Soil Macropore and Hydraulic Conductivity Dynamics of Different Land Uses in the Dry–Hot Valley Region of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Sites and Methods
2.3. Soil Samples
2.4. CT Scanning and Image Analysis
2.5. Macropore System Analysis
2.6. Soil Hydraulic Conductivity
2.7. Statistics Analysis
3. Results
3.1. Temporal Changes in Basic Soil Properties of Different Land Uses
3.2. Soil Macropore Structure Characteristics under Different Land Uses
3.3. Seasonal Variation in Hydraulic Conductivity under Different Land Uses
3.4. Correlation among Hydraulic Conductivity, Soil Properties and Macropore Characteristics
4. Discussion
4.1. Effects of Dry–Wet Cycles on Soil Macropores and Hydraulic Conductivity
4.2. Effects of Land Use on Soil Macropores and Hydraulic Conductivity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sihag, P.; Mohsenzadeh Karimi, S.; Angelaki, A. Random forest, M5P and regression analysis to estimate the field unsaturated hydraulic conductivity. Appl. Water Sci. 2019, 9, 129. [Google Scholar] [CrossRef]
- Liu, Q.S.; Liu, G.H.; Huang, C.; Li, H. Variation in soil bulk density and hydraulic conductivity within a quasi-circular vegetation patch and bare soil area. J. Soils Sediments 2020, 20, 2019–2030. [Google Scholar] [CrossRef]
- Baiamonte, G. Simplified Model to Predict Runoff Generation Time for Well-Drained and Vegetated Soils. J. Irrig. Drain. Eng. 2016, 142, 04016047. [Google Scholar] [CrossRef]
- Santra, P.; Kumar, M.; Kumawat, R.N. Characterization and Modeling of Infiltration Characteristics of Soils Under Major Land Use Systems in Hot Arid Region of India. Agric. Res. 2021, 10, 417–433. [Google Scholar] [CrossRef]
- Zhou, X.; Lin, H.S.; White, E.A. Surface soil hydraulic properties in four soil series under different land uses and their temporal changes. CATENA 2008, 73, 180–188. [Google Scholar] [CrossRef]
- Bottinelli, N.; Zhou, H.; Boivin, P.; Zhang, Z.B.; Jouquet, P.; Hartmann, C.; Peng, X. Macropores generated during shrinkage in two paddy soils using X-ray micro-computed tomography. Geoderma 2016, 265, 78–86. [Google Scholar] [CrossRef]
- Kodešová, R.; Jirků, V.; Kodeš, V.; Mühlhanselová, M.; Nikodem, A.; Žigová, A. Soil structure and soil hydraulic properties of Haplic Luvisol used as arable land and grassland. Soil Tillage Res. 2011, 111, 154–161. [Google Scholar] [CrossRef]
- Müller, K.; Katuwal, S.; Young, I.; McLeod, M.; Moldrup, P.; de Jonge, L.W.; Clothier, B. Characterising and linking X-ray CT derived macroporosity parameters to infltration in soils with contrasting structures. Geoderma 2018, 313, 82–91. [Google Scholar] [CrossRef]
- Cássaro, F.A.M.; Posadas Durand, A.N.; Gimenez, D.; Vaz, C.M.P. Pore-size distributions of soils derived using a geometrical approach and multiple resolution Micro CT images. Soil Sci. Soc. Am. J. 2017, 81, 468–476. [Google Scholar] [CrossRef]
- Galdos, M.V.; Pires, L.F.; Cooper, H.V.; Calonego, J.C.; Rosolem, C.A.; Mooney, S.J. Assessing the long-term effects of zero-tillage on the macroporosity of Brazilian soils using X-ray Computed Tomography. Geoderma 2019, 337, 1126–1135. [Google Scholar] [CrossRef]
- Diel, J.; Vogel, H.-J.; Schlüter, S. Impact of wetting and drying cycles on soil structure dynamics. Geoderma 2019, 345, 63–71. [Google Scholar] [CrossRef]
- Fu, T.G.; Chen, H.S.; Zhang, W.; Nie, Y.P.; Wang, K.L. Vertical distribution of soil saturated hydraulic conductivity and its influencing factors in a small karst catchment in Southwest China. Environ. Monit. Assess. 2015, 187, 92. [Google Scholar] [CrossRef]
