Effect of Ridging Shapes on the Water–Salt Spatial Distribution of Coastal Saline Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sample
2.2. Experimental Setup
2.3. Test Items
2.4. Data Analysis
3. Results
3.1. Spatial Distribution of the Soil Water Content in Different Ridge Shapes
3.1.1. Soil Water Content (0–1 cm)
3.1.2. Distribution of the Water Content in the Soil Profiles
3.2. Spatial Distribution of the Soil Salinity in Different Planting Ridge Shapes
3.2.1. Spatial Distribution of the 0–1 cm Soil Salinity
3.2.2. Spatial Distribution of the Salinity in the Soil Profiles
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Montanarella, L.; Pennock, D.; Mckenzie, N.; Alavipanah, S.K.; Alegre, J.; Alshankiti, A.; Arrouays, D.; Singh Aulakh, M.; Badraoui, M.; dos Santos Baptista Costa, I.; et al. The Status of the World’s Soil Resources (Technical Summary); Food and Agriculture Organization of the United Nations: Rome, Italy, 2015; 98p. [Google Scholar]
- Fan, X.; Liu, G.H.; Tang, Z.P.; Shu, L.C. Analysis on main contributors influencing soil salinization of yellow river delta. J. Soil Water Conserv. 2010, 24, 139–144. [Google Scholar]
- Wu, X.; Chen, X.B.; Lv, Z.Z.; Guo, J.Q.; Yu, J.B. Spatial-temporal variability of soil salt content before and after irrigation in the Yellow River Delta. Agric. Res. Arid. Areas 2013, 31, 194–199+243. [Google Scholar]
- Fan, X.; Pedroli, B.; Liu, G.; Liu, Q.; Liu, H.; Shu, L. Soil salinity development in the yellow river delta in relation to groundwater dynamics. Land Degrad. Dev. 2012, 23, 175–189. [Google Scholar] [CrossRef]
- Zhao, Y.; Qi, J.; Hu, Q.; Wang, Y. The “Groundwater Benefit Zone”, Proposals, Contributions and New Scientific Issues. In Soil Science; Aide, M., Braden, I., Eds.; IntechOpen: Rijeka, Croatia, 2021; 9p. [Google Scholar]
- Ren, X.; Cai, T.; Chen, X.; Zhang, P.; Jia, Z. Effect of rainfall concentration with different ridge widths on winter wheat production under semiarid climate. Eur. J. Agron. 2016, 77, 20–27. [Google Scholar] [CrossRef]
- Daryanto, S.; Wang, L.; Jacinthe, P.-A. Can ridge-furrow plastic mulching replace irrigation in dryland wheat and maize cropping systems? Agric. Water Manag. 2017, 190, 1–5. [Google Scholar] [CrossRef]
- Tang, Y.; Jilili, A.; Liu, D.; Mireban, A. Spatial Variability of Soil Moisture Content Based on Microrelief and Land Cover—A Case Study in Oasis in the Manas River Basin. Arid. Zone Res. 2011, 28, 222–228. [Google Scholar]
- He, W.J.; Han, G.X.; Yan, K.; Guan, B.; Wang, G.M.; Lu, F.; Zhou, Y.F.; Zhang, L.L.; Zhou, L. Effects of microtopography on plant biomass and the distribution of both soil water and salinity in coastal saline-alkali land. Chin. J. Ecol. 2021, 40, 3585–3597. [Google Scholar]
- Sun, L.; Lei, G.; Xia, J.; Sun, J.; Zhao, X. Evaluating Suaeda salsa restoration after micro-topography reconstruction in the coastal beach of the Yellow River Delta, China. Trans. Chin. Soc. Agric. Eng. 2021, 37, 82–90. [Google Scholar]
- Mandal, K.G.; Thakur, A.K.; Mohanty, S. Paired-row planting and furrow irrigation increased light interception, pod yield and water use efficiency of groundnut in a hot sub-humid climate. Agric. Water Manag. 2019, 213, 968–977. [Google Scholar] [CrossRef]
