Research on Performance Test of the Optic-Electric Sensors for Reservoir Landslide Temperature Field Monitoring
Abstract
:1. Introduction
2. Laboratory Calibration Test of Optic-Electric Temperature Sensing Technology
2.1. Principles of Optic-Electric Temperature Sensing Technology
2.2. Test Preparation and Process
2.3. Test Results and Analysis
3. On-Site Test of Temperature Field in Landslides
3.1. Test Scheme
3.2. Test Results and Analysis
4. Discussion
4.1. Error Analysis
4.2. Indicators for Landslide Stability Prediction
4.3. Advantages and Limitations of Optical Fiber Technology
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thomas, J.; Gupta, M.; Prusty, G. Assessing global parameters of slope stability model using earth data observations for forecasting rainfall—Induced shallow landslides. J. Appl. Geophys. 2023, 212, 104994. [Google Scholar] [CrossRef]
- Yao, S.B.; Jiang, D.B.; Fan, G.Z. Seasonality of precipitation over China. Chin. J. Atmos. Sci. 2017, 41, 1191–1203. [Google Scholar]
- Cheng, G.; Wang, Z.X.; Li, G.Q.; Zhu, H.H.; Shi, B. Process and prospect of integrated full-dimensional monitoring and early warming technology for landslides. China Saf. Sci. J. 2023, 33, 105–114. [Google Scholar]
- Chae, B.G.; Park, H.J.; Catani, F.; Simoni, A.; Berti, M. Landslide prediction, monitoring and early warning: A concise review of state–of–the–art. Geosci. J. 2017, 21, 1033–1070. [Google Scholar] [CrossRef]
- Pecoraro, G.; Calvello, M.; Piciullo, L. Monitoring strategies for local landslide early warning systems. Landslides 2019, 16, 213–231. [Google Scholar] [CrossRef]
- Le Breton, M.; Bontemps, N.; Guillemot, A.; Baillet, L. Landslide monitoring using seismic ambient noise correlation: Challenges and applications. Earth–Sci. Rev. 2021, 216, 103518. [Google Scholar] [CrossRef]
- Zhang, S.; He, N.; Zhong, W.; Hu, K.H.; Yang, H.J. Review and prospect on landslide monitoring and prediction. J. China Three Gorges Univ. 2021, 43, 39–48. [Google Scholar]
- Fang, K.; Zhang, J.F.; Tang, H.M.; Hu, X.L.; Yuan, H.H.; Wang, X.T.; An, P.J.; Ding, B.D. A quick and low-cost smartphone photogrammetry method for obtaining 3D particle size and shape. Eng. Geol. 2023, 322, 107170. [Google Scholar] [CrossRef]
- Esposito, C.; Mastrantoni, G.; Marmoni, G.M.; Antonielli, B.; Caprari, P.; Pica, A.; Schilirò, L.; Mazzanti, P.; Bozzano, F. From theory to practice: Optimisation of available information for landslide hazard assessment in Rome relying on official, fragmented data sources. Landslides 2023, 1612–5118. [Google Scholar] [CrossRef]
- Tarchi, D.; Casagli, N.; Fanti, R.; Leva, D.D.; Luzi, G.; Pasuto, A.; Pieraccini, M.; Silvano, S. Landslide monitoring by using ground–based SAR interferometry: An example of application to the Tessina landslide in Italy. Eng. Geol. 2003, 68, 15–30. [Google Scholar] [CrossRef]
- Cheng, G.; Shi, B.; Zhu, H.H.; Zhang, C.C.; Wu, J.H. A field study on distributed fiber optic deformation monitoring of overlying strata during coal mining. J. Civ. Struct. Health Monit. 2015, 5, 553–562. [Google Scholar] [CrossRef]
- Ou, Y.C.; Zhang, P.S.; Wang, W. Study on the evolution rule of land damage based on electrical resistivity imaging technology in mining face. Geotech. Geol. Eng. 2019, 37, 4259–4268. [Google Scholar] [CrossRef]
