Parameterization for Modeling Blue–Green Infrastructures in Urban Settings Using SWMM-UrbanEVA
Abstract
:1. Introduction
- Transferable definition of BGI types: The study aims to define BGI types that will enable the accurate representation of different BGI features and their associated parameters in the model.
- Structured analysis of parameter sensitivities: The study will conduct a systematic analysis of the sensitivity of model inputs to key outputs. By identifying the most influential parameters, users can prioritize their parameterization efforts and improve the overall accuracy of the model.
- Parameter estimates: Based on a comprehensive literature review, the study will offer structured and comprehensive recommendations for parameterizing the LID module in SWMM, including parameter estimates and ranges.
- Recommendations for use: The study will provide practical guidelines and recommendations for effectively parameterizing SWMM-UrbanEVA.
2. Materials and Methods
2.1. Study Design
2.2. Model Description
2.3. Investigations on Existing Parameterization
2.3.1. Definition of Investigated of BGI Types
2.3.2. Literature Review—SWMM-LID-Parameterization
2.3.3. Sensitivity Analysis
Parameter | Unit | 01_2L-IB | 02_3L-BC | 03_3L-GR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Ref. | Min | Max | Ref. | Min | Max | Ref. | ||||
vegetation | crop factor | Veg_cf | - | 0.5 | 2 | [24] | 0.5 | 2 | [24] | 0.5 | 2 | [24] |
leaf area index | Veg_LAI | m2·m−2 | 1 | 16 | [57] | 1 | 16 | [57] | 1 | 16 | [57] | |
leaf storage coefficient | Veg_sl | - | 0.05 | 1 | [41] | 0.05 | 1 | [41] | 0.05 | 1 | [41] | |
aWC-threshold | Veg_aWCth | - | 0.05 | 1 | [41] | 0.05 | 1 | [41] | 0.05 | 1 | [41] | |
surface | surface storage | Su_Depth | mm | 0 | 300 | [38] | 0 | 300 | [38] | 1 | 80 | [38] |
surface roughness | Su_ManN | s·m−1/3 | 0.001 | 0.8 | [58] | 0.001 | 0.8 | [58] | 0.001 | 0.8 | [58] | |
surface slope | Su_Slope | % | 0 | 10 | assum. 1 | 0 | 10 | assum. 1 | 0 | 45 | [59] | |
soil | soil depth | So_Depth | mm | 0 | 1000 | [49] | 0 | 1300 | [38] | 30 | 300 | [59] |
porosity | So_Por | - | 0.25 | 0.65 | [60] | 0.25 | 0.65 | [60] | 0.25 | 0.65 | [60] | |
field capacity | So_FC | - | 0.15 | 0.245 | [60] | 0.15 | 0.245 | [60] | 0.15 | 0.245 | [60] | |
wilting point | So_WP | - | 0 | 0.145 | [60] | 0 | 0.145 | [60] | 0 | 0.145 | [60] | |
conductivity | So_Cond | mm·h−1 | 50 | 140 | [38] | 50 | 140 | [38] | 50 | 360 | [59] | |
conductivity slope | So_CondSl | - | 30 | 55 | [38] | 30 | 55 | [38] | 30 | 55 | [38] | |
suction head | So_SucH | mm | 50 | 100 | [38] | 50 | 100 | [38] | 50 | 100 | [38] | |
storage | storage height | St_Depth | mm | 0 | 0 | 1000 | [38] | 10 | 50 | [38] | ||
void ratio | St_VoidR | - | 0 | 0.2 | 0.4 | [38] | 0.2 | 0.4 | [38] | |||
seepage rate | St_SeepR | mm·h−1 | 18 | 360 | [49] | 3.6 2,4 | 72 2,4 | [49] | 0 | |||
0 3 | ||||||||||||
underdrain | drain coefficient | UD_Coeff | mm·h−1 | 0 | 0.1 3,4 | 100 3,4 | assum. 1 | 0.1 | 100 | assum. 1 | ||
0 2 | ||||||||||||
drain exponent | UD_Exp | - | 0 | 0.1 3,4 | 1 3,4 | assum. 1 | 0.1 | 1 | assum. 1 | |||
0 1 | ||||||||||||
offset | UD_OffS | mm | 0 | 0 3,4 | 500 3,4 | assum. 1 | 0 | 50 | assum. 1 | |||
0 1 |
2.4. Development “Toolset Parameterization”
Determination of Plant-Specific Parameters
3. Results
3.1. Investigations on Existing Parameterization
3.1.1. Literature Review—SWMM-LID-Parameterization
3.1.2. Sensitivity Analysis
3.2. Development “Toolset Parameterization”
3.2.1. Determination of Plant-Specific Parameters
3.2.2. Toolset: Definition of Parameter Estimates
- 1.
