Environmental Assessment of Microplastic Pollution Induced by Solid Waste Landfills in the Akmola Region (North Kazakhstan)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Methods
2.2. Description of the Study Area
3. Results and Discussion
3.1. Survey of Plastic Waste Disposal Sites in the Akmola Region
- Design solutions to collect and prevent MSW leachate from entering the groundwater;
- Division of the landfill into individual operation cells;
- Equipment for weighing the incoming waste;
- Specific measures for disinfecting the wheels of waste trucks;
- Fencing and dewatering trenches, as well as earthen berms not more than 2 m high, around the perimeter of the entire landfill area;
- Collection drains to prevent leachate and rainwater from entering the soil;
- Landscaping of the sanitary protection zones of the landfills.
3.2. Application of Cleaning Methods to MSW Plastic Waste
- -
- The plastic particles selected by random sampling were weighed to within 0.0001 g, cleaned of heavy dirty contamination with warm distilled water, and stirred with a magnetic stirrer.
- -
- Afterward, they were immersed in a heat-resistant beaker (600–800 mL), a 0.05 M solution of FeSO4 was added, and then a 30% hydrogen peroxide solution (in a 1:1 ratio) was slowly added.
- -
- The resulting mixture with plastic was maintained in a water bath with constant stirring for 30 min (50 °C).
- -
- If residual (organic) contaminants were visually observed on the plastic, the procedure was repeated by adding an additional amount of a 30% hydrogen peroxide solution.
- -
- After cleaning, the plastic was removed, washed with distilled water, dried at 35 °C [66] to a constant weight, and weighed.
3.3. Determination of Macro- and Microplastic Particles in Soil Samples
3.3.1. Determination of Soil Moisture
3.3.2. Analysis of Microplastic Particles in Soil Samples and Leachates
- -
- Most plastics have a density lower than that of water, so the plastic microparticles must pass into the water phase during separation [68];
- -
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lambert, S.; Wagner, M. Characterization of nanoplastics in the degradation of polystyrene. Chemosphere 2016, 45, 265–268. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, N.B.; Hüffer, T.; Thompson, R.C.; Hassellöv, M.; Verschoor, A.; Daugaard, A.E.; Rist, S.; Karlsson, T.; Brennholt, N.; Cole, M.; et al. Are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris. Environ. Sci. Technol. 2019, 53, 1039–1047. [Google Scholar] [CrossRef] [Green Version]
- Besseling, E.; Redondo-Hasselerharm, P.; Foekema, E.M.; Koelmans, A.A. Quantifying ecological risks of aquatic micro- and nanoplastic. Crit. Rev. Environ. Sci. Technol. 2019, 49, 32–80. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.; Shi, J.; Zhang, N.; Pan, Z.; Xing, C.; Chen, X. Current research trends on microplastics pollution and impacts on agro-ecosystems: A short review. Sep. Sci. Technol. 2016, 57, 656–669. [Google Scholar] [CrossRef]
- Priya, A.K.; Jalil, A.A.; Dutta, K.; Rajendran, S.; Vasseghian, Y.; Qin, J.; Soto-Moscoso, M. Microplastics in the environment: Recent developments in characteristic, occurrence, identification and ecological risk. Chemosphere 2022, 298, 134161. [Google Scholar] [CrossRef]
- Chia, R.; Lee, J.Y.; Jang, J.; Cha, J. Errors and recommended practices that should be identified to reduce suspected concentrations of microplastics in soil and groundwater: A review. Environ. Technol. Innov. 2022, 28, 102933. [Google Scholar] [CrossRef]
- Jorquera, A.; Castillo, C.; Murillo, V.; Araya, J.; Pinochet, J.; Narváez, D.; Pantoja-Gutiérrez, S.; Urbina, M.A. Physical and anthropogenic drivers shaping the spatial distribution of microplastics in the marine sediments of Chilean fjords. Sci. Total Environ. 2022, 814, 152506. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, A.; Kannan, D.; Kapoor, A.; Prabhakar, S. Extraction and detection methods of microplastics in food and marine systems: A critical review. Chemosphere 2022, 286, 131653. [Google Scholar] [CrossRef] [PubMed]