- Horiguchi, T.; Shimizu, K.; Kurashima, T.; Tateda, M.; Koyamada, Y. Development of a distributed sensing technique using Brillouin–scattering. J. Light. Technol. 1995, 13, 1296–1302. [Google Scholar] [CrossRef]
- Fang, K.; Tang, H.M.; Li, C.D.; Su, X.X.; An, P.J.; Sun, S.X. Centrifuge modelling of landslides and landslide hazard mitigation: A review. Geosci. Front. 2023, 14, 101493. [Google Scholar] [CrossRef]
- Xu, Q.; Peng, D.L.; He, C.Y.; Qi, X.; Zhao, K.Y.; Xiu, D.H. Theory and method of monitoring and early warning for sudden loess landslide—A case study at Heifangtai terrace. J. Eng. Geol. 2020, 28, 111–121. [Google Scholar]
- Yang, C.Y.; Zhang, T.; Gao, G.; Bu, C.Y.; Wu, H. Application of SBAS–InSAR technology in monitoring of ground deformation of representative giant landslides in Jinsha river basin, Jiangda County, Tibet. Chin. J. Geol. Hazard Control 2022, 33, 94–105. [Google Scholar]
- Zhou, C.M.; Zhao, Z.P.; Lu, Y. The influence of water content on strength and deformation parameters of sliding zone and slope stability. J. Disaster Prev. Mitig. Eng. 2016, 36, 213–219. [Google Scholar]
- Huang, C. Shallow Landslide Stability Study Based on Water Content Change. Master’s Thesis, University of South China, Hengyang, China, March 2017. [Google Scholar]
- Hojat, A.; Diego, A.; Vladislav, I.I.; Laura, L.; Monica, P.; Marco, S.; Greta, T.; Luigi, Z. Geoelectrical characterization and monitoring of slopes on a rainfall–triggered landslide simulator. J. Appl. Geophys. 2019, 170, 103844. [Google Scholar] [CrossRef]
- Zhu, H.H.; Shi, B.; Zhang, C.C. FBG–based monitoring of geohazards: Current status and trends. Sensors 2017, 17, 452. [Google Scholar] [CrossRef]
- Han, H.M.; Shi, B.; Zhang, C.C.; Sang, H.W.; Huang, X.X.; Wei, G.Q. Application of ultra–weak FBG technology in real–time monitoring of landslide shear displacement. Acta Geotech. 2022, 18, 2585–2601. [Google Scholar] [CrossRef]
- Chen, J.; Cheng, F.; Xiong, F.; Zhang, S. Seepage monitoring method and calibrating test based on FBG–hydrothermal cycling integration system. Guangdianzi Jiguang J. Optoelectron. Laser 2016, 27, 479–485. [Google Scholar]
- Tan, D.J.; Han, B.; Li, L.L.; Liu, J.P. Study on the application of FBG technology in rainfall monitoring. Adv. Mater. Res. 2013, 668, 959–963. [Google Scholar] [CrossRef]
- Guo, Y.X.; Fu, J.J.; Li, L.Q.; Xiong, L. Fiber Bragg grating sensor–based monitoring strategy for slope deformation in centrifugal model test. Sens. Rev. 2019, 39, 71–77. [Google Scholar] [CrossRef]
- Gischig, V.S.; Moore, J.R.; Evans, K.F.; Amann, F.; Loew, S. Thermomechanical forcing of deep rock slope deformation: 2. The Randa rock slope instability. J. Geophys. Res. 2011, 116, F04011. [Google Scholar] [CrossRef]
- Watson, A.; Moore, D.; Stewart, T. Temperature influence on rock slope movements at Checkerboard Creek. Landslides: Evaluation and Stabilization. In Proceedings of the 9th International Symposium on Landslides; 2004; pp. 1293–1298. Available online: https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17394091 (accessed on 31 July 2023).