- Udawatta, R.P.; Anderson, S.H.; Gantzer, C.J.; Garrett, H.E. Agroforestry and Grass Buffer Influence on Macropore Characteristics: A Computed Tomography Analysis. Soil Sci. Soc. Am. J. 2006, 70, 1763–1773. [Google Scholar] [CrossRef]
- Bacq-Labreuil, A.; Crawford, J.; Mooney, S.J.; Neal, A.L.; Akkari, E.; McAuliffe, C.; Zhang, X.; Redmile-Gordon, M.; Ritz, K. Effects of cropping systems upon the three-dimensional architecture of soil systems are modulated by texture. Geoderma 2018, 332, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Sonneveld, M.P.W.; Backx, M.A.H.M.; Bouma, J. Simulation of soil water regimes including pedotransfer functions and land-use related preferential flow. Geoderma 2003, 112, 97–110. [Google Scholar] [CrossRef]
- Zimmermann, B.; Elsenbeer, H.; De Moraes, J.M. The influence of land-use changes on soil hydraulic properties: Implications for runoff generation. For. Ecol. Manag. 2006, 222, 29–38. [Google Scholar] [CrossRef]
- Wahren, A.; Feger, K.H.; Schwärzel, K.; Münch, A. Land-use effects on flood generation–considering soil hydraulic measurements in modelling. Adv. Geosci. 2009, 21, 99–107. [Google Scholar] [CrossRef]
- Zhang, Z.B.; Lin, L.; Wang, Y.; Peng, X.H. Temporal change in soil macropores measured using tension infiltrometer under different land uses and slope positions in subtropical China. J. Soils Sediments 2016, 16, 854–863. [Google Scholar] [CrossRef]
- Budhathoki, S.; Lamba, J.; Srivastava, P.; Williams, C.; Arriaga, F.; Karthikeyan, K.G. Impact of land use and tillage practice on soil macropore characteristics inferred from X-ray computed tomography. CATENA 2022, 210, 105886. [Google Scholar] [CrossRef]
- An, R.; Kong, L.; Zhang, X.W.; Li, C.S. Effects of dry-wet cycles on three-dimensional pore structure and permeability characteristics of granite residual soil using X-ray micro computed tomography. J. Rock Mech. Geotech. Eng. 2022, 14, 851–860. [Google Scholar] [CrossRef]
- Lin, H.; Bouma, J.; Wilding, L.P.; Richardson, J.L.; Kutílek, M.; Nielsen, D.R. Advances in Hydropedology. In Advances in Agronomy; Elsevier: New York, NY, USA, 2005; Volume 85, pp. 1–89. [Google Scholar]
- Deng, Q.; Miao, F.; Zhang, B.; Luo, M.; Liu, H.; Liu, X.; Qin, F.; Liu, G. Planar morphology and controlling factors of the gullies in the Yuanmou Dry-hot Valley based on field investigation. J. Arid Land. 2015, 7, 778–793. [Google Scholar] [CrossRef]
- Zheng, Y.L.; Xia, Z.N.; Ma, H.C.; Yu, Z.X. The combined effects of water deficit and heat stress on physiological characteristics of endangered Nouelia insignis. Acta Physiol. Plant 2019, 41, 177. [Google Scholar] [CrossRef]
- Yuan, Y.; Xiong, D.; Wu, H.; Zhang, S.; Zhang, B.; Dahal, N.M. Spatial variation of soil physical properties and its relationship with plant biomass in degraded slopes in dry-hot valley region of Southwest China. J. Soils Sediments 2020, 20, 2354–2366. [Google Scholar] [CrossRef]
- Yang, Z.; Xiong, D.H.; Zhou, H.Y.; Zhang, X.B. Rainfall infiltration on hilly slopes under various lithology and its effect on tree growth in the Dry-hot Valley. Sci. China 2003, 46, 110–119. Available online: http://ir.imde.ac.cn/handle/131551/2654 (accessed on 13 April 2023). (In Chinese). [CrossRef]
- Liu, J.; Li, X.W.; Ji, Z.H.; Zhang, J.; Zhang, L.H.; Zhou, Y.G. Soil water holding capacities and infiltration characteristics of three vegetation restoration models in dry-hot valley of Yuanmou. Acta Ecologica Sinica 2011, 31, 2331–2340. (In Chinese) [Google Scholar]
- Liu, Z.Q.; Lang, N.J.; Wang, K.Q. Research on Soil Infiltration Law of Different Land uses Types in Jinsha River Dry-Hot Valley. Adv. Mater Res. 2013, 726–731, 3867–3871. Available online: https://doi.org/10.4028/www.scientific.net/AMR.726-731.3867 (accessed on 7 April 2023).