- Hu, Q.; Pan, F.; Pan, X.; Zhang, D.; Yang, N.; Pan, Z.; Zhao, P.; Tuo, D. Effects of a ridge-furrow micro-field rainwater-harvesting system on potato yield in a semi-arid region. Field Crop. Res. 2014, 166, 92–101. [Google Scholar] [CrossRef]
- Jia, Y.; Li, F.M.; Wang, X.L.; Yang, S.M. Soil water and alfalfa yields as affected by alternating ridges and furrows in rainfall harvest in a semiarid environment. Field Crop. Res. 2006, 97, 167–175. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, J.-P.; Zhang, Q.; Feng, D.; Feng, G.-Y.; Sun, J.-S.; Lin, Y.-Z. Soil Water and Salt Migration in Cotton Field in Ridge-Furrow Planting and Conventional Flat Planting under Drip Irrigation. Arid. Zone Res. 2019, 36, 307–313. [Google Scholar]
- Wen, X.; Gao, M.S. Studies on Water and Physiological Effect of Winter Wheat with Plastic Film Mulching in Semiarid Farmland. Acta Agric. Boreali-Occident. Sin. 2008, 17, 146–151. [Google Scholar]
- Sun, C.; Feng, D.; Yu, C.; Sun, J.; Zhang, J.; Feng, G.; Zhang, Q. Improving Cotton Yield in Coastal Saline-alkali Soils Using Mulching and Ridge-furrow Cultivation. J. Irrig. Drain. 2021, 40, 8–14. [Google Scholar]
- Mosaffa, H.R.; Sepaskhah, A.R. Performance of irrigation regimes and water salinity on winter wheat as influenced by planting methods. Agric. Water Manag. 2019, 216, 444–456. [Google Scholar] [CrossRef]
- Mo, F.; Wang, J.-Y.; Xiong, Y.-C.; Nguluu, S.N.; Li, F.-M. Ridge-furrow mulching system in semiarid Kenya: A promising solution to improve soil water availability and maize productivity. Eur. J. Agron. 2016, 80, 124–136. [Google Scholar] [CrossRef]
- Li, C.; Wen, X.; Wan, X.; Liu, Y.; Han, J.; Liao, Y.; Wu, W. Towards the highly effective use of precipitation by ridge-furrow with plastic film mulching instead of relying on irrigation resources in a dry semi-humid area. Field Crop. Res. 2016, 188, 62–73. [Google Scholar] [CrossRef]
- Du, X.; Wei, Z.; Kong, L.; Zhang, L. Optimal bed width for wheat following rice production with raised-bed planting in the Yangtze River Plain of China. Agric. Water Manag. 2022, 269, 107676. [Google Scholar] [CrossRef]
- Essien, O.E.; Ekong, E.O. Effect of heights and submergence ratio of ponded raised bed on crop productivity in water-logged wetland. J. Food Agric. Environ. 2010, 8, 550–555. [Google Scholar]
- Tewabe, D.; Abebe, A.; Enyew, A.; Tsige, A. Determination of bed width on raised bed irrigation technique of wheat at Koga and Rib Irrigation Projects, North West, Ethiopia. Cogent Food Agric. 2020, 6, 1712767. [Google Scholar] [CrossRef]
- Bao, S. Soil Agricultural Chemistry Analysis; China Agriculture Press: Beijing, China, 2013. [Google Scholar]
- Zhao, Y.; Wang, J.; Li, Y.; Pang, H. Reducing evaporation from phreatic water and soil resalinization by using straw interlayer and plastic mulch. Trans. Chin. Soc. Agric. Eng. 2013, 29, 109–117. [Google Scholar]
- Zehnder, K.; Arnold, A. Crystal growth in salt efflorescence. J. Cryst. Growth 1989, 97, 513–521. [Google Scholar] [CrossRef]
- Oguchi, C.T.; Yu, S. A review of theoretical salt weathering studies for stone heritage. Prog. Earth Planet. Sci. 2021, 8, 32. [Google Scholar]
- Qiuli, H.; Zhao, Y.; Hu, X.; Qi, J.; Suo, L.; Pan, Y.; Chen, X. Effect of saline land reclamation by constructing the “Raised Field -Shallow Trench” pattern on agroecosystems in Yellow River Delta. Agric. Water Manag. 2022, 261, 107345. [Google Scholar]
