M.J.; Helmlinger, M.C.; Green, R.O.; Cook, J.M.; Guanter, L. Optimal Estimation of Snow and Ice Surface Parameters from Imaging Spectroscopy Measurements. Remote Sens. Environ. 2021, 264, 112613. [Google Scholar] [CrossRef]
- IGAC. IGAC—Instituto Geográfico Agustín Codazzi. Available online: https://web.archive.org/web/20170306134231/http://www2.igac.gov.co/igac_web/contenidos/plantilla_general_titulo_contenido.jsp?idMenu=212 (accessed on 23 September 2021).
- López-Moreno, J.I.; Ceballos, J.L.; Rojas-Heredia, F.; Zabalza-Martinez, J.; Vidaller, I.; Revuelto, J.; Alonso-González, E.; Morán-Tejeda, E.; García-Ruiz, J.M. Topographic Control of Glacier Changes since the End of the Little Ice Age in the Sierra Nevada de Santa Marta Mountains, Colombia. J. South Am. Earth Sci. 2020, 104, 102803. [Google Scholar] [CrossRef]
- WWF. World Wildlife Fund—WWF. Available online: https://www.wwf.org.co/?364410/Por-que-los-Andes-son-esenciales-para-nuestra-salud-y-la-del-planeta (accessed on 21 September 2021).
- Ceballos, J.L.; Euscátegui, C.; Ramírez, J.; Cañon, M.; Huggel, C.; Haeberli, W.; Machguth, H. Fast Shrinkage of Tropical Glaciers in Colombia. Ann. Glaciol. 2006, 43, 194–201. [Google Scholar] [CrossRef]
- IDEAM. Instituto de Hidrología Meteorología y Estudios Ambientales Glaciares En Colombia. Available online: http://www.ideam.gov.co/web/ecosistemas/glaciares (accessed on 28 July 2021).
- IDEAM. Glaciares de Colombia Más Que Montañas Con Hielo; IDEAM Colombia: Bogotá, Columbia, 2012; ISBN 978-958-8067-57-5. [Google Scholar]
- SIAC. Sistema de Informacion Ambiental de Colombia. Available online: http://www.siac.gov.co/ (accessed on 9 August 2022).
- Ceballos, J.; Tobón, E. Glaciares Colombianos: Evolución Reciente Y Estado Actual. Boletín Geol. 2007, 29, 143–151. [Google Scholar]
- IDEAM. GLACIARES EN COLOMBIA. Available online: http://www.ideam.gov.co/web/ecosistemas/glaciares-colombia (accessed on 8 August 2022).
- Eastman, J.R. IDRISI Taiga Guide to GIS and Image Processing; Clark Labs Clark University: Worcester, MA, USA, 2009. [Google Scholar]
- NASA. MODIS Snow Products Collection 6.1 User Guide. Available online: https://modis-snow-ice.gsfc.nasa.gov/uploads/snow_user_guide_C6.1_final_revised_april.pdf (accessed on 20 February 2023).
- Wan, Z. A Generalized Split-Window Algorithm for Retrieving Land-Surface Temperature from Space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar] [CrossRef]
- NASA. CALIPSO Products. Available online: https://www-calipso.larc.nasa.gov/products/lidar/browse_images/show_v4_detail.php?s=production&v=V4-10&browse_date=2020-06-23&orbit_time=06-39-03&page=1&granule_name=CAL_LID_L1-Standard-V4-10.2020-06-23T06-39-03ZN.hdf (accessed on 10 June 2022).
