Determination of Bisphenol A (BPA) in the Port of Gdynia Waters Using Gas Chromatography Coupled with Mass Spectrometry (GC-MS)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Port Water Sampling
2.3. Chemicals/Reagents
2.4. Apparatus
2.5. Sample Preparation
2.6. Derivatization
2.7. GC Analyse
2.8. Validation Parameters
2.9. Statistical Analysis
3. Results and Discussion
3.1. Method Preparation
3.2. Validation Parameters
3.3. BPA Concentration in Port of Gdynia
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bornehag, C.G.; Engdahl, E.; Unenge Hallerbäck, M.; Wikström, S.; Lindh, C.; Rüegg, J.; Tanner, E.; Gennings, C. Prenatal exposure to bisphenols and cognitive function in children at 7 years of age in the Swedish SELMA study. Environ. Int. 2021, 150, 106433. [Google Scholar] [CrossRef] [PubMed]
- Caban, M.; Stepnowski, P. The quantification of bisphenols and their analogues in wastewaters and surface water by an improved solid-phase extraction gas chromatography/mass spectrometry method. Environ. Sci. Pollut. Res. 2020, 27, 28829–28839. [Google Scholar] [CrossRef]
- Voutsa, D.; Hartmann, P.; Schaffner, C.; Giger, W. Benzotriazoles, alkylphenols and bisphenol A in municipal wastewaters and in the Glatt River, Switzerland. Environ. Sci. Pollut. Res. 2006, 13, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Talsness, C.E.; Andrade, A.J.M.; Kuriyama, S.N.; Taylor, J.A.; Saal, F.S.V. Components of plastic: Experimental studies in animals and relevance for human health. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2079–2096. [Google Scholar] [CrossRef] [PubMed]
- Kawa, I.A.; Masood, A.; Ganie, M.A.; Fatima, Q.; Jeelani, H.; Manzoor, S.; Rizvi, S.M.; Muzamil, M.; Rashid, F. Bisphenol A (BPA) acts as an endocrine disruptor in women with Polycystic Ovary Syndrome: Hormonal and metabolic evaluation. Obes. Med. 2019, 14, 100090. [Google Scholar] [CrossRef]
- Mohammed, E.T.; Hashem, K.S.; Ahmed, A.E.; Aly, M.T.; Aleya, L.; Abdel-Daim, M.M. Ginger extract ameliorates bisphenol A (BPA)-induced disruption in thyroid hormones synthesis and metabolism: Involvement of Nrf-2/HO-1 pathway. Sci. Total Environ. 2020, 703, 134664. [Google Scholar] [CrossRef]
- Milanović, M.; Sudji, J.; Letić, N.G.; Radonić, J.; Sekulić, M.T.; Miloradov, M.V.; Milić, N. Seasonal variations of bisphenol A in the Danube River by the municipality of Novi Sad, Serbia. J. Serbian Chem. Soc. 2016, 81, 333–345. [Google Scholar] [CrossRef]
- Wu, N.C.; Seebacher, F. Effect of the plastic pollutant bisphenol A on the biology of aquatic organisms: A meta-analysis. Glob. Chang. Biol. 2020, 26, 3821–3833. [Google Scholar] [CrossRef]
- Di Paola, D.; Capparucci, F.; Lanteri, G.; Cordaro, M.; Crupi, R.; Siracusa, R.; Amico, R.D.; Fusco, R.; Impellizzeri, D.; Cuzzocrea, S.; et al. Metals on Zebrafish Embryos (Danio rerio). Toxics 2021, 9, 344. [Google Scholar] [CrossRef]
- Pjanic, M. The role of polycarbonate monomer bisphenol-A in insulin resistance. PeerJ 2017, 5, e3809. [Google Scholar] [CrossRef]
- Vogel, S.A. The politics of plastics: The making and unmaking of bisphenol a “safety”. Am. J. Public Health 2009, 99 (Suppl. 3), 559–566. [Google Scholar] [CrossRef] [PubMed]
- Le, H.H.; Carlson, E.M.; Chua, J.P.; Belcher, S.M. Bisphenol A is released from polycarbonate drinking bottles and mimics the neurotoxic actions of estrogen in developing cerebellar neurons. Toxicol. Lett. 2008, 176, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Yin, D.; Wang, L.; Zhu, Z.; Clark, S.S.; Cao, Y.; Besek, J.; Dai, N. Water quality related to Conservation Reserve Program (CRP) and cropland areas: Evidence from multi-temporal remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2021, 96, 102272. [Google Scholar] [CrossRef]
