# Evaluation of Regional Water Ecological Economic System Sustainability Based on Emergy Water Ecological Footprint Theory—Taking the Yellow River Basin as an Example

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Study Area

#### 2.2. Emergy Water Ecological Footprint Model

#### 2.3. Sustainability Evaluation Model of Water Ecological Economic System

#### 2.3.1. The Construction Method of the Index System—The Combination of the PSR Model and Ecological Economics Theory

#### 2.3.2. Evaluation Method

#### Comprehensive Evaluation Method—The AHP-EWM-TOPSIS Model

#### Method for Determining Index Weights—The AHP-EWM Method

## 3. Results

#### 3.1. Establishment of Indicator System

#### 3.2. Determination of Indicator Weight

#### 3.3. 2011–2021: Assessment on the Sustainability of the Water Ecological Economic System of the Yellow River Basin as a Whole and Provinces (Regions)

#### 3.3.1. Sustainability Evaluation of Water Ecological Economic System in the Entire Basin

#### 3.3.2. Sustainability Evaluation of the Water Ecological Economic System in Various Provinces (Regions)

#### Sustainability Evaluation of Total System in Various Provinces (Regions)

#### Sustainability Evaluation of the Economic Subsystem in Various Provinces (Regions)

#### Sustainability Evaluation of the Social Subsystem in Various Provinces (Regions)

#### Sustainability Evaluation of Water Ecological Subsystems in Various Provinces (Regions)

## 4. Discussion

- (1)
- Sustainability of the water ecological economic system in the entire basin

- (2)
- Sustainability of the water ecological economic system in various provinces (regions)