- Campanale, C.; Galafassi, S.; Savino, I.; Massarelli, C.; Ancona, V.; Volta, P.; Uricchio, V.F. Microplastics pollution in the terrestrial environments: Poorly known diffuse sources and implications for plants. Sci. Total Environ. 2022, 805, 150431. [Google Scholar] [CrossRef] [PubMed]
- Sajjad, M.; Huang, Q.; Khan, S.; Khan, M.A.; Liu, Y.; Wang, J.; Lian, F.; Wang, Q.; Guo, G. Microplastics in the soil environment: A critical review. Environ. Technol. Innov. 2022, 27, 102408. [Google Scholar] [CrossRef]
- Tian, L.; Jinjin, C.; Ji, R.; Ma, Y.; Yu, X. Microplastics in agricultural soils: Sources, effects, and their fate. Curr. Opin. Environ. Sci. Health. 2022, 25, 100311. [Google Scholar] [CrossRef]
- Weber, C.J.; Opp, C. Spatial patterns of mesoplastics and coarse microplastics in floodplain soils as resulting from land use and fluvial processes. Environ. Pollut. 2020, 267, 115390. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.R.; Kim, Y.N.; Yoon, J.H.; Dickinson, N.; Kim, K.H. Plastic contamination of forest, urban, and agricultural soils: A case study of Yeoju City in the Republic of Korea. J. Soils Sediments 2021, 21, 1962–1973. [Google Scholar] [CrossRef]
- ASTM. Standard Practice for Collection of Water Samples with High, Medium, or Low Suspended Solids for Identification and Quantification of Microplastic Particles and Fibers; ASTM: West Conshohocken, PA, USA, 2020. [Google Scholar]
- Fan, C.; Huang, Y.Z.; Lin, J.N.; Li, J. Microplastic quantification of nylon and polyethylene terephthalate by chromic acid wet oxidation and ultraviolet spectrometry. Environ. Technol. Innov. 2022, 28, 102683. [Google Scholar] [CrossRef]
- Pérez, C.N.; Carré, F.; Hoarau-Belkhiri, A.; Joris, A.; Leonards, P.E.G.; Lamoree, M.H. Innovations in analytical methods to assess the occurrence of microplastics in soil. J. Environ. Chem. Eng. 2022, 10, 107421. [Google Scholar] [CrossRef]
- Geye, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [Green Version]
- Blair Crawford, C.; Quinn, B. Microplastic Pollutants, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- He, P.; Chen, L.; Shao, L.; Zhang, H.; Lü, F. Municipal solid waste (MSW) landfill: A source of microplastics? Evidence of microplastics in landfill leachate. Water Res. 2019, 159, 38–45. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, Z.; Wu, D.; Zhan, L.; Shi, H.; Xie, B. Occurrence of microplastics in landfill systems and their fate with landfill age. Water Res. 2019, 164, 114968. [Google Scholar] [CrossRef]
- Alimi, O.S.; Budarz, J.F.; Hernández, L.M.; Tufenkji, N. Microplastics and Nanoplastics in Aquatic Environments: Aggregation, Deposition, and Enhanced Contaminant Transport. Environ. Sci. Technol. 2018, 52, 1704–1724. [Google Scholar] [CrossRef]
- Klingelhöfer, D.; Braun, M.; Quarcoo, D.; Brüggmann, D.; Groneberg, D.A. Research landscape of a global environmental challenge: Microplastics. Water Res. 2020, 170, 115358. [Google Scholar] [CrossRef]
- Golwala, H.; Zhang, X.; Iskander, S.M.; Smith, A.L. Solid waste: An overlooked source of microplastics to the environment. Sci. Total Environ. 2021, 769, 144581. [Google Scholar] [CrossRef] [PubMed]
- Nizzetto, L.; Futter, M.; Langaas, S. Are Agricultural Soils Dumps for Microplastics of Urban Origin? Environ. Sci. Technol. 2016, 50, 10777–10779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Lou, Z. Pollution Control and Resource Recovery. Municipal Solid Wastes at Landfill, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Yang, G.; Zhang, G.; Wang, H. Current state of sludge production, management, treatment and disposal in China. Water Res. 2015, 78, 60–73. [Google Scholar] [CrossRef] [PubMed]
- Carr, S.A.; Liu, J.; Tesoro, A.G. Transport and fate of microplastic particles in wastewater treatment plants. Water Res. 2016, 91, 174–182. [Google Scholar] [CrossRef]
- Rillig, M.C. Microplastic in terrestrial ecosystems and the soil? Environ. Sci. Technol. 2012, 46, 6453–6454. [Google Scholar] [CrossRef]