- Min and max estimates:Minimum and maximum estimates for each parameter are provided. These values represent recommended ranges but can be adjusted manually if appropriate.
- 2.
- Parameter choice:Recommendations for parameter choice are provided, distinguishing between site-specific and plant-specific considerations. It is also indicated whether a value can be fixed.
- 3.
- Reference:The source of parameter estimates is justified, considering the following options:
- a.
- SWMM: SWMM manual estimates are retained, if there were no discrepancies between the SWMM manual estimates and the results of the literature review.
- b.
- Section 3.1.1: SWMM manual estimates are expanded with plausible ranges based on the literature review. When adjusting, the ranges are supplemented with Q1 and/or Q3 values from Table A3 (Appendix C).
- c.
- Section 3.2.1: plant-specific parameters derived from Section 3.2.1 can be adopted using estimates of Table 6 and Table 7.
- d.
- Literature: parameterization based on the additional literature.
- e.
- Assumption: the SWMM manual estimates are extended by plausible assumptions.
- 4.
- Sensitivity:The sensitivity of the model parameters to water balance (WB) and peak runoff (Peak) is indicated. These assessments are based on the findings from Section 3.1.2. The sensitivity evaluations are provided in the table footer.
- Plant-specific parameters determined in Section 3.2.1 have been incorporated into the analysis.
- Depending on the structural design of the systems, adjustments have been made to the depth of the three layers and the slope at the surface.
- The surface roughness (Su_ManN) has been expanded to tall vegetation.
- The surface vegetation volume (Su_VegVol) can be fixed at 0 due to the utilization of SWMM-UrbanEVA.
- The soil parameters, including porosity (So_Por), field capacity (So_FC), wilting point (So_WP), and storage void ratio, have been adjusted based on the findings from Section 3.1.1 or literature sources.
- The bioretention cells (02_3L-BC) are primarily recommended for poor permeable native soils [49], while infiltration basins (IB) assume a more permeable native soil. However, other configurations are also possible.
- The conductivity slope (So_CondSl) is determined based on the recommendations from the existing SWMM manual estimates.
3.2.3. Toolset: Recommendations for Use
- In general, a good understanding of model and parameter uncertainties helps users to comprehend the limitations and constraints of their model and evaluate the reliability of the results. It also enables transparent communication of uncertainties within the context of model applications.
- The parameter estimates provided in Section 3.2.2 represent recommended parameter ranges. They can be adjusted based on plausible justifications.
- Sensitivities of model inputs and outputs should be carefully considered during the parameterization process. The sensitivity ratings from Table A5, Table A6 and Table A7 (Appendix E) provide significant guidance, as summarized in Table 9.
- If possible, model calibration using monitored data is always recommended. At least a plausibility check should be conducted with the literature data.
- The following significant findings regarding model outputs can be highlighted:
- a.
- In most cases, the behavior of the LID model is predominantly influenced by two out of the three water balance processes (Figure 5).
- b.
- Runoff occurs in cases of thin system layers and when SWMM-LID modules are sealed downwards. Key parameters affecting runoff include the depths of the three layers and the air capacity of the soil.
- c.
- Evaporation is primarily influenced by the definition of the crop factor (KC). Other evaporation-sensitive parameters include soil parameters that describe air capacity and available water capacity.
- d.
- Contrasting behavior can be expected when focusing on infiltration.
- e.
- The peak runoff is particularly influenced by the depths of the layers, air capacity, and conductivity slope.
4. Discussion
4.1. Investigated BGI Types
4.2. Literature Review—SWMM-LID-Parameterization
4.3. Sensitivity Analysis
4.4. Determination of Plant-Specific Parameters
4.5. Toolset Parameterization
5. Conclusions
- Transferable definition of BGI types: The study introduced a transferable framework for categorizing different BGI types, enabling accurate representation of relevant characteristics in the model. Although further differentiation between infiltration basins and natural systems was not pursued in this study, the defined BGI types provide a consistent basis for future investigations.
- Parameter sensitivities: The global sensitivity analysis revealed significant sensitivities of model inputs and outputs, emphasizing the influence of parameters such as KC and soil storage capacity on the water balance and peak runoff for all investigated BGI types. These findings align with prior research and highlight the importance of considering plant-specific evapotranspiration and soil characteristics in BGI modeling. Future investigations into sensitivities related to soil moisture regimes and storm events could enhance our understanding of their interactions with the existing sewer and receiving water systems.
- Parameter estimates: Comprehensive recommendations for parameterizing the LID module in SWMM supplemented with SWMM-UrbanEVA were provided, including parameter estimates and ranges. The study also determined plant-specific parameters, such as the crop factor (KC). However, it should be noted that these estimates should be considered as approximations according to the current state of knowledge, and more detailed expertise should be used when available or when further differentiation is required.