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Sartori, S.; Latrônico, F.; Campos, L. Sustainability and sustainable development: A taxonomy in the field of literature. Ambient. Soc.
**2014**, 17, 1–20. [Google Scholar] [CrossRef] - Weigert, F.B.; Steinberg, C.E.W. Sustainable development-assessment of water resource management measures. Water Sci. Technol.
**2002**, 46, 55–62. [Google Scholar] [CrossRef] - Jin, J.L.; Wu, Y.L.; Zhou, Y.L. Genetic algorithm based ideal interval method for evaluating water resources sustaining utilization. In Proceedings of the International Conference on Management Science and Engineering, Harbin, China, 8 August 2004. [Google Scholar]
- Choi, S.J.; Lee, D.R. Indicators for Evaluation of Sustainable Water Resources Development and Management. J. Korea Water Resour. Assoc.
**2005**, 38, 779–790. [Google Scholar] [CrossRef] - Simon, U.; Bruggemann, R.; Pudenz, S. Aspects of decision support in water management–example Berlin and Potsdam (Germany) I–spatially differentiated evaluation. Water Res.
**2004**, 38, 1809–1816. [Google Scholar] [CrossRef] - Morrison, G.; Fatoki, O.S.; Zinn, E.; Jacobsson, D. Sustainable development indicators for urban water systems: A case study evaluation of King William’s Town, South Africa, and the applied indicators. Water SA
**2001**, 27, 219–232. [Google Scholar] [CrossRef] - Russo, T.; Alfredo, K.; Fisher, J. Sustainable Water Management in Urban, Agricultural, and Natural Systems. Water
**2014**, 6, 3934–3956. [Google Scholar] [CrossRef] - Cui, D.W.; Guo, R. Evaluation of Sustainable Utilization of Regional Water Resources Based on GRNN Model: A Case Study of Wenshan Prefecture, Yunnan. People’ Yangtze River
**2012**, 43, 26–31. [Google Scholar] - Kang, Y.; Chen, Y.F.; Gu, S.H. Evaluation of sustainable use of regional water resources based on Random forest. Hydropower Energy Sci.
**2014**, 32, 34–38. [Google Scholar] - Li, J.X.; Li, C.K.; Luo, S.H.; Chen, G. Evaluation of Sustainable Utilization of Water Resources in Quanzhou City Based on AHP Fuzzy Comprehensive Evaluation Method. Soil Water Conserv. Bull.
**2015**, 35, 210–214. [Google Scholar] - Men, B.H.; Liu, H.L. Evaluation of sustainable utilization of water resources in Beijing Tianjin Hebei based on Fuzzy set pair analysis. J. North China Univ. Water Resour. Electr. Power
**2018**, 39, 79–88. [Google Scholar] - Liu, L.; Wang, L.N. Evaluation of water resources sustainability based on entropy weight normal cloud model. J. South China Norm. Univ.
**2020**, 52, 77–84. [Google Scholar] - Ayadi; Wei, C.J.; Ma, Z.Z. Evaluation of Water Resources Development and Utilization Degree in Xi’an City Based on AHP Entropy Weight Method. Prog. Water Resour. Hydropower Technol.
**2020**, 40, 11–16. [Google Scholar] - Fan, X.Q. Research and Application of Ecological footprint of Water Resources. Ph.D. Thesis, Hohai University, Nanjing, China, 2005. [Google Scholar]
- Leng, J.F.; Zhang, Q. Research on sustainable utilization of water resources based on Ecological footprint model–taking Jiangsu Province as an example. J. Chongqing Univ. Technol.
**2015**, 29, 54–59. [Google Scholar] - Zhu, G.; Zhao, C.; Zhu, W.; Tong, S. Evaluation of sustainable use of water resources in Jilin Province based on Ecological footprint model. J. China Agric. Univ.
**2020**, 25, 131–143. [Google Scholar] - Wang, X.Q.; Li, B.; Li, J.; Liu, P.F. Analysis on sustainable use of water resources based on Ecological footprint model. People’ Yangtze River
**2019**, 50, 107–112. [Google Scholar] - Wu, Q.Z.; Su, X.J.; Long, L.L. Analysis on sustainable utilization of water resources in Guizhou Province based on Ecological footprint model. J. North China Univ. Water Resour. Electr. Power
**2016**, 37, 36–40. [Google Scholar] - Zhang, S.L.; Zhang, H.J.; Zhang, H.X.; An, B.; Huang, Z.G. Ecological footprint of Water Resources in Shaanxi Province and Its Sustainable Utilization Analysis. People’s Yangtze River
**2021**, 52, 130–136. [Google Scholar] - Xiong, N.N.; Xie, S.Y. Research on spatial-temporal evolution of Ecological footprint and carrying capacity of water resources in Chengdu. J. Southwest Univ.
**2018**, 40, 124–131. [Google Scholar] - Tao, Q.J.; Guo, C.X. Quantitative assessment of Ecological footprint of water resources in Guangdong Province and its influencing factors. Water Resour. Prot.
**2018**, 34, 28–33. [Google Scholar] - The Central People’s Government of the China and the State Council of the CPC Central Committee issued the Outline of Ecological Protection and High Quality Development Plan for the Yellow River Basin. Available online: http://www.gov.cn/zhengce/2021-10/08/content_5641438.htm (accessed on 8 August 2021).
- Wang, R.Y.; Zhao, G.X.; Zhou, W.; Jiang, S.Q.; Qin, Y.W. Evaluation and Dynamic Analysis of County Ecological Environment Vulnerability: A Case Study of Kenli County in the Yellow River Delta. J. Ecol.
