# Exploring the Sensitivity Range of Underlying Surface Factors for Waterlogging Control

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Method

#### 2.1. Study Area

#### 2.2. Rainfall Data

#### 2.3. Model Construction

#### 2.4. Sensitivity Analysis

#### 2.4.1. Sensitivity Analysis Method

^{3}. This approach avoids significant errors in the calculated Morris values when the overflow volume is minimal.

#### 2.4.2. Sensitivity Analysis Indicators

#### Land-Use

#### Drainage Capacity

#### Slope

#### Characteristics Parameters and Evaluation Criteria

## 3. Results

#### 3.1. Sensitivity Analysis of the P-Imperv

#### 3.1.1. Sensitivity Changes with Rainfall Characteristics for the P-Imperv

#### 3.1.2. Patterns of Change in Sensitivity with P-Imperv Variations

#### 3.2. Sensitivity Analysis of PV-H

#### 3.2.1. Sensitivity Changes with Rainfall Characteristics for PV-H

#### 3.2.2. Patterns of Change in Sensitivity with PV-H Variations

#### 3.3. Sensitivity Analysis of Slope

#### 3.3.1. Sensitivity Changes with Rainfall Characteristics for Slope

#### 3.3.2. Patterns of Change in Sensitivity with Slope Variations

## 4. Discussion

#### 4.1. Selection of Key Factors for Urban Waterlogging Management

#### 4.2. Sensitivity Thresholds of Factors

#### 4.3. Prospects and Limitations of Research

## 5. Conclusions

## Supplementary Materials

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Ziegler, A.D. Water management: Reduce urban flood vulnerability. Nature
**2012**, 481, 145. [Google Scholar] [CrossRef] [PubMed] - Zhou, M.; Feng, X.; Liu, K.; Zhang, C.; Xie, L.; Wu, X. An Alternative Risk Assessment Model of Urban Waterlogging: A Case Study of Ningbo City. Sustainability
**2021**, 13, 826. [Google Scholar] [CrossRef] - Markolf, S.A.; Chester, M.V.; Helmrich, A.M.; Shannon, K. Re-imagining design storm criteria for the challenges of the 21st century. Cities
**2021**, 109, 102981. [Google Scholar] [CrossRef] - Xia, J.; Zhang, Y.Y.; Xiong, L.H.; He, S.; Wang, L.F.; Yu, Z.B. Opportunities and challenges of the Sponge City construction related to urban water issues in China. Sci. China Earth Sci.
**2017**, 60, 652–658. [Google Scholar] [CrossRef] - Yazdi, J.; Mofrad, H.H.; Mofrad, M.H. Development of a risk-based optimization approach to improve the performance of urban drainage systems. Hydrol. Sci. J.
**2022**, 67, 689–702. [Google Scholar] [CrossRef] - Mohammadiun, S.; Yazdi, J.; Neyshabouri, S.A.A.; Sadiq, R. Development of a stochastic framework to design/rehabilitate urban stormwater drainage systems based on a resilient approach. Urban Water J.
**2018**, 15, 167–176. [Google Scholar] [CrossRef] - Ahiablame, L.M.; Engel, B.A.; Chaubey, I. Effectiveness of Low Impact Development Practices: Literature Review and Suggestions for Future Research. Water Air Soil Pollut.
**2012**, 223, 4253–4273. [Google Scholar] [CrossRef] - Liu, H.; Jia, Y.; Niu, C. “Sponge city” concept helps solve China’s urban water problems. Environ. Earth Sci.
**2017**, 76, 473. [Google Scholar] [CrossRef] - Yin, D.; Chen, Y.; Jia, H.; Wang, Q.; Chen, Z.; Xu, C.; Li, Q.; Wang, W.; Yang, Y.; Fu, G.; et al. Sponge city practice in China: A review of construction, assessment, operational and maintenance. J. Clean. Prod.
**2021**, 280, 124963. [Google Scholar] [CrossRef] - William, R.; Gardoni, P.; Stillwell, A.S. Predicting rain garden performance under back-to-back rainfall conditions using stochastic life-cycle analysis. Sustain. Resilient Infrastruct.
**2019**, 6, 143–155. [Google Scholar] [CrossRef] - Li, J.K.; Liu, F.; Li, Y.J. Simulation and design optimization of rain gardens via DRAINMOD and response surface methodology. J. Hydrol.
**2020**, 585, 124788. [Google Scholar] [CrossRef] - Li, J.; Li, F.; Li, H.; Guo, C.; Dong, W. Analysis of rainfall infiltration and its influence on groundwater in rain gardens. Environ. Sci. Pollut. Res.
**2019**, 26, 22641–22655. [Google Scholar] [CrossRef] [PubMed] - de Graaf-van Dinther, R.; Leskens, A.; Veldkamp, T.; Kluck, J.; Boogaard, F. From Pilot Projects to Transformative Infrastructures, Exploring Market Receptivity for Permeable Pavement in The Netherlands. Sustainability
**2021**, 13, 4925. [Google Scholar] [CrossRef] - Yu, T.; Liu, D.; Zhang, H.; Wang, H. Influence of pore water phase change on service performance for permeable pavement in Sponge City. Water Sci. Technol.