- Recommendations for use: Practical guidelines were provided for effectively parameterizing SWMM-LID modules including SWMM-UrbanEVA. The recommendations enhance the understanding of the model and ensure the highest possible quality in model parameterization. However, the importance of model calibration is emphasized, which should always be preferred over the untested application of parameter estimates.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
No. | Type | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | grass 1 | 0.29 | 0.29 | 0.29 | 0.43 | 0.86 | 1.14 | 1.29 | 1.71 | 2.00 | 1.71 | 1.14 | 0.86 |
2 | extensive green 2 | 0.68 | 0.68 | 0.68 | 1.01 | 1.18 | 1.35 | 1.35 | 1.35 | 1.18 | 1.01 | 0.85 | 0.68 |
3 | intensive green 2 | 0.68 | 0.68 | 0.68 | 1.01 | 1.18 | 1.35 | 1.35 | 1.35 | 1.18 | 1.01 | 0.85 | 0.68 |
4 | humid surfaces 2 | 0.55 | 0.55 | 0.83 | 1.10 | 1.38 | 1.38 | 1.38 | 1.38 | 1.38 | 0.83 | 0.69 | 0.55 |
5 | coniferous 2 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
6 | deciduous 2 | 0.09 | 0.09 | 0.26 | 0.69 | 1.21 | 1.90 | 2.07 | 2.07 | 1.90 | 1.38 | 0.26 | 0.09 |
7 | vegetation general 3 | 0.35 | 0.35 | 0.43 | 0.66 | 1.08 | 1.70 | 1.81 | 1.85 | 1.70 | 1.13 | 0.54 | 0.40 |
Appendix C
Source Type | Number of Parameter Estimates | % |
---|---|---|
measurement | 109 | 7.7% |
actual system design | 144 | 10.1% |
literature | 430 | 30.2% |
SWMM manual | 234 | 16.5% |
technical guideline | 191 | 13.4% |
calibration process | 71 | 5.0% |
author’s assumption | 42 | 3.0% |
no information | 201 | 14.1% |
Literature Review | SWMM Estimates [38] | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Parameter | Unit | BGI Type | Mean | Median | s(y) | Q1 | Q3 | Count | Min | Max | |
surface | Su_Depth | mm | 01_2L-IB | 253.69 | 200.00 | 217.97 | 150 | 300 | 24 | 0 | 304.8 |
02_3L-BC | 193.20 | 152.40 | 129.22 | 100 | 300 | 56 | 0 | 304.8 | |||
03_3L-GR | 35.67 | 10.00 | 77.76 | 5 | 39.23 | 43 | 0 | 76.2 | |||
Su_ManN | s·m−1/3 | 01_2L-IB | 0.16 | 0.13 | 0.10 | 0.1 | 0.24 | 23 | #NV | #NV | |
02_3L-BC | 0.14 | 0.13 | 0.13 | 0.1 | 0.16 | 49 | #NV | #NV | |||
03_3L-GR | 0.20 | 0.15 | 0.20 | 0.1 | 0.2075 | 40 | #NV | #NV | |||
Su_Slope | % | 01_2L-IB | 1.7 | 1.0 | 2.0 | 0.5 | 2.1 | 20 | #NV | #NV | |
02_3L-BC | 0.7 | 0.3 | 1.3 | 0.1 | 1.0 | 45 | #NV | #NV | |||
03_3L-GR | 5.5 | 2.0 | 8.2 | 1.0 | 5.0 | 37 | #NV | #NV | |||
soil | So_Depth | mm | 01_2L-IB | 509.1 | 500.0 | 320.0 | 225.0 | 750.0 | 11 | 609.6 | 1219.2 |
02_3L-BC | 1035.7 | 600.0 | 2124.9 | 450.0 | 715.0 | 58 | 609.6 | 1219.2 | |||
03_3L-GR | 132.4 | 90.5 | 154.0 | 47.5 | 150.0 | 44 | 50.8 | 152.4 | |||
So_Por | - | 01_2L-IB | 0.442 | 0.453 | 0.149 | 0.365 | 0.500 | 11 | 0.45 | 0.6 | |
02_3L-BC | 0.470 | 0.467 | 0.096 | 0.437 | 0.500 | 57 | 0.45 | 0.6 | |||