- Liu, D.C.; Zhang, X.Z. Characteristic and ecological conservation of farmland resources in Liangshan Canton. J. Sichuan Agric. Univ. 2004, 22, 49–52. (In Chinese) [Google Scholar] [CrossRef]
- Shen, M.Y. A Research on the Social Guarantee Mechanism for the Ecological Environment Construction in Arid River Valleys of Western Sichuan. J. Sichuan For. Sci. Technol. 2003, 24, 20–25. (In Chinese) [Google Scholar]
- Ma, H.C.; McConchie, J.A. The dry-hot valleys and forestation in southwest China. J. For. Res. 2001, 12, 35–39. [Google Scholar] [CrossRef]
- Shi, X.Z.; Yu, D.S.; Warner, E.D.; Pan, X.Z.; Petersen, G.W.; Gong, Z.G.; Weindorf, D.C. Soil Database of 1:1,000,000 digital soil survey and reference system of the Chinese genetic soil classification system. Soil Surv. Horiz. 2004, 45, 129–136. [Google Scholar] [CrossRef]
- Soil Survey Office of Sichuan Province. Soil Series of Sichuan; Sichuan Science and Technology Press: Chengdu, China, 1994. (In Chinese) [Google Scholar]
- Zhou, Y.; Yi, Y.J.; Liu, H.X.; Tang, C.H.; Zhu, Y.L.; Zhang, S.H. Effect of geomorphologic features and climate change on vegetation distribution in the arid hot valleys of Jinsha River, Southwest China. J. Mt. Sci. 2022, 19, 2874–2885. [Google Scholar] [CrossRef]
- Dong, Y.F.; Xiong, D.H.; Su, Z.A..; Yang, D.; Zheng, X.Y.; Shi, L.T.; Poesen, J. Effects of vegetation buffer strips on concentrated flow hydraulics and gully bed erosion based on in situ scouring experiments. Land Degrad. Dev. 2018, 29, 1672–1682. [Google Scholar] [CrossRef]
- Hu, X.; Li, Z.C.; Li, X.Y.; Liu, L.Y. Quantification of soil macropores under alpine vegetation using computed tomography in the Qinghai Lake Watershed, NE Qinghai–Tibet Plateau. Geoderma 2016, 264, 244–251. [Google Scholar] [CrossRef]
- Zhang, Z.B.; Liu, K.L.; Zhou, H.; Lin, H.; Li, D.; Peng, X.H. Linking saturated hydraulic conductivity and air permeability to the characteristics of biopores derived from X-ray computed tomography. J. Hydrol. 2019, 571, 1–10. [Google Scholar] [CrossRef]
- Lamandé, M.; Wildenschild, D.; Berisso, F.; Garbout, A.; Marsh, M.; Moldrup, P.; Keller, T. X-ray CT and laboratory measurements on glacial till subsoil cores assessment of inherent and compaction-affected soil structure characteristics. Soil Sci. 2013, 178, 359–368. [Google Scholar] [CrossRef]
- Jassogne, L.; McNeill, A.; Chittleborough, D. 3D-visualization and analysis of macro- and meso-porosity of the upper horizons of a sodic, texture-contrast soil. Eur. J. Soil Sci. 2007, 58, 589–598. [Google Scholar] [CrossRef]
- Yu, K.; Duan, Y.; Zhang, M.S.; Dong, Y.; Wang, L.C.; Wang, Y.; Guo, X.; Hu, F. Using micro focus industrial computed tomography to characterize the effects of soil type and soil depth on soil pore characteristics, morphology, and soil compression in Xi’an, China. J. Soils Sediments 2020, 20, 1943–1959. [Google Scholar] [CrossRef]