- Yadav, V.; Sherly, M.A.; Ranjan, P.; Tinoco, R.O.; Boldrin, A.; Damgaard, A.; Laurent, A. Framework for quantifying environmental losses of plastics from landfills. Resour. Conserv. Recycl. 2020, 161, 104914. [Google Scholar] [CrossRef]
- Sui, Q.; Zhao, W.; Cao, X.; Lu, S.; Qiu, Z.; Gu, X.; Yu, G. Pharmaceuticals and personal care products in the leachates from a typical landfill reservoir of municipal solid waste in Shanghai, China: Occurrence and removal by a full-scale membrane bioreactor. J. Hazard. Mater. 2017, 323, 99–108. [Google Scholar] [CrossRef]
- Pfohl, P.; Roth, C.; Meyer, L.; Heinemeyer, U.; Gruendling, T.; Lang, C.; Nestle, N.; Hofmann, T.; Wohlleben, W.; Jessl, S. Microplastic extraction protocols can impact the polymer structure. Microplastics Nanoplastics 2021, 1, 1–13. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Y.; Kang, S.; Wang, Z.; Wu, C. Microplastics in soil: A review on methods, occurrence, sources, and potential risk. Sci. Total Environ. 2021, 780, 146546. [Google Scholar] [CrossRef]
- Oni, B.A.; Sanni, S.E. Occurrence of Microplastics in Borehole Drinking Water and Sediments in Lagos, Nigeria. Environ. Toxicol. Chem. 2022, 41, 1721–1731. [Google Scholar] [CrossRef]
- Chouchene, K.; Nacci, T.; Modugno, F.; Castelvetro, V.; Ksibi, M. Soil contamination by microplastics in relation to local agricultural development as revealed by FTIR, ICP-MS and pyrolysis-GC/MS. Environ. Pollut. 2022, 303, 119016. [Google Scholar] [CrossRef] [PubMed]
- Thiele, C.J.; Hudson, M.D.; Russell, A.E. Evaluation of existing methods to extract microplastics from bivalve tissue: Adapted KOH digestion protocol improves filtration at single-digit pore size. Mar. Pollut. Bull. 2019, 142, 384–393. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, H.; Fu, C.; Zhou, Y.; Dai, Z.; Li, Y.; Tu, C.; Luo, Y. The distribution and morphology of microplastics in coastal soils adjacent to the Bohai Sea and the Yellow Sea. Geoderma 2018, 322, 201–208. [Google Scholar] [CrossRef]
- Bhatt, P.; Pathak, V.M.; Bagheri, A.R.; Bilal, M. Microplastic contaminants in the aqueous environment, fate, toxicity consequences, and remediation strategies. Environ. Res. 2021, 200, 111762. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Song, B.; Liang, J.; Niu, Q.; Zeng, G.; Shen, M.; Deng, J.; Luo, Y.; Wen, X.; Zhang, Y. Microplastics and associated contaminants in the aquatic environment: A review on their ecotoxicological effects, trophic transfer, and potential impacts to human health. J. Hazard. Mater. 2021, 405, 124187. [Google Scholar] [CrossRef]
- Rochman, C.M.; Brookson, C.; Bikker, J.; Djuric, N.; Earn, A.; Bucci, K.; Athey, S.; Huntington, A.; McIlwraith, H.; Munno, K.; et al. Rethinking microplastics as a diverse contaminant suite. Environ. Toxicol. Chem. 2019, 38, 703–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, W.; Min, J.; Jiang, W.; Li, Y.; Zhang, W. Separation, characterization and identification of microplastics and nanoplastics in the environment. Sci. Total Environ. 2020, 721, 137561. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Luo, Y.; Lu, S.; Liu, M.; Song, Y.; Lei, L. Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. TrAC Trends Anal. Chem. 2018, 109, 163–172. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, S.; Allen, S.; Allen, D.; Gao, T.; Sillanpää, M. Atmospheric microplastics: A review on current status and perspectives. Earth-Sci. Rev. 2020, 203, 103118. [Google Scholar] [CrossRef]
- Wang, W.; Wang, J. Investigation of microplastics in aquatic environments: An overview of the methods used, from field sampling to laboratory analysis. TrAC Trends Anal. Chem. 2018, 108, 195–202. [Google Scholar] [CrossRef]
- Wang, W.; Ge, J.; Yu, X.; Li, H. Environmental fate and impacts of microplastics in soil ecosystems: Progress and perspective. Sci. Total Environ. 2020, 708, 134841. [Google Scholar] [CrossRef] [PubMed]
- Bureau of National Statistics. Environmental Indicators. In Waste. Available online: https://old.stat.gov.kz/for_users/ecologic_indicators/ecologic_indicator/waste_generation (accessed on 31 July 2023).