**2021**, 84, 3769–3779. [Google Scholar] [CrossRef] [PubMed] - Shafique, M.; Kim, R.; Kyung-Ho, K. Evaluating the Capability of Grass Swale for the Rainfall Runoff Reduction from an Urban Parking Lot, Seoul, Korea. Int. J. Environ. Res. Public Health
**2018**, 15, 537. [Google Scholar] [CrossRef] - Zhang, Q.; Wu, Z.; Zhang, H.; Fontana, G.D.; Tarolli, P. Identifying dominant factors of waterlogging events in metropolitan coastal cities: The case study of Guangzhou, China. J. Environ. Manag.
**2020**, 271, 110951. [Google Scholar] [CrossRef] - Liu, F.; Liu, X.; Xu, T.; Yang, G.; Zhao, Y. Driving Factors and Risk Assessment of Rainstorm Waterlogging in Urban Agglomeration Areas: A Case Study of the Guangdong-Hong Kong-Macao Greater Bay Area, China. Water
**2021**, 13, 770. [Google Scholar] [CrossRef] - Jiao, S.; Hu, X.; Han, Z. A study on quantitative evaluation of effect factors of urban waterlogging under multiple scales: Taking five internal zones in changsha as an example. Ecol. Econ.
**2020**, 36, 222–229. [Google Scholar] - Kong, F.; Ban, Y.; Yin, H.; James, P.; Dronova, I. Modeling stormwater management at the city district level in response to changes in land use and low impact development. Environ. Model. Softw.
**2017**, 95, 132–142. [Google Scholar] [CrossRef] - Bai, Y.; Zhao, N.; Zhang, R.; Zeng, X. Storm Water Management of Low Impact Development in Urban Areas Based on SWMM. Water
**2019**, 11, 33. [Google Scholar] [CrossRef] - Ma, M.; Wang, H.; Jia, P.; Liu, R.; Hong, Z.; Labriola, L.G.; Hong, Y.; Miao, L. Investigation of inducements and defenses of flash floods and urban waterlogging in Fuzhou, China, from 1950 to 2010. Nat. Hazards
**2018**, 91, 803–818. [Google Scholar] [CrossRef] - Chen, W.; Zheng, M.; Gao, Q.; Deng, C.; Ma, Y.; Ji, G. Simulation of surface runoff control effect by permeable pavement. Water Sci. Technol.
**2021**, 83, 948–960. [Google Scholar] [CrossRef] - Yu, H.; Zhao, Y.; Fu, Y.; Li, L. Spatiotemporal Variance Assessment of Urban Rainstorm Waterlogging Affected by Impervious Surface Expansion: A Case Study of Guangzhou, China. Sustainability
**2018**, 10, 3761. [Google Scholar] [CrossRef] - Chen, W.; Dong, J.; Yan, C.; Dong, H.; Liu, P. What Causes Waterlogging?-Explore the Urban Waterlogging Control Scheme through System Dynamics Simulation. Sustainability
**2021**, 13, 8546. [Google Scholar] [CrossRef] - Tong, J.; Gao, F.; Liu, H.; Huang, J.; Liu, G.; Zhang, H.; Duan, Q. A Study on Identification of Urban Waterlogging Risk Factors Based on Satellite Image Semantic Segmentation and XGBoost. Sustainability
**2023**, 15, 6434. [Google Scholar] [CrossRef] - Keifer, C.J.; Chu, H.H. Synthetic storm pattern for drainage design. J. Hydraul. Div.
**1957**, 83, 1332-1–1332-25. [Google Scholar] [CrossRef] - Liao, D.; Zhu, H.; Zhou, J.; Wang, Y.; Sun, J. Study of the natural rainstorm moving regularity method for hyetograph design. Theor. Appl. Clim.
**2019**, 138, 1311–1321. [Google Scholar] [CrossRef] - GB 50014-2021; Standard for Design of Outdoor Wastewater Engineering. MOHURD: Beijing, China, 2021.
- Liao, D.; Zhang, Q.; Wang, Y.; Zhu, H.; Sun, J. Study of Four Rainstorm Design Methods in Chongqing. Front. Environ. Sci.
**2021**, 9, 51. [Google Scholar] [CrossRef] - He, S.; Wang, Z.; Wang, D.; Liao, W.; Wu, X.; Lai, C. Spatiotemporal variability of event-based rainstorm: The perspective of rainfall pattern and concentration. Int. J. Clim.
**2022**, 42, 6258–6276. [Google Scholar] [CrossRef] - Yao, L.; Wei, W.; Chen, L. How does imperviousness impact the urban rainfall-runoff process under various storm cases? Ecol. Indic.
**2016**, 60, 893–905. [Google Scholar] [CrossRef] - Zheng, P.; Jinyan, K.; Wenbin, P.; Xin, Z.; Yuanbin, C. Effects of Low-Impact Development on Urban Rainfall Runoff under Different Rainfall Characteristics. Pol. J. Environ. Stud.
**2019**, 28, 771–783. [Google Scholar] - Zhao, L.; Zhang, T.; Fu, J.; Li, J.; Cao, Z.; Feng, P. Risk Assessment of Urban Floods Based on a SWMM-MIKE21-Coupled Model Using GF-2 Data. Remote Sens.