**2009**, 29, 10. [Google Scholar] - Wang, Y.J.; Jiang, E.H.; Gao, G.M. The Significance and Prospects of the Utilization of Sediment Resources in the Yellow River Basin. In Proceedings of the Establishment Conference of the Technical Committee for Reservoir Sediment Treatment and Resource Utilization of the China Society of Dam Engineering, Changsha, China, 9 December 2017. [Google Scholar]
- Su, M.L. Divide water according to law and unify water distribution pipes to make good use of precious Yellow River water. China Water. Resour.
**2019**, 17, 35–36. [Google Scholar] - An, S.W.; Li, R.P. The Connotation and Promotion Strategy of High Quality Development in the Yellow River Basin. Reform
**2020**, 1, 76–78. [Google Scholar] - Yellow River Conservancy of Commission of MWR. Yellow River Water Resources Bulletin 2011–2021; Yellow River Conservancy of Commission: Zhengzhou, China, 2021.
- Qinghai Provincial Water Resources Department. Qinghai Water Resources Bulletin 2011–2021; Qinghai Provincial Water Resources Department: Xining, China, 2021.
- Sichuan Provincial Water Resources Department. Sichuan Water Resources Bulletin 2011–2021; Sichuan Provincial Water Resources Department: Chendu, China, 2021.
- Gansu Provincial Water Resources Department. Gansu Water Resources Bulletin 2011–2021; Gansu Provincial Water Resources Department: Lanzhou, China, 2021.
- Neimenggu Provincial Water Resources Department. Neimenggu Water Resources Bulletin 2011–2021; Neimenggu Provincial Water Resources Department: Hohhot, China, 2021.
- Shaanxi Provincial Water Resources Department. Shaanxi Water Resources Bulletin 2011–2021; Shaanxi Provincial Water Resources Department: Xi’an, China, 2021.
- Shanxi Provincial Water Resources Department. Shanxi Water Resources Bulletin 2011–2021; Shanxi Provincial Water Resources Department: Taiyuan, China, 2021.
- Henan Provincial Water Resources Department. Henan Water Resources Bulletin 2011–2021; Henan Provincial Water Resources Department: Zhengzhou, China, 2021.
- Shandong Provincial Water Resources Department. Shandong Water Resources Bulletin 2011–2021; Shandong Provincial Water Resources Department: Jinan, China, 2021.
- Ministry of Housing and Urban Rural Development, China. China Urban Rural Construction Statistical Yearbook 2011–2021; Ministry of Housing and Urban Rural Development: Beijing, China, 2021.
- National Bureau of Statistics of China. China Statistical Yearbook 2011–2021; China Statistics Press: Beijing, China, 2021.
- Wang, H.L.; Li, Z.C. Evaluation of water resources utilization in the Yellow River basin based on emergy water Ecological footprint model. Water Resour. Prot.
**2022**, 38, 147–152. [Google Scholar] - Odum, H.T.; Odum, E.C.; Blissett, M. Ecology and Economy: Emergy Analysis and Public Policy in Texas; Results of Policy Research Project; State Department of Agriculture: Austin, TX, USA, 1987.
- Bian, Y.J. Research on the Theory and Method of China’s Water Conservancy Sustainable Development. Ph.D. Thesis, Hohai University, Nanjing, China, 2000. [Google Scholar]
- Xia, J.; Wang, Z.G.; Mu, H.Q. Research on the Evaluation Index System of Sustainable Water Resource Management (one). J. Changjiang Work. Univ.
**2000**, 1, 1–7. [Google Scholar] - Jia, X.H. Research on Sustainable Assessment and Path Optimization of Yinchuan City Based on SDGs. Master’s Thesis, Lanzhou University, Lanzhou, China, 2021. [Google Scholar]
- Yao, N. Research on Evaluation Methods for Sustainable Utilization of Regional Water Resources. Ph.D. Thesis, Zhengzhou University, Zhengzhou, China, 2017. [Google Scholar]
- Liu, H.; Geng, L.H.; Chen, X.Y. Establishment of an evaluation index system for sustainable utilization of regional water resources. Prog. Water Sci.
**2003**, 14, 265–270. [Google Scholar] - Shen, Z.Y.; Yang, Z.F. Evaluation index system and evaluation method for water resource renewability in the Yellow River Basin. J. Nat. Resour.
**2002**, 17, 188–197. [Google Scholar] - Jia, S.F.; Zhang, J.Y.; Zhang, S.F. Regional water resource pressure index and water resource security evaluation index system. Prog. Geogr. Sci.
**2002**, 21, 538–545. [Google Scholar] - Feng, S.; Liu, G.; Mei, Y. Water resource ecological economic composite system and its sustainable development. J. Wuhan Univ. Water. Resour. Electr. Power.
**1995**, 1, 624–629. [Google Scholar] - Xu, L.F.; Feng, G.Z.; Liu, J.M. Research on Sustainable Utilization of Regional Water Resources and Its Evaluation Index System. J. Northwest A&F Univ.
**2002**, 30, 119–122. [Google Scholar] - Bian, J.M.; Yang, J.Q. Research on the indicator system for evaluating the sustainable use of water resources. Soil Water Conserv. Bull.
**2000**, 20, 43–45. [Google Scholar]