- Environmental Protection in the Republic of Kazakhstan. Statistical Compendium, 2016-2020-Nur-Sultan: Agency for Strategic Planning and Reforms of the Republic of Kazakhstan; Department of Production and Environment Statistics: Astana, Republic of Kazakhstan, 2021; 245p.
- Sarbassov, Y.; Sagalova, T.; Tursunov, O.; Venetis, C.; Xenarios, S.; Inglezakis, V. Survey on Household Solid Waste Sorting at Source in Developing Economies: A Case Study of Nur-Sultan City in Kazakhstan. Sustainability 2019, 11, 6496. [Google Scholar] [CrossRef] [Green Version]
- Abylkhani, B.; Aiymbetov, B.; Yagofarova, A.; Tokmurzin, D.; Venetis, C.; Poulopoulos, S.; Sarbassov, Y.; Inglezakis, V.J. Seasonal characterization of municipal solid waste from Astana city, Kazakhstan; composition and thermal properties of combustible fraction. Waste Manag. Res. 2019, 37, 1271–1281. [Google Scholar] [CrossRef]
- Abylkhani, B.; Guney, M.; Aiymbetov, B. Detailed municipal solid waste composition analysis for Nur-Sultan City, Kazakhstan with implications for sustainable waste management in Central Asia. Environ. Sci. Pollut. 2021, 28, 24406–24418. [Google Scholar] [CrossRef]
- Calero, M.; Martín-Lara, M.; Godoy, V.; Quesada, L.; Martínez, D.; Peula, F.; Soto, J. Characterization of plastic materials present in municipal solid waste: Preliminary study for their mechanical recycling. Detritus 2018, 1, 104–112. [Google Scholar] [CrossRef]
- Mondelli, G.; Juárez, M.B.; Jacinto, C. Geo-environmental and geotechnical characterization of municipal solid waste from the selective collection in São Paulo city, Brazil. Environ. Sci. Pollut. 2022, 29, 19898–19912. [Google Scholar] [CrossRef]
- Order Acting Minister of Health of the Republic of Kazakhstan, December 25, 2020 No. KR DSM-331/2020. Available online: https://adilet.zan.kz/rus/docs/V2000021934 (accessed on 31 July 2023).