- Zhang, L.; Cui, Y.F.; Zhu, H.H.; Wu, H.; Han, H.M.; Yan, Y.; Shi, B. Shear deformation calculation of landslide using distributed strain sensing technology considering the coupling effect. Landslides 2023, 20, 1583–1597. [Google Scholar] [CrossRef]
- Prakasam, C.; Aravinth, R.; Kanwar, V.S.; Nagarajan, B. Design and Development of Real-time landslide early warning system through low cost soil and rainfall sensors. Mater. Today Proc. 2021, 45, 5649–5654. [Google Scholar]
- Shi, B. On fields and their coupling in engineering geology. J. Eng. Geol. 2013, 21, 673–680. [Google Scholar]
- Veveakis, E.; Vardoulakis, I.; Di, T.G. Thermoporomechanics of creeping landslides: The 1963 Vaiont slide, northern Italy. J. Geophys. Res. Earth Surf. 2007, 112. [Google Scholar] [CrossRef]
- Seguí, C.; Veveakis, M. Continuous assessment of landslides by measuring their basal temperature. Landslides 2021, 18, 3953–3961. [Google Scholar] [CrossRef]
- Zhu, H.H. Engineering geological interface: From multivariate characterization to evolution mechanism. Bull. Geol. Sci. Technol. 2023, 42, 1–19. [Google Scholar]
- Wang, Z.R.; Zhang, J.F.; Wang, W.Y.; Feng, B.P. Applicability of Gree–Ampt formula for infiltration affected by temperature. Shuili Xuebao 2002, 10, 46–50. [Google Scholar]
- Mao, X.S.; Li, N.; Wang, B.G.; Hu, C.S. Analysis model of stress and deformation of permafrost subgrade with phase changing. J. Traffic Transp. Eng. 2007, 1, 58–62. [Google Scholar]
- Niu, F.J.; Zhang, L.X.; Yu, Q.H.; Xie, Q. Study on slope types and stability of typical slopes in permafrost regions of the Tibetan Plateau. J. Glaciol. Geocryol. 2002, 5, 608–613. [Google Scholar]
- Habibagahi, K. Temperature effect and the concept of effective void ratio. Indian Geotech. J. 1977, 1, 14–34. [Google Scholar]
- Gao, Y.X.; Feng, Z.; Zheng, J.L. Temperature properties of sheer strength for unsaturated soil. J. Chang. Commun. Univ. 2002, 4, 68–71. [Google Scholar]
- Sun, Y.J. Bank Slope Multi–Fields Monitoring Based on Fiber Optic Sensing Technologies and Stability Evaluation Study. Doctor’s Thesis, Nanjing University, Nanjing, China, March 2015. [Google Scholar]
- Wan, S.P.; He, X.D.; Gao, Y.Q. Theoretical analysis of power–to–temperature coefficients of Brillouin signals. J. Test Meas. Technol. 2007, 21, 274–277. [Google Scholar]
- Jiao, H.R. Study on the Temperature Effects on Fiber Optic Cables (Sensors) Used for Geological and Geotechnical Monitoring. Master’s Thesis, Nanjing University, Nanjing, China, June 2019. [Google Scholar]
- Zhu, H.H.; Shi, B.; Yan, J.F.; Zhang, J.; Zhang, C.C.; Wang, B.J. Fiber Bragg grating–based performance monitoring of a slope model subjected to seepage. Smart Mater. Struct. 2014, 23, 1–12. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, H.H.; Han, H.M.; Shi, B. Fiber optic monitoring of an anti–slide pile in a retrogressive landslide. J. Rock Mech. Geotech. Eng. 2023; in press. [Google Scholar] [CrossRef]
- Zhu, H.H.; Shi, B.; Yan, J.F.; Zhang, J.; Wang, J. Investigation of the evolutionary process of a reinforced model slope using a fiber–optic monitoring network. Eng. Geol. 2015, 186, 34–43. [Google Scholar] [CrossRef]
- Xu, K.J. Sensors and Detective Technology; Publishing House of Electronics Industry: Beijing, China, 2016. [Google Scholar]
- Tian, F.F.; Cong, J.W.; Yun, B.F.; Cui, Y.P. A fiber Bragg grating current sensor with temperature compensation. Optoelectron. Lett. 2009, 5, 347–351. [Google Scholar] [CrossRef]
- Chen, M. Temperature Self–Compensated Fiber Bragg Grating Strain Sensor. Master’s Thesis, Kunming University of Science and Technology, Kunming, China, March 2010. [Google Scholar]