**Figure 3.**Sustainability evaluation of the water ecological economic system in various provinces (regions).

**Figure 4.**Sustainability evaluation of the water ecological economic system in various provinces (regions).

**Figure 5.**Sustainability evaluation of the water ecological economic system in various provinces (regions).

**Figure 6.**Sustainability evaluation of the water ecological economic system in various provinces (regions).

Primary Account | Secondary Account | Abbreviation | Tertiary Account | Abbreviation | Formula |
---|---|---|---|---|---|

Water ecological economic system $\left(\mathrm{E}\mathrm{F}\mathrm{W}\right)$ | Primary industry | ${\mathrm{W}\mathrm{E}\mathrm{F}}_{\mathrm{p}\mathrm{r}\mathrm{i}}$ | ${\mathrm{W}\mathrm{E}\mathrm{F}}_{\mathrm{a}}+{\mathrm{W}\mathrm{E}\mathrm{F}}_{\mathrm{f}}+{\mathrm{W}\mathrm{E}\mathrm{F}}_{\mathrm{h}}+{\mathrm{W}\mathrm{E}\mathrm{F}}_{\mathrm{f}\mathrm{i}}$ | ||

Economic subsystem | ${\mathrm{W}\mathrm{E}\mathrm{F}}_{\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{n}}$ | Secondary industry | ${\mathrm{W}\mathrm{E}\mathrm{F}}_{\mathrm{s}\mathrm{e}\mathrm{c}}$ | ${\mathrm{W}}_{\mathrm{i}}\times {\tau}_{\mathrm{e}\mathrm{n}}/{\mathrm{P}}_{\mathrm{W}}$ | |

Tertiary industry | ${\mathrm{W}\mathrm{E}\mathrm{F}}_{\mathrm{t}\mathrm{r}\mathrm{i}}$ | ${\mathrm{W}}_{\mathrm{t}\mathrm{r}\mathrm{i}}\times {\tau}_{\mathrm{e}\mathrm{n}}/{\mathrm{P}}_{\mathrm{W}}$ | |||

Social subsystem | ${\mathrm{W}\mathrm{E}\mathrm{F}}_{\mathrm{s}\mathrm{o}\mathrm{c}\mathrm{i}}$ | Urban life | ${\mathrm{W}\mathrm{E}\mathrm{F}}_{\mathrm{U}\mathrm{L}}$ | ${\mathrm{W}}_{\mathrm{U}\mathrm{L}}{\ast \tau}_{\mathrm{e}\mathrm{n}}/{\mathrm{P}}_{\mathrm{W}}$ | |

Rural life | ${\mathrm{W}\mathrm{E}\mathrm{F}}_{\mathrm{R}\mathrm{L}}$ | ${\mathrm{W}}_{\mathrm{R}\mathrm{L}}\ast {\tau}_{\mathrm{N}}/{\mathrm{P}}_{\mathrm{W}}$ | |||

Water ecological subsystem | ${\mathrm{W}\mathrm{E}\mathrm{F}}_{\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{l}}$ | Biodiversity conservation | ${\mathrm{W}\mathrm{E}\mathrm{F}}_{\mathrm{b}\mathrm{d}}$ | $\mathrm{N}\times \mathrm{R}\times {\tau}_{\mathrm{B}}/{\mathrm{P}}_{\mathrm{W}}$ | |

Environmental purification | ${\mathrm{W}\mathrm{E}\mathrm{F}}_{\mathrm{P}}$ | ${(\mathrm{M}}_{1}{\tau}_{1}-{\mathrm{M}}_{2}{\tau}_{2})/{\mathrm{P}}_{\mathrm{W}}$ | |||