- Strady, E.; Dang, T.H.; Dao, T.D.; Dinh, H.N.; Do, T.T.D.; Duong, T.N.; Duong, T.T.; Hoang, D.A.; Kieu-Le, T.C.; Le, T.P.Q.; et al. Baseline assessment of microplastic concentrations in marine and freshwater environments of a developing Southeast Asian country Vietnam. Mar. Pollut. Bull. 2020, 162, 111870. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Gao, X.; Du, J.; Sui, H.; Wu, J.; Zhong, Y.; Liang, B.; Huang, Y.; Ye, R.; et al. Investigation of Microplastics (≥10 μm) in Meconium by Fourier Transform Infrared Microspectroscopy. Toxics 2023, 11, 310. [Google Scholar] [CrossRef]
- Matsuguma, Y.; Takada, H.; Kumata, H.; Kanke, H.; Sakurai, S.; Suzuki, T.; Itoh, M.; Okazaki, Y.; Boonyatumanond, R.; Zakaria, M.P.; et al. Microplastics in sediment cores from Asia and Africa as indicators of temporal trends in plastic pollution. Arch. Environ. Contam. Toxicol. 2017, 73, 230–239. [Google Scholar] [CrossRef]
- Reineccius, J.; Bresien, J.; Waniek, J.J. Separation of microplastics from mass-limited samples by an effective adsorption technique. Sci. Tot. Environ. 2021, 788, 147881. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, J.; Liu, X.; Qu, F.; Wang, X.; Wang, X.; Li, Y.; Sun, Y. Microplastics in the environment: A review of analytical methods, distribution, and biological effects. TrAC Trends. Anal. Chem. 2019, 111, 62–72. [Google Scholar] [CrossRef]
- Lin, L.; Zuo, L.Z.; Peng, J.P.; Cai, L.Q.; Fok, L.; Yan, Y.; Li, H.X.; Xu, X.R. Occurrence and distribution of microplastics in an urban river: A case study in the Pearl River along Guangzhou City, China. Sci. Total Environ. 2018, 644, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Budimir, S.; Setälä, O.; Lehtiniemi, M. Effective and easy to use extraction method shows low numbers of microplastics in offshore planktivorous fish from the northern Baltic Sea. Mar. Pollut. Bull. 2018, 127, 586–592. [Google Scholar] [CrossRef] [PubMed]
- Olsen, L.M.B.; Knutsen, H.; Mahat, S.; Wade, E.J.; Arp, H.P.H. Facilitating microplastic quantification through the introduction of a cellulose dissolution step prior to oxidation: Proof-of-concept and demonstration using diverse samples from the inner Oslofjord, Norway. Mar. Environ. Res. 2020, 161, 105080. [Google Scholar] [CrossRef] [PubMed]
- Prata, J.C.; da Costa, J.P.; Duarte, A.C.; Rocha-Santos, T. Methods for sampling and detection of microplastics in water and sediment: A critical review. TrAC Trends Anal. Chem. 2019, 110, 150–159. [Google Scholar] [CrossRef]
- Boyle, K.; Örmeci, B. Microplastics and Nanoplastics in the Freshwater and Terrestrial Environment: A Review. Water 2020, 12, 2633. [Google Scholar] [CrossRef]
- Hurley, R.R.; Lusher, A.L.; Olsen, M.; Nizzetto, L. Validation of a Method for Extracting Microplastics from Complex, Organic-Rich, Environmental Matrices. Environ. Sci. Technol. 2018, 52, 7409–7417. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Bruceta, P.A.; Pérez-Rodríguez, A.; Velázquez-Infante, J. Proposal of a procedure for the recycling of high-density polyethylene. Rev. Cuba. Química 2014, 27, 32–54. [Google Scholar]
- Kratofil, L.; Hrnjak, Z.; Katančic, Z. Plastics and priority during the recycling. In Handbook of Research on Advancements in Environmental Engineering; Gaurina-Medjimurec, N., Ed.; IGI Global: Hershey, PA, USA, 2014; pp. 257–284. [Google Scholar]
- EN ISO 4611:1999; Plastics—Determination of the Effects of Exposure to Damp Heat, Water Spray and Salt Mist. ISO: Geneva, Switzerland, 1999.
- GOST 28268–89; Soils. Sampling. State Committee of Standards of the Council of Ministers of the USSR: Moscow, Russia, 1989.