- Bolte, S.; Cordelières, F.P. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 2006, 224, 213–232. [Google Scholar] [CrossRef]
- Jefferies, D.A.; Heck, R.J.; Thevathasan, N.V.; Gordon, A.M. Characterizing soil surface structure in a temperate tree-based intercropping system using X-ray computed tomography. Agrofor. Syst. 2014, 88, 645–656. [Google Scholar] [CrossRef]
- Doube, M.; Kłosowski, M.M.; Arganda-Carreras, I.; Cordelières, F.P.; Dougherty, R.P.; Jackson, J.S.; Schmid, B.; Hutchinson, J.R.; Shefelbine, S.J. BoneJ: Free and extensible bone image analysis in ImageJ. Bone 2010, 47, 1076–1079. [Google Scholar] [CrossRef]
- Naik, A.P.; Pekkat, S. An appraisal on the soil wetting water retention characteristic curve determined from mini disk infltrometer and sensor measurements. Acta Geophys. 2023, 71, 961–982. [Google Scholar] [CrossRef]
- Ghosh, B.; Pekkat, S. A critical evaluation of the variability induced by different mathematical equations on hydraulic conductivity determination using disc infiltrometer. Acta Geophys. 2019, 67, 863–877. [Google Scholar] [CrossRef]
- Zhang, N.; Ren, D. Determination of Soil Sorptivity and Hydraulic Conductivity from the Disk Infiltrometer. Soil Sci. Soc. Am. J. 1997, 61, 1024–1030. [Google Scholar] [CrossRef]
- Vukeya, E.N.; Ruwanza, S. Physical properties of soil in Pine elliottii and Eucalyptus cloeziana plantations in the Vhembe biosphere, Limpopo Province of South Africa. J. Forestry Res. 2020, 31, 625–635. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Z.C.; Chen, X.H. The impact of land use and land cover changes on soil moisture. Environ. Earth Sci. 2009, 59, 811–820. [Google Scholar] [CrossRef]
- Peng, S.L.; You, W.H.; Tao, S.H. Effect of syndynamic on soil saturated hydraulic conductivity. Trans. Chin. Soc. Agric. Eng. 2010, 26, 78–84. (In Chinese) [Google Scholar] [CrossRef]
- He, Y.R.; Huang, C.G.; Yang, Z.; Zhang, X.B. Soil degradation and dryland farming in yunamou dry and hot valley, Yunnan province. J. Soil Eros. Soil Water Conserv. 1997, 3, 56–60. (In Chinese) [Google Scholar] [CrossRef]
- Moret, D.; Arrúe, J.L. Dynamics of soil hydraulic properties during fallow as affected by tillage. Soil Tillage Res. 2007, 96, 103–113. [Google Scholar] [CrossRef]
- Cheng, Q.J.; Ma, W.J.; Cai, Q.G. The relative importance of soil crust and slope angle in runoff and soil loss: A case study in the hilly areas of the Loess Plateau, North China. Geo J. 2008, 71, 117–125. [Google Scholar] [CrossRef]
- Wu, H.; Xiong, D.H.; Xiao, L.; Zhang, S.; Yuan, Y.; Su, Z.A.; Zhang, B.-J.; Yang, D. Effects of vegetation coverage and seasonal change on soil microbial biomass and community structure in the dry-hot valley region. J. Mt. Sci. 2018, 15, 1546–1558. [Google Scholar] [CrossRef]