Climate regulation | ${\mathrm{W}\mathrm{E}\mathrm{F}}_{\mathrm{W}}$ | $\left(2507.4-2.39\mathrm{t}\right)\times $ $\mathrm{G}\times {\tau}_{\mathrm{q}}/{\mathrm{P}}_{\mathrm{W}}$ | |||

Convey | ${\mathrm{W}\mathrm{E}\mathrm{F}}_{\mathrm{t}}$ | ${\mathrm{P}\mathrm{E}}_{\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{l}}\times \frac{{\tau}_{\mathrm{r}}}{{\mathrm{P}}_{\mathrm{W}}}$ |

^{2}), ${\mathrm{W}\mathrm{E}\mathrm{F}}_{\mathrm{f}}$ represents the emegy ecological footprint of forestry water use (km

^{2}), ${\mathrm{W}\mathrm{E}\mathrm{F}}_{\mathrm{h}}$ represents the emergy ecological footprint of animal husbandry water use (km

^{2}), and ${\mathrm{W}\mathrm{E}\mathrm{F}}_{\mathrm{f}\mathrm{i}}$ represents the emergy ecological footprint of fishery water use (km

^{2}). W

_{i}is the water used in the manufacturing industry (m

^{3}), W

_{tri}is water for the service industry (m

^{3}), ${\tau}_{\mathrm{e}\mathrm{n}}$ is the energy density of the engineering water body (sej/m

^{3}). ${\mathrm{W}}_{\mathrm{U}\mathrm{L}}$ is urban domestic water (m

^{3}), ${\mathrm{W}}_{\mathrm{R}\mathrm{L}}$ is rural domestic water use (m

^{3}). Number of aquatic species $\mathrm{N}$ in the region, ratio of biological activity area $\mathrm{R}$ (%), ${\tau}_{\mathrm{B}}$ is the species energy conversion rate (sej/unit). The amount of pollutants emitted by the region is ${\mathrm{M}}_{1}$ (g), energy conversion rate ${\tau}_{1}$ (sej/g), the amount of pollutants after a certain period of time ${\mathrm{M}}_{2}$ (g), energy conversion rate ${\tau}_{2}$ (sej/g). $\mathrm{t}$ is the annual average temperature of the region (°C), $\mathrm{G}$ is the evaporation capacity (g), ${\tau}_{\mathrm{q}}$ is the conversion rate of steam energy value (sej/g). ${\mathrm{P}\mathrm{E}}_{\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{l}}$ (J) represents the ecological part of river potential energy. ${\tau}_{\mathrm{r}}$ is the conversion rate of river runoff energy value (sej/J).

Scale | Meaning |
---|---|

1 | two factors are equally important |

3 | factor i is slightly more important than factor j |

5 | factor i is significantly more important than factor j |

7 | factor i is more important than factor j |

9 | factor i is extremely important compared to factor factor i is extremely important compared to factor j |

2, 4, 6, 8 | the median of the two adjacent judgments mentioned above |

reciprocal | factor j is more important than factor i |

n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |

RI | 0 | 0 | 0.52 | 0.89 | 1.12 | 1.24 | 1.36 | 1.41 | 1.46 | 1.49 | 1.52 | 1.54 | 1.56 | 1.58 |

Indicator Layer | Unit | Data Source and Calculation | Nature |
---|---|---|---|

C.1. economic benifits of unit secondary industry wef | 10^{4} CNY/${\mathrm{k}\mathrm{m}}^{2}$ | $\frac{\mathrm{G}\mathrm{d}\mathrm{p}.\mathrm{s}\mathrm{e}\mathrm{c}}{{\mathrm{W}\mathrm{E}\mathrm{F}}_{\mathrm{s}\mathrm{e}\mathrm{c}}}$ | + |

C.1. economic benifits of unit tertiary industry wef | 10^{4} CNY/${\mathrm{k}\mathrm{m}}^{2}$ | $\frac{\mathrm{G}\mathrm{d}\mathrm{p}.\mathrm{t}\mathrm{e}\mathrm{r}}{{\mathrm{W}\mathrm{E}\mathrm{F}}_{\mathrm{t}\mathrm{e}\mathrm{r}}}$ | + |