- Flint, S.; Markle, T.; Thompson, S.; Wallace, E. Bisphenol A exposure, effects, and policy: A wildlife perspective. J. Environ. Manag. 2012, 104, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, K.K.; Shanmugam, G.; Sampath, S.; Joakim Larsson, D.G.; Rajendran, R.B. GC-MS determination of bisphenol A and alkylphenol ethoxylates in river water from India and their ecotoxicological risk assessment. Ecotoxicol. Environ. Saf. 2014, 99, 13–20. [Google Scholar] [CrossRef]
- Deceuninck, Y.; Bichon, E.; Marchand, P.; Boquien, C.Y.; Legrand, A.; Boscher, C.; Antignac, J.P.; Le Bizec, B. Determination of bisphenol A and related substitutes/analogues in human breast milk using gas chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2015, 407, 2485–2497. [Google Scholar] [CrossRef]
- Yamazaki, E.; Yamashita, N.; Taniyasu, S.; Lam, J.; Lam, P.K.S.; Moon, H.B.; Jeong, Y.; Kannan, P.; Achyuthan, H.; Munuswamy, N.; et al. Bisphenol A and other bisphenol analogues including BPS and BPF in surface water samples from Japan, China, Korea and India. Ecotoxicol. Environ. Saf. 2015, 122, 565–572. [Google Scholar] [CrossRef]
- Frankowski, R.; Płatkiewicz, J.; Stanisz, E.; Grześkowiak, T.; Zgoła-Grześkowiak, A. Biodegradation and photo-Fenton degradation of bisphenol A, bisphenol S and fluconazole in water. Environ. Pollut. 2021, 289, 117947. [Google Scholar] [CrossRef]
- Wang, Q.; Feng, Q.; Hu, G.; Gao, Z.; Zhu, X.; Epua Epri, J. Simultaneous determination of seven bisphenol analogues in surface water by solid-phase extraction and ultra-performance liquid chromatography-tandem mass spectrometry. Microchem. J. 2022, 175, 107098. [Google Scholar] [CrossRef]
- Banaderakhshan, R.; Kemp, P.; Breul, L.; Steinbichl, P.; Hartmann, C.; Fürhacker, M. Bisphenol A and its alternatives in Austrian thermal paper receipts, and the migration from reusable plastic drinking bottles into water and artificial saliva using UHPLC-MS/MS. Chemosphere 2022, 286, 131842. [Google Scholar] [CrossRef]
- Zafra, A.; Del Olmo, M.; Suárez, B.; Hontoria, E.; Navalón, A.; Vílchez, J.L. Gas chromatographic-mass spectrometric method for the determination of bisphenol A and its chlorinated derivatives in urban wastewater. Water Res. 2003, 37, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Montagner, É.; De Rizzo, H.; Ribeiro, L. Gas chromatographic—Mass spectrometric validated method for the determination of Bisphenol A in public-supply water: An investigation in Campo Grande, MS, Brazil. Orbital Elec. J. Chem. 2012, 4, 297–312. [Google Scholar]
- Olea, N.; Olea-Serrano, M.F. Oestrogens and the environment. Eur. J. Cancer Prev. 1996, 6, 491–496. [Google Scholar]
- Filipkowska, A.; Kowalewska, G.; Pavoni, B.; Łȩczyński, L. Organotin compounds in surface sediments from seaports on the Gulf of Gdańsk (southern Baltic coast). Environ. Monit. Assess. 2011, 182, 455–466. [Google Scholar] [CrossRef] [PubMed]
- Radke, B.; Wasik, A.; Jewell, L.L.; Piketh, S.; Paczek, U.; Gałuszka, A.; Namieśnik, J. Seasonal changes in organotin compounds in water and sediment samples from the semi-closed Port of Gdynia. Sci. Total Environ. 2012, 441, 57–66. [Google Scholar] [CrossRef]
- Radke, B.; Piketh, S.; Wasik, A.; Namiesnik, J.; Dembska, G.; Bolalek, J. Aspects of Pollution in Gdansk and Gdynia Harbours at the Coastal Zone of the South Baltic Sea. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 2013, 7, 11–18. [Google Scholar] [CrossRef]
- Dereszewska, A.; Krasowska, K.; Popek, M. Microplastics in Harbour Seawaters: A Case Study in the Port of Gdynia, Baltic Sea. Sustainability 2023, 15, 6678. [Google Scholar] [CrossRef]
- Popek, M.; Dereszewska, A.; Dembska, G.; Pazikowska-Sapota, G. The Impact of Transport on the Quality of Water in the Port of Gdynia. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 2022, 16, 167–173. [Google Scholar] [CrossRef]
- Marine Technology Ltd. Available online: https://marinetechnology.pl/ (accessed on 22 June 2023).