- Marques Da Silva, J.R.; Peça, J.O.; Serrano, J.M.; De Carvalho, M.J.; Palma, P.M. Evaluation of spatial and temporal variability of pasture based on topography and the quality of the rainy season. Precis. Agric. 2008, 9, 209–229. [Google Scholar] [CrossRef]
- Aravena, J.E.; Berli, M.; Ghezzehei, T.A.; Tyler, S.W. Effects of Root-Induced Compaction on Rhizosphere Hydraulic Properties-X-ray Microtomography Imaging and Numerical Simulations. Environ. Sci. Technol. 2011, 45, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Bormann, H.; Klaassen, K. Seasonal and land use dependent variability of soil hydraulic and soil hydrological properties of two Northern German soils. Geoderma 2008, 145, 295–302. [Google Scholar] [CrossRef]
- Shougrakpam, S.; Sarkar, R.; Dutta, S. An experimental investigation to characterise soil macroporosity under different land use and land covers of northeast India. J. Earth Syst. Sci. 2010, 119, 655–674. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Cerdà, A.; Tarolli, P. Soil water erosion on Mediterranean vineyards: A review. Catena 2016, 141, 1–21. [Google Scholar] [CrossRef]
- Jirků, V.; Kodešová, R.; Nikodem, A.; Mühlhanselová, M.; Žigová, A. Temporal variability of structure and hydraulic properties of topsoil of three soil types. Geoderma 2013, 204–205, 43–58. [Google Scholar] [CrossRef]
- Pagenkemper, S.K.; Puschmann, D.U.; Peth, S.; Horn, R. Investigation of Time Dependent Development of Soil Structure and Formation of Macropore Networks as Affected by Various Precrop Species. Int. Soil Water Conserv. Res. 2014, 2, 51–66. [Google Scholar] [CrossRef]
- Becker, R.; Gebremichael, M.; Märker, M. Impact of soil surface and subsurface properties on soil saturated hydraulic conductivity in the semi-arid Walnut Gulch Experimental Watershed, Arizona, USA. Geoderma 2018, 322, 112–120. [Google Scholar] [CrossRef]
- Ren, Z.P.; Zhu, L.J.; Wang, B.; Cheng, S.D. Soil hydraulic conductivity as affected by vegetation restoration age on the Loess Plateau, China. J. Arid Land 2016, 8, 546–555. [Google Scholar] [CrossRef]
Soil Layers | ||||
---|---|---|---|---|
A (0–15 cm) | B (15–53 cm) | C (53–100 cm) | ||
Particle size | 0.05–2 mm | 45.71% | 44.74% | 42.73% |
0.002–0.05 mm | 37.58% | 36.97% | 35.87% | |
<0.002 mm | 16.71% | 18.29% | 21.4% | |
Soil texture (USDA) | Loam | Loam | Loam | |
Soil organic matter (g/kg) | 14.6 | 18.4 | 14.9 |
Land Use | Feature Description |
---|---|
TC | Corn sowed continuously with a row spacing of 30 cm × 50 cm at the beginning of the rainy season, harvested in October, and plowed and aired in December to prepare for sowing corn the next year. |
PO | Tree age is approximately 3 years old, which is typical for fruit orchards in the local area. Tree height and crown width are 1.5–1.8 m and 2.5–3.0 m, respectively. Row spacing is 3 m × 3 m. |
