Viability of Reclaiming Municipal Wastewater for Potential Microalgae-Based Biofuel Production in the U.S.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analysis Flow
- RWFAi,j—Reclaimed water for algae in month i, qualified production county j, volume;
- ARWi,j—Available reclaimed water in month i, qualified production county j, volume;
- AWDi,j—Algae water demand in month i, qualified production county j, volume;
- i—month, 1–12, corresponding to Jan.–Dec.;
- j—qualified algae production county;
- Criteria for qualified production county: i ≥ 4.
2.2. Future Scenarios
- RWFAi,j,RW—Reclaimed water for algae in volume in month i, qualified algae production county j, under scenario RW;
- RWFAi,j,RW100—Reclaimed water for algae in volume in month i, qualified algae production county j, under scenario RW100;
- RWFAi,j,RW50—Reclaimed water for algae in volume in month i, qualified algae production county j, under scenario RW50.
- —Algal biomass produced with available reclaimed water in month i, qualified algae production county j, under scenario k;
- k—Scenarios, k = RW, RW100, or RW50;
- AWDi,j—Algae water demand in month i, qualified algae production county j, in volume;
- ABMi,j—Algal biomass production in month i qualified algae production county j if water demand is met, in mass units.
2.3. Algae Pond and Biomass Production
3. Results
3.1. Geospatial Municipal Reclaimed Water Resource Availability
3.2. Temporal Reclaimed Water Availability
3.3. Total Reclaimed Water Resource for Production
4. Discussion
4.1. Reclaimed Water-Use Efficiency
4.2. Scenario Comparison and Uncertainties
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, Y.; Jones, S.B.; Schmidt, A.J.; Albrecht, K.O.; Edmundson, S.J.; Anderson, D.B. Techno-economic analysis of alternative aqueous phase treatment methods for microalgae hydrothermal liquefaction and biocrude upgrading system. Algal Res. 2019, 39, 101467. [Google Scholar] [CrossRef]
- Davis, R.E.; Markham, J.; Kinchin, C.M.; Canter, C.; Han, J.; Li, Q.; Coleman, A.; Jones, S.; Wigmosta, M.; Zhu, Y. Algae Harmonization Study: Evaluating the Potential for Future Algal Biofuel Costs, Sustainability, and Resource Assessment from Harmonized Modeling; Technical Report ANL-18/12, NREL/TP-5100-70715, PNNL-27547; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2018. [Google Scholar] [CrossRef]
- Davis, R.; Markham, J.; Kinchin, C.; Grundl, N.; Tan, E.; Humbird, D. Process Design and Economics for the Production of Algal Biomass: Algal Biomass Production in Open Pond Systems and Processing through Dewatering for Downstream Conversion; Technical Report NREL/TP-5100-64772; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2016. [Google Scholar] [CrossRef]
- Venteris, E.R.; Skaggs, R.L.; Coleman, A.M.; Wigmosta, M.S. A GIS Cost Model to Assess the Availability of Freshwater, Seawater, and Saline Groundwater for Algal Biofuel Production in the United States. Environ. Sci. Technol. 2013, 47, 4840–4849. [Google Scholar] [CrossRef] [PubMed]
- Coleman, A.M.; Abodeely, J.M.; Skaggs, R.L.; Moeglein, W.A.; Newby, D.T.; Venteris, E.R.; Wigmosta, M.S. An integrated assessment of location-dependent scaling for microalgae biofuel production facilities. Algal Res. 2014, 5, 79–94. [Google Scholar] [CrossRef]
- Wigmosta, M.S.; Coleman, A.M.; Skaggs, R.J.; Huesemann, M.H.; Lane, L.J. National microalgae biofuel production potential and resource demand: National Algae Biofuel Production. Water Resour. Res. 2011, 47, W00H04. [Google Scholar] [CrossRef]
- Xu, H.; Lee, U.; Coleman, A.M.; Wigmosta, M.S.; Wang, M. Assessment of algal biofuel resource potential in the United States with consideration of regional water stress. Algal Res. 2018, 37, 30–39. [Google Scholar] [CrossRef]