- Birer, A.M.; Gözmen, B.; Sönmez, Ö.; Kalderis, D. Evaluation of sewage sludge biochar and modified derivatives as novel SPE adsorbents for monitoring of bisphenol A. Chemosphere 2021, 268, 128866. [Google Scholar] [CrossRef]
- del Olmo, M.; González-Casado, A.; Navas, N.A.; Vilchez, J.L. Determination of bisphenol A (BPA) in water by gas chromatography-mass spectrometry: Papers presented at Euroanalysis IX, Session on “Emerging Techniques in Environmental Analysis”. Anal. Chim. Acta 1997, 346, 87–92. [Google Scholar] [CrossRef]
- Kim, W.S.; Do, A.; Yeh, D.; Cunningham, J. Extraction of bisphenol-A and 17-estradiol from water samples via solid-phase extraction (SPE). Rev. Anal. Chem. 2014, 33, 59–77. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Z.H.; Tang, Z.; Zhang, J.; Dang, Z.; Liu, Y. Possible overestimation of bisphenol analogues in municipal wastewater analyzed with GC-MS. Environ. Pollut. 2021, 273, 116505. [Google Scholar] [CrossRef] [PubMed]
- Ribani, M.; Grespan Bottoli, C.B.; Collins, C.H.; Fontes Jardim, I.C.S.; Costa Melo, L.F. Validation for chromatographic and electrophoretic methods. Quim. Nova 2004, 27, 771–780. [Google Scholar] [CrossRef]
- Cunha, S.C.; Ferreira, R.; Marmelo, I.; Vieira, L.R.; Anacleto, P.; Maulvault, A.; Marques, A.; Guilhermino, L.; Fernandes, J.O. Occurrence and seasonal variation of several endocrine disruptor compounds (pesticides, bisphenols, musks and UV-filters) in water and sediments from the estuaries of Tagus and Douro Rivers (NE Atlantic Ocean coast). Sci. Total Environ. 2022, 838, 155814. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Singh, D.; Bhandari, R.; Malik, A.K.; Kaur, S.; Singh, B. Bisphenol A in canned soft drinks, plastic-bottled water, and household water tank from Punjab, India. J. Hazard. Mater. Adv. 2023, 9, 100205. [Google Scholar] [CrossRef]
- Zhang, X.; Jin, Y.; Wang, Y.; Liang, P.; Zou, M.; Li, S.; Liu, J.; Qi, X.; Zhang, X.; Shang, Z.; et al. Measurement of trace bisphenol A in drinking water with combination of immunochromatographic detection technology and SERS method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 267, 120519. [Google Scholar] [CrossRef]
- Basheer, C.; Lee, H.K. Analysis of endocrine disrupting alkylphenols, chlorophenols and bisphenol-A using hollow fiber-protected liquid-phase microextraction coupled with injection port-derivatization gas chromatography–mass spectrometry. J. Chromatogr. A 2004, 1057, 163–169. [Google Scholar] [CrossRef]
- Ginter-Kramarczyk, D.; Zembrzuska, J.; Kruszelnicka, I.; Zając-Woźnialis, A.; Ciślak, M. Influence of Temperature on the Quantity of Bisphenol A in Bottled Drinking Water. Int. J. Environ. Res. Public Health 2022, 19, 5710. [Google Scholar] [CrossRef]