PF | Tree age is nearly 60 years, canopy density is 60–75%, tree height is 9–12 m, and DBH is 11–16 cm. Accompanied by shrubs and herbs. |
GL | Numerous drought-tolerant perennial herbs clustered on the surface covering approximately 95%. Height of 16.5 ± 5.5 cm. |
AC | Mainly corn planted prior to abandonment. Now, all tilling has stopped. Most herbs are annual and grow randomly. |
Land Use | Rainy Season | Dry Season | ||||||
---|---|---|---|---|---|---|---|---|
MWD (mm) | SOM (g/kg) | WSA0.25 (%) | BD (g/cm3) | MWD (mm) | SOM (g/kg) | WSA0.25 (%) | BD (g/cm3) | |
TC | 2.05 bc | 14.73 b | 63.89 bc | 1.28 a | 3.60 ab | 15.73 b | 76.85 a | 1.32 a |
PO | 1.03 d | 19.65 b | 55.36 c | 1.30 a | 1.45 c | 20.52 a | 61.73 b | 1.29 a |
PF | 3.43 a | 22.44 a | 81.37 a | 1.34 a | 3.98 a | 22.46 a | 83.87 a | 1.33 a |
GL | 2.89 ab | 20.02 a | 82.56 a | 1.28 a | 3.00 ab | 19.93 a | 82.32 a | 1.30 a |
AC | 1.98 c | 16.33 b | 68.28 b | 1.31 a | 2.24 b | 14.52 b | 68.18 b | 1.32 a |
average | 2.28 | 18.63 | 70.29 | 1.30 | 2.85 | 18.63 | 74.59 | 1.31 |
Season | Land Use | MP (%) | MD (mm) | Γ | HD (mm) | CP |
---|---|---|---|---|---|---|
Rainy season | TC | 4.75 c | 2.44 a | 0.24 b c | 0.37 ab | 214.5 b |
PO | 2.62 d | 2.39 a | 0.14 c | 0.32 b | 96.67 c | |
PF | 10.71 a | 3.11 a | 0.71 a | 0.44 a | 341.46 a | |
GL | 7.29 b | 2.48 a | 0.36 b | 0.36 ab | 163.67 b c | |
AC | 2.82 d | 2.20 a | 0.09 c | 0.31 b | 74.82 c | |
Average | 5.64 | 2.52 | 0.31 | 0.36 | 178.22 | |
Dry season | TC | 3.94 c | 2.39 a | 0.12 b | 0.33 a | 173.39 b |
PO | 2.13 d | 2.34 a | 0.15 b | 0.33 a | 83.89 c | |
PF | 8.74 a | 2.51 a | 0.47 a | 0.38 a | 285.51 a | |
GL | 4.82 b | 1.91 b | 0.27 b | 0.22 a | 114.73 b c | |
AC | 1.68 d | 1.77 b | 0.04 c | 0.25 a | 72.15 c | |
Average | 4.43 | 2.18 | 0.23 | 0.30 | 145.93 |
Item | Initial Eigenvalue | Percent of Variation (%) | Cumulative Percent of Variation (%) |
---|---|---|---|
Component 1 | 6.16 | 51.32 | 51.32 |
Component 2 | 2.74 | 22.80 | 74.12 |
Component 3 | 1.54 | 12.85 | 86.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Ruan, J.; Li, Y.; Kong, Y.; Cao, L.; He, W. Soil Macropore and Hydraulic Conductivity Dynamics of Different Land Uses in the Dry–Hot Valley Region of China. Water 2023, 15, 3036. https://doi.org/10.3390/w15173036
Wang Y, Ruan J, Li Y, Kong Y, Cao L, He W. Soil Macropore and Hydraulic Conductivity Dynamics of Different Land Uses in the Dry–Hot Valley Region of China. Water. 2023; 15(17):3036. https://doi.org/10.3390/w15173036
Chicago/Turabian StyleWang, Yi, Jingru Ruan, Yongkang Li, Yaping Kong, Longxi Cao, and Wei He. 2023. "Soil Macropore and Hydraulic Conductivity Dynamics of Different Land Uses in the Dry–Hot Valley Region of China" Water 15, no. 17: 3036. https://doi.org/10.3390/w15173036