- Duarte, A.L.; Schneider, I.L.; Artaxo, P.; Oliveira, M.L.S. Spatiotemporal Assessment of Particulate Matter (PM10 and PM2.5) and Ozone in a Caribbean Urban Coastal City. Geosci. Front. 2021, 13, 101168. [Google Scholar] [CrossRef]
- Dunion, J.P. Rewriting the Climatology of the Tropical North Atlantic and Caribbean Sea Atmosphere. J. Clim. 2011, 24, 893–908. [Google Scholar] [CrossRef]
- Buchard, V.; da Silva, A.M.; Colarco, P.R.; Darmenov, A.; Randles, C.A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R. Using the OMI Aerosol Index and Absorption Aerosol Optical Depth to Evaluate the NASA MERRA Aerosol Reanalysis. Atmos. Chem. Phys. 2015, 15, 5743–5760. [Google Scholar] [CrossRef]
- Voss, K.K.; Evan, A.T. A New Satellite-Based Global Climatology of Dust Aerosol Optical Depth. J. Appl. Meteorol. Climatol. 2020, 59, 83–102. [Google Scholar] [CrossRef]
- Ramírez-Romero, C.; Jaramillo, A.; Córdoba, M.F.; Raga, G.B.; Miranda, J.; Alvarez-Ospina, H.; Rosas, D.; Amador, T.; Kim, J.S.; Yakobi-Hancock, J.; et al. African Dust Particles over the Western Caribbean—Part I: Impact on Air Quality over the Yucatán Peninsula. Atmos. Chem. Phys. 2021, 21, 239–253. [Google Scholar] [CrossRef]
- Petit, R.H.; Legrand, M.; Jankowiak, I.; Molinié, J.; Asselin de Beauville, C.; Marion, G.; Mansot, J.L. Transport of Saharan Dust over the Caribbean Islands: Study of an Event. J. Geophys. Res. Atmos. 2005, 110, D18S09. [Google Scholar] [CrossRef]
- Lau, W.K.M.; Sang, J.; Kim, M.K.; Kim, K.M.; Koster, R.D.; Yasunari, T.J. Impacts of Snow Darkening by Deposition of Light-Absorbing Aerosols on Hydroclimate of Eurasia During Boreal Spring and Summer. J. Geophys. Res. Atmos. 2018, 123, 8441–8461. [Google Scholar] [CrossRef]
- Moosmüller, H.; Chakrabarty, R.K.; Arnott, W.P. Aerosol Light Absorption and Its Measurement: A Review. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 844–878. [Google Scholar] [CrossRef]
- Qian, Y.; Yasunari, T.J.; Doherty, S.J.; Flanner, M.G.; Lau, W.K.M.; Ming, J.; Wang, H.; Wang, M.; Warren, S.G.; Zhang, R. Light-Absorbing Particles in Snow and Ice: Measurement and Modeling of Climatic and Hydrological Impact. Adv. Atmos. Sci. 2015, 32, 64–91. [Google Scholar] [CrossRef]
- Niu, H.; Kang, S.; Wang, Y.; Sarangi, C.; Rupakheti, D.; Qian, Y. Measurements of Light-Absorbing Impurities in Snow over Four Glaciers on the Tibetan Plateau. Atmos. Res. 2020, 243, 105002. [Google Scholar] [CrossRef]
- Li, X.; Kang, S.; Zhang, G.; Qu, B.; Tripathee, L.; Paudyal, R.; Jing, Z.; Zhang, Y.; Yan, F.; Li, G.; et al. Light-Absorbing Impurities in a Southern Tibetan Plateau Glacier: Variations and Potential Impact on Snow Albedo and Radiative Forcing. Atmos. Res. 2018, 200, 77–87. [Google Scholar] [CrossRef]
- Cuffey, K.M.; Paterson, W.S.B. The Physics of Glaciers; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Flanner, M.G.; Zender, C.S. Linking Snowpack Microphysics and Albedo Evolution. J. Geophys. Res. 2006, 111, D12208. [Google Scholar] [CrossRef]
- Rohde, A.; Vogel, H.; Hoshyaripour, G.A.; Kottmeier, C.; Vogel, B. Regional Impact of Snow-Darkening on Snow Pack and the Atmosphere During a Severe Saharan Dust Deposition Event in Eurasia. J. Geophys. Res. Earth Surf. 2023, 128, e2022JF007016. [Google Scholar] [CrossRef]
- Lee, W.-L.; Liou, K.N. Effect of Absorbing Aerosols on Snow Albedo Reduction in the Sierra Nevada. Atmos. Environ. 2012, 55, 425–430. [Google Scholar] [CrossRef]