- Jager, H.I.; Efroymson, R.A.; Baskaran, L.M. Avoiding Conflicts between Future Freshwater Algae Production and Water Scarcity in the United States at the Energy-Water Nexus. Water 2019, 11, 836. [Google Scholar] [CrossRef]
- Xu, H.; Lee, U.; Coleman, A.M.; Wigmosta, M.S.; Sun, N.; Hawkins, T.R.; Wang, M.Q. Balancing water sustainability and productivity objectives in microalgae cultivation: Siting open ponds by considering seasonal water-stress impact using AWARE-US. Environ. Sci. Technol. 2020, 54, 2091–2102. [Google Scholar] [CrossRef]
- Bhattacharjee, M.; Siemann, E. Low algal diversity systems are a promising method for biodiesel production in wastewater fed open reactors. Algae 2015, 30, 67–79. [Google Scholar] [CrossRef]
- Ferrell, J.; Sarisky-Reed, V. National Algal Biofuels Technology Roadmap; EERE Publication and Product Library: Washington, DC, USA, 2010. [Google Scholar] [CrossRef]
- National Research Council. Sustainable Development of Algal Biofuels in the United States; The National Academies Press: Washington, DC, USA, 2012. [Google Scholar] [CrossRef]
- Venteris, E.R.; McBride, R.C.; Coleman, A.M.; Skaggs, R.L.; Wigmosta, M.S. Siting Algae Cultivation Facilities for Biofuel Production in the United States: Trade-Offs between Growth Rate, Site Constructability, Water Availability, and Infrastructure. Environ. Sci. Technol. 2014, 48, 3559–3566. [Google Scholar] [CrossRef]
- Peterson, B. Development and Optimization of a Produced Water Biofilm-Based Microalgae Cultivation System for Biocrude Conversion Using Hydrothermal Liquefaction. Master’s Thesis, Biological Engineering, Utah State University, Logan, Utah, 2018. [Google Scholar]
- Hodges, A.; Fica, Z.; Wanlass, J.; VanDarlin, J.; Sims, R. Nutrient and suspended solids removal from petrochemical wastewater via microalgal biofilm cultivation. Chemosphere 2017, 174, 46–48. [Google Scholar] [CrossRef]
- Davis, R.E.; Fishman, D.B.; Frank, E.D.; Johnson, M.C.; Jones, S.B.; Kinchin, C.M.; Skaggs, R.L.; Venteris, E.R.; Wigmosta, M.S. Integrated Evaluation of Cost, Emissions, and Resource Potential for Algal Biofuels at the National Scale. Environ. Sci. Technol. 2014, 48, 6035–6042. [Google Scholar] [CrossRef] [PubMed]
- Acién Fernández, F.G.; Gómez-Serrano, C.; Fernández-Sevilla, J.M. Recovery of nutrients from wastewaters using microalgae. Front. Sustain. Food Syst. 2018, 2, 59. [Google Scholar] [CrossRef]
- Dalrymple, O.K.; Halfhide, T.; Udom, I.; Gilles, B.; Wolan, J.; Zhang, Q.; Ergas, S. Wastewater use in algae production for generation of renewable resources: A review and preliminary results. Aquat. Biosyst. 2013, 9, 2. [Google Scholar] [CrossRef]
- McCarty, P.L.; Bae, J.; Kim, J. Domestic wastewater treatment as a net energy producer—Can this be achieved? Environ. Sci. Technol. 2011, 45, 7100–7106. [Google Scholar] [CrossRef]
- Shoener, B.D.; Schramm, S.M.; Béline, F.; Bernard, O.; Martínez, C.; Plósz, B.G.; Snowling, S.; Steyer, J.-P.; Valverde-Pérez, B.; Wágner, D.; et al. Microalgae and cyanobacteria modeling in water resource recovery facilities: A critical review. Water Res. X 2018, 2, 100024. [Google Scholar] [CrossRef]
- Chiu, Y.-W.; Wu, M. Considering water availability and wastewater resources in the development of algal bio-oil. Biofuels Bioprod. Biorefining 2013, 7, 406–415. [Google Scholar] [CrossRef]
- Clippinger, J.; Davis, R. Techno-Economic Assessment for Opportunities to Integrate Algae Farming with Wastewater Treatment; Technical Report, NREL/TP-5100-75237; National Renewable Energy Laboratory: Golden, CO, USA, 2021. Available online: https://www.nrel.gov/docs/fy21osti/75237.pdf (accessed on 1 June 2022).