- Cui, B.; Yang, Q.; Yang, Z.; Zhang, K. Evaluating the ecological performance of wetland restoration in the Yellow River Delta, China. Ecol. Eng. 2009, 35, 1090–1103. [Google Scholar] [CrossRef]
- McVicar, T.R.; Roderick, M.L.; Donohue, R.J.; Li, L.T.; Van Niel, T.G.; Thomas, A.; Grieser, J.; Jhajharia, D.; Himri, Y.; Mahowald, N.M.; et al. Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. J. Hydrol. 2012, 416, 182–205. [Google Scholar] [CrossRef]
- Philippopoulos, K.; Deligiorgi, D. Application of artificial neural networks for the spatial estimation of wind speed in a coastal region with complex topography. Renew. Energy 2011, 38, 75–82. [Google Scholar] [CrossRef]
- Guan, F.; Miao, Y.J.; Tianfang, B.F.; Lan, X.Z.; Liang, Z.W. Effects of Ridging on Soil and Above-ground Biomass in Heavy Alkali-saline Grasslands of West Songnen Plain, China. Acta Agrestia Sin. 2010, 18, 763–767. [Google Scholar]
- Hu, T.; Brimblecombe, P.; Zhang, Z.; Song, Y.; Liu, S.; Zhu, Y.; Duan, J.; Cao, J.; Zhang, D. Capillary rise induced salt deterioration on ancient wall paintings at the Mogao Grottoes. Sci. Total. Environ. 2023, 881, 163476. [Google Scholar] [CrossRef]
- Van Zelm, E.; Zhang, Y.; Testerink, C. Salt Tolerance Mechanisms of Plants. Annu. Rev. Plant Biol. 2020, 71, 403–433. [Google Scholar] [CrossRef]
Indicators | Soil Particle Size Composition (%) | Nitrogen | Salt Content | pH | Soil Texture | ||
---|---|---|---|---|---|---|---|
Sand | Silt | Clay | (g/kg) | (g/kg) | |||
Measured values | 81.73 | 10.76 | 7.51 | 0.47 | 9.56 | 7.9 | Sandy loam |
Treatments | Parameters | Positions | Maximum | Minimum | Average | STD | Coefficient of Variation (%) |
---|---|---|---|---|---|---|---|
T1 | Water content (%) | Ridge | 14.97 | 10.02 | 12.33 | 1.35 | 10.93 |
Furrow | 15.2 | 11.89 | 14.09 | 1.08 | 7.66 | ||
Salinity (g/kg) | Ridge | 135.94 | 5.62 | 48.78 | 38.66 | 79.25 | |
Furrow | 16.83 | 7.26 | 12.92 | 2.83 | 21.86 | ||
T2 | Water content (%) | Ridge | 15 | 3.09 | 12.45 | 2.31 | 18.58 |
Furrow | 15.25 | 14.22 | 14.66 | 0.38 | 2.59 | ||
Salinity (g/kg) | Ridge | 109.35 | 26.61 | 72.68 | 26.87 | 36.98 | |
Furrow | 42.34 | 22.65 | 33.79 | 6.51 | 19.25 | ||
T3 | Water content (%) | Ridge | 14.05 | 7.85 | 11.16 | 1.68 | 15.01 |
Furrow | 16.36 | 11.5 | 13.21 | 1.73 | 13.09 | ||
Salinity (g/kg) | Ridge | 179.64 | 42.13 | 92.68 | 32.23 | 34.77 | |
Furrow | 107.19 | 37.92 | 53.56 | 19.98 | 34.31 | ||
CK | Water content (%) | 14.5 | 10.61 | 12.85 | 1.25 | 9.76 | |
Salinity (g/kg) | 46.86 | 31.6 | 40.74 | 4.22 | 6.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, J.; Sun, K.; Pan, Y.; Hu, Q.; Zhao, Y. Effect of Ridging Shapes on the Water–Salt Spatial Distribution of Coastal Saline Soil. Water 2023, 15, 2999. https://doi.org/10.3390/w15162999
Qi J, Sun K, Pan Y, Hu Q, Zhao Y. Effect of Ridging Shapes on the Water–Salt Spatial Distribution of Coastal Saline Soil. Water. 2023; 15(16):2999. https://doi.org/10.3390/w15162999
Chicago/Turabian StyleQi, Ji, Kaixiao Sun, Yinghua Pan, Qiuli Hu, and Ying Zhao. 2023. "Effect of Ridging Shapes on the Water–Salt Spatial Distribution of Coastal Saline Soil" Water 15, no. 16: 2999. https://doi.org/10.3390/w15162999