- Bolaño-Ortiz, T.R.; Pascual-Flores, R.M.; López-Noreña, A.I.; Ruggeri, M.F.; Lakkis, S.G.; Fernández, R.P.; Puliafito, S.E. Assessment of Absorbing Aerosols on Austral Spring Snow Albedo Reduction by Several Basins in the Central Andes of Chile from Daily Satellite Observations (2000–2016) and a Case Study with the WRF-Chem Model. SN Appl. Sci. 2019, 1, 1352. [Google Scholar] [CrossRef]
- He, C.; Liou, K.-N.; Takano, Y.; Chen, F.; Barlage, M. Enhanced Snow Absorption and Albedo Reduction by Dust-Snow Internal Mixing: Modeling and Parameterization. J. Adv. Model. Earth Syst. 2019, 11, 3755–3776. [Google Scholar] [CrossRef]
- Christensen, N.S.; Lettenmaier, D.P. A Multimodel Ensemble Approach to Assessment of Climate Change Impacts on the Hydrology and Water Resources of the Colorado River Basin. Hydrol. Earth Syst. Sci. 2007, 11, 1417–1434. [Google Scholar] [CrossRef]
- Vuille, M.; Francou, B.; Wagnon, P.; Juen, I.; Kaser, G.; Mark, B.G.; Bradley, R.S. Climate Change and Tropical Andean Glaciers: Past, Present and Future. Earth-Sci. Rev. 2008, 89, 79–96. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- IPCC. Climate Change 2007: Impacts, Adaptation and Vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. (Eds.) IPCC, 2013: Climate Change 2013: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2013; pp. 571–657. [Google Scholar]
- Shi, T.; Cui, J.; Chen, Y.; Zhou, Y.; Pu, W.; Xu, X.; Chen, Q.; Zhang, X.; Wang, X. Enhanced Light Absorption and Reduced Snow Albedo Due to Internally Mixed Mineral Dust in Grains of Snow. Atmos. Chem. Phys. 2021, 21, 6035–6051. [Google Scholar] [CrossRef]
- Xie, X.; Liu, X.; Che, H.; Xie, X.; Li, X.; Shi, Z.; Wang, H.; Zhao, T.; Liu, Y. Radiative Feedbacks of Dust in Snow over Eastern Asia in CAM4-BAM. Atmos. Chem. Phys. 2018, 18, 12683–12698. [Google Scholar] [CrossRef]
Glacial Areas in Colombia | Geographical Coordinates | Maximum Height (m a.s.l.) | Glacier Area (km2) |
---|---|---|---|
Sierra Nevada de Santa Marta (SNSM) | 10°49′ N; 73°39′ W | 5775 | 5.81 |
Sierra Nevada del Cocuy (SNC) | 6°27′ N; 72°17′ W | 5380 | 13.19 |
Nevado del Ruíz (NDR) | 4°53′ N; 75°19′ W | 5330 | 8.14 |
Nevado de Santa Isabel (NDS) | 4°49′ N; 75°22′ W | 4968 | 0.45 |
Nevado del Tolima (NDT) | 4°39′ N; 75°22′ W | 5280 | 0.52 |
Nevado del Huila (NDH) | 2°55′ N; 76°03′ W | 5364 | 6.74 |
Colombian Tropical Glacier Studied | Sen’s Slope | Multiple Regression Analysis | Prevailing Wind Direction | ||
---|---|---|---|---|---|
×10−3 µg·m−2·year−1 | p-Value | R2 | p-Value | ||
SNSM | 6.58 | <0.001 | 0.71 | <0.001 | East and Northeast |
SNC | 5.19 | <0.001 | 0.56 | <0.001 | Northeast |
NDR | 3.54 | <0.001 | 0.64 | <0.001 | Northeast |
NDS | 3.54 | <0.001 | 0.59 | <0.001 | Northeast and Southeast |
NDT | 3.53 | <0.001 | 0.15 | 0.85 | Southeast |
NDH | 2.81 | <0.001 | 0.49 | 0.07 | Southeast |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolaño-Ortiz, T.R.; Díaz-Gutiérrez, V.L.; Vélez-Pereira, A.M.; Vergara-Vásquez, E.L.; Camargo-Caicedo, Y. Snow Albedo Reduction in the Colombian Andes Mountains Due to 2000 to 2020 Saharan Dust Intrusions Events. Water 2023, 15, 3150. https://doi.org/10.3390/w15173150
Bolaño-Ortiz TR, Díaz-Gutiérrez VL, Vélez-Pereira AM, Vergara-Vásquez EL, Camargo-Caicedo Y. Snow Albedo Reduction in the Colombian Andes Mountains Due to 2000 to 2020 Saharan Dust Intrusions Events. Water. 2023; 15(17):3150. https://doi.org/10.3390/w15173150
Chicago/Turabian StyleBolaño-Ortiz, Tomás R., Viverlys L. Díaz-Gutiérrez, Andrés M. Vélez-Pereira, Eliana L. Vergara-Vásquez, and Yiniva Camargo-Caicedo. 2023. "Snow Albedo Reduction in the Colombian Andes Mountains Due to 2000 to 2020 Saharan Dust Intrusions Events" Water 15, no. 17: 3150. https://doi.org/10.3390/w15173150