C.3. Propotion of secondary industry | % | $\frac{{\mathrm{W}\mathrm{E}\mathrm{F}}_{\mathrm{s}\mathrm{e}\mathrm{c}}}{{\mathrm{W}\mathrm{E}\mathrm{F}}_{\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{n}}}$ | + |

C.4. Modulo of economic subsystem wef | Dimensionless | $\frac{{\mathrm{W}\mathrm{E}\mathrm{F}}_{\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{n}}}{\mathrm{A}\mathrm{r}\mathrm{e}\mathrm{a}}$ | − |

C.5. Industrial water recycling rate | % | Statistical Data | + |

C.6. Module of Water conservancy fixed assets investment | Dimensionless | $\frac{\mathrm{I}\mathrm{n}\mathrm{v}.\mathrm{w}\mathrm{c}\mathrm{o}\mathrm{n}}{\mathrm{A}\mathrm{r}\mathrm{e}\mathrm{a}}$ | + |

^{4}CNY), $\mathrm{G}\mathrm{d}\mathrm{p}.\mathrm{t}\mathrm{e}\mathrm{r}$ represents the gross domestic product of the Tertiary sector of the economy (10

^{4}CNY), $\mathrm{A}\mathrm{r}\mathrm{e}\mathrm{a}$ represents the area (km

^{2}), and $\mathrm{I}\mathrm{n}\mathrm{v}.\mathrm{w}\mathrm{c}\mathrm{o}\mathrm{n}$ represents the fixed investment in water conservancy (10

^{4}CNY). The symbols not indicated in the formula are shown in Table 1.

Indicator Layer | Unit | Data Source and Calculation | Nature |
---|---|---|---|

C.7. Per Capita Disposable Income | $\mathrm{C}\mathrm{N}\mathrm{Y}/(\mathrm{p}\mathrm{e}\mathrm{o}\mathrm{p}\mathrm{l}\mathrm{e}\xb7\mathrm{y}\mathrm{e}\mathrm{a}\mathrm{r})$ | Statistical Data | + |

C.8. Proportion of rural population | % | Statistical Data | + |

C.9. Rural Engel’s coefficient | % | Statistical Data | + |

C.10. Growth rate of urban residents’ life wef | % | $\frac{{\mathrm{W}\mathrm{E}\mathrm{F}}_{\mathrm{U}\mathrm{L}}-{\mathrm{W}\mathrm{E}\mathrm{F}}_{\mathrm{U}\mathrm{L}-\mathrm{t}\mathrm{y}\mathrm{p}}}{{\mathrm{W}\mathrm{E}\mathrm{F}}_{\mathrm{U}\mathrm{L}-\mathrm{t}\mathrm{y}\mathrm{p}}}$ | + |

C.11. Growth rate of rural residents’ life wef | % | $\frac{\mathrm{W}{\mathrm{E}\mathrm{F}}_{\mathrm{R}\mathrm{L}}-{\mathrm{W}\mathrm{E}\mathrm{F}}_{\mathrm{R}\mathrm{L}-\mathrm{t}\mathrm{y}\mathrm{p}}}{{\mathrm{W}\mathrm{E}\mathrm{F}}_{\mathrm{R}\mathrm{L}-\mathrm{t}\mathrm{y}\mathrm{p}}}$ | + |

C.12. Modulo of urban residents’ life wef | Dimensionless | \ | + |

C.13. Water supply pervasion | % | Statistical Data | + |

C.14. Per water storage capacity | ${\mathrm{m}}^{3}/\mathrm{p}\mathrm{e}\mathrm{o}\mathrm{p}\mathrm{l}\mathrm{e}$ | $\frac{\mathrm{C}\mathrm{a}\mathrm{p}.\mathrm{r}\mathrm{e}\mathrm{v}}{\mathrm{P}\mathrm{o}\mathrm{p}}$ | + |