- Zobkov, M.B.; Esyukova, E.E. Microplastics in the marine environment: A review of methods for sampling, preparation and analysis of water samples, bottom sediments and coastal sediments. Oceanology 2018, 1, 53. [Google Scholar]
- Zettler, E.R.; Mincer, T.J.; Amaral-Zettler, L.A. Life in the “plastisphere”: Microbial communities on plastic marine debris. Environ. Sci. Technol. 2013, 47, 7137–7146. [Google Scholar] [CrossRef]
- Romera-Castillo, C.; Pinto, M.; Langer, T.M.; Álvarez-Salgado, X.A.; Herndl, G.J. Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean. Nat. Commun. 2018, 9, 1430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Yang, X.; Gertsen, H.; Peters, P.; Salánki, T.; Geissen, V. A simple method for the extraction and identification of light density microplastics from soil. Sci. Total Environ. 2018, 616–617, 1056–1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corradini, F.; Meza, P.; Eguiluz, R.; Casado, F.; Huerta-Lwanga, E.; Geissen, V. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Sci. Total Environ. 2019, 671, 411–420. [Google Scholar] [CrossRef] [PubMed]
Region | Household Waste | Park Waste | Construction Waste | Industrial Waste (Household Waste) | Street Waste | Market Waste |
---|---|---|---|---|---|---|
Kazakhstan | 2,009,342 | 8595 | 41,473 | 411,450 | 278,850 | 61,324 |
Akmola region | 52,985 | 2550 | 2722 | 27,839 | 4822 | 5717 |
Region | Total MSW Transferred to Recycling | To Landfill Sites for Municipal Solid Waste | Transferred to Third Parties/Recycling Plants | Others |
---|---|---|---|---|
Kazakhstan | 2,812,240 | 1,649,217 | 1,084,028 | 78,995 |
Akmola region | 96,643 | 79,202 | 4825 | 12,616 |
Sample Number | Stepnogorsk | Shchuchinsk | ||
---|---|---|---|---|
Latitude | Longitude | Latitude | Longitude | |
1 | 52.359220 | 71.923026 | 52.903334 | 70.111852 |
2 | 52.359510 | 71.925249 | 52.905588 | 70.108644 |
3 | 52.358966 | 71.928161 | 52.907846 | 70.102070 |
4 | 52.358576 | 71.929435 | 52.904524 | 70.102409 |
5 | 52.357261 | 71.928710 | 52.905813 | 70.100141 |
6 | 52.357305 | 71.930410 | 52.902452 | 70.103571 |
Sample Number | Shchuchinsk Landfill Samples | Stepnogorsk Landfill Samples | ||||
---|---|---|---|---|---|---|
1 | 143 | 1403 | 10.19 | 307 | 1254 | 24.48 |
2 | 186 | 1112 | 16.72 | 294 | 1564 | 18.80 |
3 | 195 | 1089 | 17.91 | 302 | 1367 | 22.09 |
4 | 176 | 1142 | 15.41 | 187 | 983 | 19.02 |
5 | 105 | 521 | 20.15 | 206 | 907 | 22.71 |
6 | 268 | 810 | 33.09 | 281 | 1064 | 26.41 |
Average | 19.25 | 22.25 |
Sample Number | Shchuchinsk Landfill Samples | Stepnogorsk Landfill Samples | ||||
---|---|---|---|---|---|---|
1 | 0.2251 | 0.2119 | 5.86 | 0.1934 | 0.1891 | 2.22 |
2 | 0.3287 | 0.3195 | 2.80 | 0.1631 | 0.1575 | 3.43 |
3 | 0.0875 | 0.0784 | 10.40 | 0.1387 | 0.1346 | 2.95 |
4 | 0.1597 | 0.1502 | 5.95 | 0.2988 | 0.2768 | 7.36 |
5 | 0.2854 | 0.2779 | 2.63 | 0.3057 | 0.3005 | 1.70 |
6 | 0.1844 | 0.1812 | 1.74 | 0.3323 | 0.3124 | 5.98 |
Average | 4.89 | 3.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salikova, N.S.; Rodrigo-Ilarri, J.; Rodrigo-Clavero, M.-E.; Urazbayeva, S.E.; Askarova, A.Z.; Magzhanov, K.M. Environmental Assessment of Microplastic Pollution Induced by Solid Waste Landfills in the Akmola Region (North Kazakhstan). Water 2023, 15, 2889. https://doi.org/10.3390/w15162889
Salikova NS, Rodrigo-Ilarri J, Rodrigo-Clavero M-E, Urazbayeva SE, Askarova AZ, Magzhanov KM. Environmental Assessment of Microplastic Pollution Induced by Solid Waste Landfills in the Akmola Region (North Kazakhstan). Water. 2023; 15(16):2889. https://doi.org/10.3390/w15162889
Chicago/Turabian StyleSalikova, Natalya S., Javier Rodrigo-Ilarri, María-Elena Rodrigo-Clavero, Saltanat E. Urazbayeva, Aniza Zh. Askarova, and Kuandyk M. Magzhanov. 2023. "Environmental Assessment of Microplastic Pollution Induced by Solid Waste Landfills in the Akmola Region (North Kazakhstan)" Water 15, no. 16: 2889. https://doi.org/10.3390/w15162889