- Staniszewska, M.; Koniecko, I.; Falkowska, L.; Krzymyk, E. Occurrence and distribution of bisphenol A and alkylphenols in the water of the gulf of Gdansk (Southern Baltic). Mar. Pollut. Bull. 2015, 91, 372–379. [Google Scholar] [CrossRef]
- Wright-Walters, M.; Volz, C.; Talbott, E.; Davis, D. An updated weight of evidence approach to the aquatic hazard assessment of Bisphenol A and the derivation a new predicted no effect concentration (Pnec) using a non-parametric methodology. Sci. Total. Environ. 2011, 409, 676–685. [Google Scholar] [CrossRef]
- Ribeiro, C.; Pardal, M.Â.; Martinho, F.; Margalho, R.; Tiritan, M.E.; Rocha, E.; Rocha, M.J. Distribution of endocrine disruptors in the Mondego River estuary, Portugal. Environ. Monit. Assess. 2009, 149, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Xiao, S.K.; Wu, Q.; Pan, C.G. Bisphenol analogues in water and sediment from the Beibu Gulf, South China Sea: Occurrence, partitioning and risk assessment. Sci. Total Environ. 2023, 857, 159445. [Google Scholar] [CrossRef] [PubMed]
- Zainuddin, A.H.; Roslan, M.Q.J.; Razak, M.R.; Yusoff, F.M.; Haron, D.E.M.; Aris, A.Z. Occurrence, distribution, and ecological risk of bisphenol analogues in marine ecosystem of urbanized coast and estuary. Mar. Pollut. Bull. 2023, 192, 115019. [Google Scholar] [CrossRef] [PubMed]
- Heemken, O.P.; Reincke, H.; Stachel, B.; Theobald, N. The occurrence of xenoestrogens in the Elbe river and the North Sea. Chemosphere 2001, 45, 245–259. [Google Scholar] [CrossRef]
- Céspedes, R.; Lacorte, S.; Raldúa, D.; Ginebreda, A.; Barceló, D.; Piña, B. Distribution of endocrine disruptors in the Llobregat River basin (Catalonia, NE Spain). Chemosphere 2005, 61, 1710–1719. [Google Scholar] [CrossRef]
GC and MS Parameters | ||
---|---|---|
Chromatograph model | Agilent Technologies 7890 A | |
Detector | Agilent Technologies 5977 A | |
Chromatography column | Rxi 5MS (30 m × 0.32 mm × 0.25 µm) | |
Dosing system | Pulsed splitless | |
Injection volume | 1 µL | |
Carrier gas | Helium | |
Gas flow | 1.5 mL/min. | |
Temperature program | 150 °C → 30 °C/min → 200 °C → 5 °C/min → 250° → 30 °C/min → 300 °C per 7 min | |
Injector temperature | 300 °C | |
Total analysis time | 20.3 min | |
Detector mode | SIM | |
m/z ratio | Target ion | Confirmation ion |
Derivatized BPA | 357 | 358, 372 |
Derivatized BPA-d16 | 368 | 369, 386 |
BPA | 213 | 228, 119 |
BPA-d16 | 223 | 241, 113 |
Parameters | Method 1 | Method 2 |
---|---|---|
LOD | 0.004 | 0.012 |
LOQ | 0.013 | 0.037 |
BPA concentration (μg/L) | 1 | 1 |
N | 7 | 7 |
Recovery (%) | 95.5 | 105.76 |