**2021**, 13, 4381. [Google Scholar] [CrossRef] - Jeffers, S.; Garner, B.; Hidalgo, D.; Daoularis, D.; Warmerdam, O.; Diagnostics, G.R. Insights into green roof modeling using SWMM LID controls for detention-based designs. J. Water Manag. Model.
**2022**. [Google Scholar] [CrossRef] - Wang, M.; Sun, Y.; Sweetapple, C. Optimization of storage tank locations in an urban stormwater drainage system using a two-stage approach. J. Environ. Manag.
**2017**, 204, 31–38. [Google Scholar] [CrossRef] - Ji, M.; Bai, X. Construction of the sponge city regulatory detailed planning index system based on the SWMM model. Environ. Technol. Innov.
**2021**, 23, 101645. [Google Scholar] [CrossRef] - Wei, Z.; Chun-xin, Z.; Han-hai, Y. Experimental study on hydraulic roughness of revetment with grass cover. Adv. Water Sci.
**2007**, 18, 483. [Google Scholar] - Zhang, W.; Li, T.; Dai, M. Uncertainty assessment of water quality modeling for a small-scale urban catchment using the GLUE methodology: A case study in Shanghai, China. Environ. Sci. Pollut. Res.
**2015**, 22, 9241–9249. [Google Scholar] [CrossRef] - Kobarfard, M.; Fazloula, R.; Zarghami, M.; Akbarpour, A. Evaluating the uncertainty of urban flood model using glue approach. Urban Water J.
**2022**, 19, 600–615. [Google Scholar] [CrossRef] - Sarrazin, F.; Pianosi, F.; Wagener, T. Global Sensitivity Analysis of environmental models: Convergence and validation. Environ. Model. Softw.
**2016**, 79, 135–152. [Google Scholar] [CrossRef] - Morris, M. Factorial Sampling Plans for Preliminary Computational Experiments. Technometrics
**1991**, 33, 161–174. [Google Scholar] [CrossRef] - Francos, A.; Elorza, F.; Bouraoui, F.; Bidoglio, G.; Galbiati, L. Sensitivity analysis of distributed environmental simulation models: Understanding the model behaviour in hydrological studies at the catchment scale. Reliab. Eng. Syst. Saf.
**2003**, 79, 205–218. [Google Scholar] [CrossRef] - Lin, J.; Huang, J.-L.; Du, P.-F.; Tu, Z.-S.; Li, Q.-S. Local sensitivity analysis for urban rainfall runoff modelling. Huan Jing Ke Xue
**2010**, 31, 2023–2028. [Google Scholar] [PubMed] - Chen, Y.; Liu, G.; Huang, X.; Chen, K.; Hou, J.; Zhou, J. Development of a surrogate method of groundwater modeling using gated recurrent unit to improve the efficiency of parameter auto-calibration and global sensitivity analysis. J. Hydrol.
**2021**, 598, 125726. [Google Scholar] [CrossRef] - Iman, R.L.; Helton, J.C. An Investigation of Uncertainty and Sensitivity Analysis Techniques for Computer Models. Risk Anal.
**1988**, 8, 71–90. [Google Scholar] [CrossRef] - Zhang, H.; Cheng, J.; Wu, Z.; Li, C.; Qin, J.; Liu, T. Effects of Impervious Surface on the Spatial Distribution of Urban Waterlogging Risk Spots at Multiple Scales in Guangzhou, South China. Sustainability
**2018**, 10, 1589. [Google Scholar] [CrossRef] - Lenhart, T.; Eckhardt, K.; Fohrer, N.; Frede, H.-G. Comparison of two different approaches of sensitivity analysis. Phys. Chem. Earth Parts A/B/C
**2002**, 27, 645–654. [Google Scholar] [CrossRef] - Zhang, Q.; Lv, X.; Ni, Y.; Ma, L.; Wang, J. Slope Runoff Process and Regulation Threshold under the Dual Effects of Rainfall and Vegetation in Loess Hilly and Gully Region. Sustainability
**2023**, 15, 7582. [Google Scholar] [CrossRef] - Cheng, Y.; Sang, Y.; Wang, Z.; Guo, Y.; Tang, Y. Effects of Rainfall and Underlying Surface on Flood Recession-The Upper Huaihe River Basin Case. Int. J. Disaster Risk Sci.
**2021**, 12, 111–120. [Google Scholar] [CrossRef] - Zhao, Q.; Li, D.; Zhuo, M.; Guo, T.; Liao, Y.; Xie, Z. Effects of rainfall intensity and slope gradient on erosion characteristics of the red soil slope. Stoch. Environ. Res. Risk Assess.
**2015**, 29, 609–621. [Google Scholar] [CrossRef] - Xu, Z.; Chen, H.; Ren, M.; Cheng, T. Progress on disaster mechanism and risk assessment of urban flood/waterlogging disasters in China. Adv. Water Sci.
**2020**, 31, 713. [Google Scholar] - Ning, Y.-F.; Dong, W.-Y.; Lin, L.-S.; Zhang, Q. Analyzing the causes of urban waterlogging and sponge city technology in China. IOP Conf. Series Earth Environ. Sci.
**2017**, 59, 012047. [Google Scholar] [CrossRef]