C.15. Population benefits of unit rural residents’ life wef | $\mathrm{p}\mathrm{e}\mathrm{o}\mathrm{p}\mathrm{l}\mathrm{e}/{\mathrm{k}\mathrm{m}}^{2}$ | $\frac{\mathrm{P}\mathrm{o}\mathrm{p}.\mathrm{r}\mathrm{u}\mathrm{r}}{{\mathrm{W}\mathrm{E}\mathrm{F}}_{\mathrm{R}\mathrm{L}}}$ | + |

C.16. Population benefits of unit urban residents’ life wef | $\mathrm{p}\mathrm{e}\mathrm{o}\mathrm{p}\mathrm{l}\mathrm{e}/{\mathrm{k}\mathrm{m}}^{2}$ | $\frac{\mathrm{P}\mathrm{o}\mathrm{p}.\mathrm{u}\mathrm{r}}{{\mathrm{W}\mathrm{E}\mathrm{F}}_{\mathrm{U}\mathrm{L}}}$ | + |

^{8}m

^{3}), $\mathrm{P}\mathrm{o}\mathrm{p}.\mathrm{r}\mathrm{u}\mathrm{r}$ represents the rural permanent population (10

^{4}people), $\mathrm{P}\mathrm{o}\mathrm{p}.\mathrm{u}\mathrm{r}$ represents the urban permanent population (10

^{4}people), and the symbols not indicated in the formula are shown in Table 1.

**Table 6.**Index system for sustainability of the water ecological subsystem (w-ecological subsystem).

Indicator Layer | Unit | Data Source and Calculation | Nature |
---|---|---|---|

C.17. Forest vegetation coverage | % | Statistical Data | + |

C.18.Modulo of convey wef | Dimensionless | $\frac{{\mathrm{W}\mathrm{E}\mathrm{F}}_{\mathrm{t}}}{\mathrm{A}\mathrm{r}\mathrm{e}\mathrm{a}}$ | − |

C.19.Modulo of Climate regulation wef | Dimensionless | $\frac{{\mathrm{W}\mathrm{E}\mathrm{F}}_{\mathrm{w}}}{\mathrm{A}\mathrm{r}\mathrm{e}\mathrm{a}}$ | − |

C.20. Reservoir regulation coefficient | Dimensionless | $\frac{\mathrm{C}\mathrm{a}\mathrm{p}.\mathrm{r}\mathrm{e}\mathrm{v}}{\mathrm{V}\mathrm{o}\mathrm{l}.\mathrm{r}\mathrm{i}\mathrm{v}}$ | + |

C.21. Proportion of groundwater supply | % | Statistical Data | − |

C.22. Cv in water ecological carrying capacity | Dimensionless | Statistical Data | − |

C.23. Water production coefficient | % | $\frac{{\mathrm{W}\mathrm{E}\mathrm{F}}_{\mathrm{u}\mathrm{n}\mathrm{d}}+{\mathrm{W}\mathrm{E}\mathrm{F}}_{\mathrm{s}\mathrm{u}\mathrm{r}}}{\mathrm{E}\mathrm{C}\mathrm{W}}$ | + |

C.24. Surplus rate of wef | % | $\frac{\mathrm{W}\mathrm{E}\mathrm{C}-\mathrm{W}\mathrm{E}\mathrm{F}}{\mathrm{W}\mathrm{E}\mathrm{C}}$ | + |

C.25. Comprehensive Water Pollution Index | % | $\frac{{\mathrm{W}\mathrm{E}\mathrm{F}}_{\mathrm{p}}}{\mathrm{W}\mathrm{E}\mathrm{C}}$ | − |