Precision (%RSD) | 2.22 | 2.95 |
Repeatability (%) | 5.88 | 7.81 |
BPA Concentration (μg/L) | n | Recovery (%) | Precision (%) | Repeatability (%) |
---|---|---|---|---|
0.010 | 10 | 92.00 | 4.35 | 13.75 |
0.100 | 6 | 101.67 | 5.55 | 13.60 |
4.000 | 8 | 82.94 | 6.72 | 19.01 |
5.000 | 7 | 92.42 | 2.84 | 7.53 |
Winter | Spring | Summer | Autumn | |
---|---|---|---|---|
Winter | 1.000 | 0.014 | 1.000 | |
Spring | 1.000 | 0.088 | 1.000 | |
Summer | 0.014 | 0.088 | 0.014 | |
Autumn | 1.000 | 1.000 | 0.014 |
Basins of the Port of Gdynia | Location No. | Concentration (µg/L) | |||
---|---|---|---|---|---|
Winter | Spring | ||||
Surface | Bottom | Surface | Bottom | ||
Basin No. VI | 1 | <0.01 | <0.01 | 0.010 ± 0.003 | 0.010 ± 0.003 |
2 | 0.010 ± 0.003 | <0.01 | 0.02 ± 0.01 | 0.010 ± 0.003 | |
Basin No. V | 3 | 0.010 ± 0.003 | <0.01 | <0.01 | 0.010 ± 0.003 |
4 | <0.01 | <0.01 | 0.010 ± 0.003 | 0.010 ± 0.003 | |
Basin No. IV | 5 | <0.01 | <0.01 | 0.010 ± 0.003 | 0.010 ± 0.003 |
Basin No. I | 6 | <0.01 | <0.01 | <0.01 | <0.01 |
Basin No. III | 7 | <0.01 | <0.01 | <0.01 | 0.010 ± 0.003 |
Summer | Autumn | ||||
surface | bottom | surface | bottom | ||
Basin No. VI | 1 | 0.010 ± 0.003 | 0.010 ± 0.003 | 0.010 ± 0.003 | 0.010 ± 0.003 |
2 | 0.010 ± 0.003 | 0.010 ± 0.003 | <0.01 | 0.010 ± 0.003 | |
Basin No. V | 3 | 0.02 ± 0.01 | 0.010 ± 0.003 | <0.01 | 0.010 ± 0.003 |
4 | 0.02 ± 0.01 | 0.010 ± 0.003 | 0.010 ± 0.003 | 0.010 ± 0.003 | |
Basin No. IV | 5 | 0.03 ± 0.01 | 0.02 ± 0.01 | 0.010 ± 0.003 | 0.010 ± 0.003 |
Basin No. I | 6 | 0.02 ± 0.01 | 0.010 ± 0.003 | 0.010 ± 0.003 | 0.010 ± 0.003 |
Basin No. III | 7 | 0.010 ± 0.003 | 0.010 ± 0.003 | <0.01 | 0.010 ± 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bojke, A.; Littwin, M.; Szpiech, A.; Duljas, E.; Jasiński, P.; Wittstock, I.; Jażdżewska, O.; Galer-Tatarowicz, K. Determination of Bisphenol A (BPA) in the Port of Gdynia Waters Using Gas Chromatography Coupled with Mass Spectrometry (GC-MS). Water 2023, 15, 2958. https://doi.org/10.3390/w15162958
Bojke A, Littwin M, Szpiech A, Duljas E, Jasiński P, Wittstock I, Jażdżewska O, Galer-Tatarowicz K. Determination of Bisphenol A (BPA) in the Port of Gdynia Waters Using Gas Chromatography Coupled with Mass Spectrometry (GC-MS). Water. 2023; 15(16):2958. https://doi.org/10.3390/w15162958
Chicago/Turabian StyleBojke, Aleksandra, Małgorzata Littwin, Agata Szpiech, Ewelina Duljas, Paweł Jasiński, Izabela Wittstock, Olga Jażdżewska, and Katarzyna Galer-Tatarowicz. 2023. "Determination of Bisphenol A (BPA) in the Port of Gdynia Waters Using Gas Chromatography Coupled with Mass Spectrometry (GC-MS)" Water 15, no. 16: 2958. https://doi.org/10.3390/w15162958