- Roostaei, J.; Zhang, Y. Spatially explicit life cycle assessment: Opportunities and challenges of integrating algae cultivation with wastewater for biofuel production. Algal Res. 2017, 24, 395–402. [Google Scholar] [CrossRef]
- Su, Y.; Mennerich, A.; Urban, B. Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture. Water Res. 2011, 45, 3351–3358. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, X.; White, M.A.; Colosi, L.M. Economic evaluation of algae biodiesel based on meta-analyses. Int. J. Sustain. Energy 2015, 36, 682–694. [Google Scholar] [CrossRef]
- Stephenson, A.L.; Kazamia, E.; Dennis, J.S.; Howe, C.J.; Scott, S.A.; Smith, A.G. Life-Cycle Assessment of Potential Algal Biodiesel Production in the United Kingdom: A Comparison of Raceways and Air-Lift Tubular Bioreactors. Energy Fuels 2010, 24, 4062–4077. [Google Scholar] [CrossRef]
- Passell, H.; Dhaliwal, H.; Reno, M.; Wu, B.; Ben Amotz, A.; Ivry, E.; Gay, M.; Czartoski, T.; Laurin, L.; Ayer, N. Algae biodiesel life cycle assessment using current commercial data. J. Environ. Manag. 2013, 129, 103–111. [Google Scholar] [CrossRef] [PubMed]
- EPA (United States Environmental Protection Agency). 2012. Available online: https://www.epa.gov/cwns/clean-watersheds-needs-survey-cwns-2008-report-and-data (accessed on 10 June 2012).
- EPA. Clean Watersheds Needs Survey (CWNS)—2012 Report to Congress, EPA-830-R-15005, January. 2016. Available online: https://www.epa.gov/cwns/clean-watersheds-needs-survey-cwns-2012-report-and-data (accessed on 10 June 2012).
- EIA (United States Energy Information Administration). 2018. Available online: https://www.eia.gov/todayinenergy/detail.php?id=44496 (accessed on 6 November 2020).
Scenario | Water Source | Description |
---|---|---|
RW | Reclaimed water | Production-driven. Utilizes all available reclaimed water for production. |
RW100 | Reclaimed water | Production limited to counties that can fully meet water demand with reclaimed water to minimize water transport. |
RW 50 | Reclaimed water | Production reduced by 50% to reduce water transportation. |
CW (Baseline) | Freshwater | Baseline water demand for algae production. |
Scenario | Reclaimed Water Volume | Number of Counties | Algal Biomass | RDe via HTL |
---|---|---|---|---|
(BL/year) | (MMT) | (BL/year) | ||
RW | 2694 | 455 | 42.2 | 29.1 |
RW50 | 584 | 290 | 14.0 | 9.8 |
RW100 | 612 | 264 | 17.7 | 12.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, M.; McBride, S.; Ha, M. Viability of Reclaiming Municipal Wastewater for Potential Microalgae-Based Biofuel Production in the U.S. Water 2023, 15, 3123. https://doi.org/10.3390/w15173123
Wu M, McBride S, Ha M. Viability of Reclaiming Municipal Wastewater for Potential Microalgae-Based Biofuel Production in the U.S. Water. 2023; 15(17):3123. https://doi.org/10.3390/w15173123
Chicago/Turabian StyleWu, May, Sarah McBride, and Miae Ha. 2023. "Viability of Reclaiming Municipal Wastewater for Potential Microalgae-Based Biofuel Production in the U.S." Water 15, no. 17: 3123. https://doi.org/10.3390/w15173123