- Ai, F.; Li, H.; He, T.; Yan, Z.; Liu, D.; Sun, Q. Simultaneous distributed temperature and vibration measurement with UWFBG based coherent OTDR. In Optical Fiber Communication Conference; Optica Publishing Group: San Diego, CA, USA, 2018. [Google Scholar]
- Ilyushin, Y.; Afanaseva, O. Spatial distributed control system of temperature field: Synthesis and modeling. ARPN J. Eng. Appl. Sci. 2021, 16, 1491–1506. [Google Scholar]
- Sui, H.G. Application of PT100 temperature sensor to real–time temperature monitoring system. Comput. Dev. Appl. 2011, 24, 64–65. [Google Scholar]
- Zhang, X.T.; Hu, X.H.; Zhai, Y.F.; Qin, C.H.; Zhang, J.J. The design and experimental study of high precise temperature acquisition system based on PT100. Chin. J. Sens. Actuators 2010, 23, 812–815. [Google Scholar]
- Zhang, Y.F. High precision temperature acquisition system based on four–wire system PT100. J. Jiamusi Univ. 2023, 41, 162–165. [Google Scholar]
- Li, Q.C.; Liu, R.X.; Pan, P.Y.; Qiu, W. Design and simulation of a PT100–based unbalanced bridge temperature sensor. China Comput. Commun. 2022, 34, 114–116. [Google Scholar]
- Ye, X.; Zhu, H.H.; Cheng, G.; Pei, H.F.; Shi, B.; Schenato, L.; Pasuto, A. Thermohydro–poro–mechanical responses of a reservoir–induced landslide tracked by high–resolution fiber optic sensing nerves. J. Rock Mech. Geotech. Eng. 2023, in press. [Google Scholar] [CrossRef]
- Ye, X.; Zhu, H.H.; Wang, J.; Zhang, Q.; Shi, B.; Schenato, L.; Pasuto, A. Subsurface multi–physical monitoring of a reservoir landslide with the fiber–optic nerve system. Geophys. Res. Lett. 2022, 11, 49. [Google Scholar] [CrossRef]
- Moritz, L.; Gabrielsson, A. Temperature effect on the properties of clay. Soft Ground Technol. Conf. 2001, 304–314. [Google Scholar] [CrossRef]
- Shao, Y.X.; Shi, B.; Gao, L.; Gu, K.; Zhao, L.Z. Laboratory study on influence of temperature on shear strength of unsaturated clayey soil. Geol. J. China Univ. 2009, 15, 213–217. [Google Scholar]
Fiber Optic Sensing Technology | Measurement Range | Measurement Precision | Commercial Equipment | |
---|---|---|---|---|
Device | Technical Indicators | |||
FBG | The series length | 1 με/0.1 °C | NZS-FBG-A01 | Wavelength range: 1528~1568 nm Wavelength resolution: 1 pm Repeatability: ±3 pm Demodulation speed: ≤1 Hz Dynamic range: 35 dB Working temperature: −20~50 °C |
PT100 | −200~+850 °C | A: 0.15 + 0.002 × |t| B: 0.30 + 0.005 × |t| (t is the current environment temperature) | WZP-PT100 | Temperature coefficient: Platinum nickel-plated wire Specification: DIN EN60751 Chip size: 2.3 mm × 2.1 mm × 0.9 m Vibration resistance level: 10~2000 Hz Self-heating coefficient: 0.4 K/MW (0 °C) Response time: [email protected] = 0.05st0.9 = 0.15 s; Air@2m/st0.5 = 3.0st0.5 = 10.0 s |
RC-4 | −30~60 °C | ±1 °C | RC-4HC | Measuring range: −30~60 °C (Built-in probe); −40~85 °C (External probe) Size: 84 mm × 44 mm × 20 mm Measuring accuracy: ±0.5 °C (−20~40 °C); ±1 °C (−∞, −20) ∩ (40, + ∞) Resolution: 0.1 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, G.; Wang, Z.; Wang, Y.; Shi, B.; Li, T.; Wu, J.; Zhang, H.; You, Q. Research on Performance Test of the Optic-Electric Sensors for Reservoir Landslide Temperature Field Monitoring. Water 2023, 15, 3125. https://doi.org/10.3390/w15173125
Cheng G, Wang Z, Wang Y, Shi B, Li T, Wu J, Zhang H, You Q. Research on Performance Test of the Optic-Electric Sensors for Reservoir Landslide Temperature Field Monitoring. Water. 2023; 15(17):3125. https://doi.org/10.3390/w15173125
Chicago/Turabian StyleCheng, Gang, Zhenxue Wang, Ye Wang, Bin Shi, Tianbin Li, Jinghong Wu, Haoyu Zhang, and Qinliang You. 2023. "Research on Performance Test of the Optic-Electric Sensors for Reservoir Landslide Temperature Field Monitoring" Water 15, no. 17: 3125. https://doi.org/10.3390/w15173125