**Figure 1.**The geographic location of study area. (

**a**) Underlying surface and drainage pipe networks of Niujiaolong community; (

**b**) DEM of Niujiaolong community (m); (

**c**) underlying surface and drainage pipe networks of Zhuyuan community; (

**d**) DEM of Zhuyuan community (m).

**Figure 2.**Sensitivity of the P-Imperv in Niujiaolong communities under different rainfall conditions. Due to the sensitivity classification criteria being based on absolute values, all figures in this study have been plotted after taking the absolute values.

**Figure 6.**Sensitivity of the mean slope in Niujiaolong communities under different rainfall conditions.

Sub-Catchment | Horton Model | Outfall | Pipe | ||||
---|---|---|---|---|---|---|---|

Property | Value | Property | Value | Property | Value | Property | Value |

N-Imperv | 0.012 | Max.Infil.Rate | 75 | Tide gate | NO | N | 0.013 |

N-Perv | 0.2 | Min.Infil.Rate | 4 | Type | FREE | ||

Dstore-Imperv | 2 | Decay Constant | 2 | ||||

Dstore-Perv | 7 | Drying Time | 7 | ||||

%Zero-Imperv | 25 |

Characteristics | Niujiaolong Community | Zhuyuan Community | ||||
---|---|---|---|---|---|---|

Range | Step | Base Value | Range | Step | Base Value | |

P-Imperv | 18.4~91.9% | −10% | 91.9% | 18.9~94.5% | −10% | 94.5% |

PV-H | 22.8~227.6 | ±10% | 113.8 | 13.8~124.2 | ±10% | 68.9 |

Mean slope | 0.04~0.38 | ±10% | 0.21 | 0.16~1.44 | ±10% | 0.8 |

Sd slope | 0.04~0.36 | ±10% | 0.2 | 0.16~1.46 | ±10% | 0.81 |

Class | Index | Sensitivity |
---|---|---|

I | 0.00 ≤ ∣${S}_{n}/{S}_{i}$∣ < 0.05 | Small to negligible |

II | 0.05 ≤ ∣${S}_{n}/{S}_{i}$∣ < 0.20 | Medium |

III | 0.20 ≤ ∣${S}_{n}/{S}_{i}$∣ < 1.00 | High |

IV | ∣${S}_{n}/{S}_{i}$∣ ≥ 1.00 | Very high |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Liu, Y.; Qi, X.; Wei, Y.; Wang, M.
Exploring the Sensitivity Range of Underlying Surface Factors for Waterlogging Control. *Water* **2023**, *15*, 3131.
https://doi.org/10.3390/w15173131

**AMA Style**

Liu Y, Qi X, Wei Y, Wang M.
Exploring the Sensitivity Range of Underlying Surface Factors for Waterlogging Control. *Water*. 2023; 15(17):3131.
https://doi.org/10.3390/w15173131

**Chicago/Turabian Style**

Liu, Yang, Xiaotian Qi, Yingxia Wei, and Mingna Wang.
2023. "Exploring the Sensitivity Range of Underlying Surface Factors for Waterlogging Control" *Water* 15, no. 17: 3131.
https://doi.org/10.3390/w15173131