^{2}), $\mathrm{P}\mathrm{o}\mathrm{e}.\mathrm{r}\mathrm{a}\mathrm{i}(\mathrm{u}\mathrm{n}\mathrm{d}/\mathrm{s}\mathrm{u}\mathrm{r})$ represents rainwater (ground/surface water) potential energy (J), $\mathrm{C}\mathrm{h}\mathrm{e}.\mathrm{r}\mathrm{a}\mathrm{i}(\mathrm{u}\mathrm{n}\mathrm{d}/\mathrm{s}\mathrm{u}\mathrm{r})$ represents rainwater (ground/surface water) Chemical energy (J), ${\tau}_{\mathrm{P}\mathrm{o}\mathrm{e}.\mathrm{r}\mathrm{a}\mathrm{i}(\mathrm{u}\mathrm{n}\mathrm{d}/\mathrm{s}\mathrm{u}\mathrm{r})}$ represents the conversion rate of rainwater (ground/surface water) potential energy value (SEJ/J), ${\tau}_{\mathrm{C}\mathrm{h}\mathrm{e}.\mathrm{r}\mathrm{a}\mathrm{i}(\mathrm{u}\mathrm{n}\mathrm{d}/\mathrm{s}\mathrm{u}\mathrm{r})}$ represents rainwater (ground/surface water) Chemical energy emergy conversion rate (SEJ/J), $Vol.riv$ represents runoff (10

^{8}m

^{3}), ${P}_{w}$ represents the energy density of regional water resources (SEJ/km

^{2}), and the meaning of $Cap.rev$ is shown in Table 3, Index C.14 calculation formula, and symbols that are not indicated in the formula are shown in Table 1. The formulas not listed in the table can be found in the statistical data or are commonly used indicator.

**Table 7.**Mixed Weights for Sustainability Evaluation of the Water Ecological Economic System (w-eco-economic system).

Goal | Criterion Layer | Indicator Layer | Hybrid Weight | |
---|---|---|---|---|

Basin | Provinces (Regions) in the Basin | |||

W-eco-economic System | Economic subsystem | |||

0.2 | C.1 | 22.351 | 25.0635 | |

C.2 | 17.449 | 17.473 | ||

C.3 | 11.1495 | 10.8815 | ||

C.4 | 12.4755 | 4.886 | ||

C.5 | 20.4175 | 15.3945 | ||

C.6 | 16.1575 | 26.302 | ||

Social subsystem | ||||

0.2 | C.7 | 8.666 | 8.6975 | |

C.8 | 6.139 | 4.1165 | ||

C.9 | 7.417 | 2.275 | ||

C.10 | 6.719 | 3.995 | ||

C.11 | 11.158 | 4.454 | ||

C.12 | 11.399 | 8.693 | ||

C.13 | 9.479 | 6.8465 | ||

C.14 | 11.356 | 34.3195 | ||

C.15 | 12.4175 | 13.0495 | ||

C.16 | 15.25 | 13.5535 | ||

W-Ecological subsystem | ||||

0.3 | C.17 | 6.934 | 8.326 | |

C.18 | 14.246 | 5.2015 | ||

C.19 | 12.797 | 9.1565 | ||

C.20 | 9.219 | 17.235 | ||

C.21 | 11.1885 | 9.548 | ||

C.22 | \ | 10.1385 | ||

C.23 | 14.2445 | 20.495 | ||

C.24 | 16.0025 | 10.339 | ||

C.25 | 15.3825 | 9.5605 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Wu, Z.; Chen, X.; Di, D.
Evaluation of Regional Water Ecological Economic System Sustainability Based on Emergy Water Ecological Footprint Theory—Taking the Yellow River Basin as an Example. *Water* **2023**, *15*, 3137.
https://doi.org/10.3390/w15173137

**AMA Style**

Wu Z, Chen X, Di D.
Evaluation of Regional Water Ecological Economic System Sustainability Based on Emergy Water Ecological Footprint Theory—Taking the Yellow River Basin as an Example. *Water*. 2023; 15(17):3137.
https://doi.org/10.3390/w15173137

**Chicago/Turabian Style**

Wu, Zening, Xiangyu Chen, and Danyang Di.
2023. "Evaluation of Regional Water Ecological Economic System Sustainability Based on Emergy Water Ecological Footprint Theory—Taking the Yellow River Basin as an Example" *Water* 15, no. 17: 3137.
https://doi.org/10.3390/w15173137