03_3L-GR | 0.526 | 0.500 | 0.117 | 0.450 | 0.600 | 47 | 0.45 | 0.6 | |||
So_FC | - | 01_2L-IB | 0.203 | 0.200 | 0.051 | 0.190 | 0.200 | 9 | 0.15 | 0.25 | |
02_3L-BC | 0.215 | 0.200 | 0.103 | 0.150 | 0.259 | 48 | 0.15 | 0.25 | |||
03_3L-GR | 0.297 | 0.300 | 0.105 | 0.200 | 0.350 | 42 | 0.3 | 0.5 | |||
So_WP | - | 01_2L-IB | 0.092 | 0.100 | 0.031 | 0.085 | 0.100 | 9 | 0.05 | 0.15 | |
02_3L-BC | 0.112 | 0.100 | 0.083 | 0.054 | 0.135 | 47 | 0.05 | 0.15 | |||
03_3L-GR | 0.084 | 0.074 | 0.050 | 0.050 | 0.100 | 36 | 0.05 | 0.2 | |||
So_Cond | mm·h−1 | 01_2L-IB | 86.1 | 28.0 | 150.2 | 12.5 | 72.0 | 10 | 50.8 | 139.7 | |
02_3L-BC | 151.9 | 100.0 | 217.4 | 50.4 | 139.9 | 51 | 50.8 | 139.7 | |||
03_3L-GR | 293.1 | 73.5 | 396.6 | 26.5 | 586.8 | 44 | 1016 | 19,600 | |||
So_CondSl | - | 01_2L-IB | 15.1 | 10.0 | 14.7 | 5.0 | 15.0 | 9 | 30 | 55 | |
02_3L-BC | 22.6 | 10.0 | 17.0 | 10.0 | 40.0 | 45 | 30 | 55 | |||
03_3L-GR | 27.6 | 16.0 | 27.4 | 10.0 | 43.5 | 40 | 30 | 55 | |||
So_SucH | mm | 01_2L-IB | 28.8 | 5.0 | 32.1 | 3.5 | 50.0 | 9 | 50.8 | 101.6 | |
02_3L-BC | 70.0 | 55.9 | 61.0 | 49.0 | 88.6 | 42 | 50.8 | 101.6 | |||
03_3L-GR | 52.8 | 50.8 | 41.1 | 25.0 | 71.0 | 37 | #NV | #NV | |||
storage | St_Depth | mm | 02_3L-BC | 262.9 | 255.0 | 226.8 | 80.0 | 462.5 | 56 | 152.4 | 914.4 |
03_3L-GR | 53.3 | 40.0 | 55.7 | 25.0 | 75.0 | 41 | 12.7 | 50.8 | |||
St_VoidR | - | 02_3L-BC | 0.561 | 0.507 | 0.230 | 0.400 | 0.750 | 54 | 0.2 | 0.4 | |
03_3L-GR | 0.390 | 0.430 | 0.272 | 0.145 | 0.500 | 43 | 0.2 | 0.4 | |||
St_SeepR | mm·h−1 | 02_3L-BC | 314.0 | 4.6 | 1558.5 | 0.5 | 45.6 | 48 | #NV | #NV | |
underdrain | UD_Coeff | mm·h−1 | 02_3L-BC | 51.4 | 40.0 | 68.7 | 8.4 | 44.7 | 22 | #NV | #NV |
03_3L-GR | 15.0 | 5.2 | 21.0 | 0.8 | 20.3 | 8 | #NV | #NV | |||
UD_Exp | - | 02_3L-BC | 0.4 | 0.5 | 0.2 | 0.5 | 0.5 | 21 | #NV | #NV | |
03_3L-GR | 0.9 | 0.5 | 0.8 | 0.4 | 1.2 | 8 | #NV | #NV | |||
UD_OffS | mm | 02_3L-BC | 81.4 | 13.0 | 176.2 | 0.0 | 60.0 | 21 | #NV | #NV | |
03_3L-GR | 8.2 | 0.0 | 21.0 | 0.0 | 2.6 | 8 | #NV | #NV |
Appendix D
Parameter | Unit | Plant Type | References | Counts per Reference | |
---|---|---|---|---|---|
H | m | (1) | tree—deciduous | [71] | 98 |
(2) | tree—coniferous | [71] | 31 | ||
(3) | woody plants—2 m | [71] | 110 | ||
(4) | perennials, shrubs | [71] | 667 | ||
(5) | grasses, herbs | [71] | 662 | ||
(6) | sedum, succulents | [71,74,81,82] | 18, 12, 2, 6 | ||
LAI | m2 × m−2 | (1) | tree—deciduous | [70] | 1108 |
(2) | tree—coniferous | [70] | 918 | ||
(3) | woody plants—2 m | [70] | 323 | ||
(4) | perennials, shrubs | [70] | 11 | ||
(5) | grasses, herbs | [70] | 12 | ||
(6) | sedum, succulents | [73,75,76,77,78,79,80,83] | 3, 1, 1, 4, 3, 8, 4, 2 | ||
gs | mm × s−1 | (1) | tree—deciduous | [71] | 19,270 |
(2) | tree—coniferous | [71] | 30,461 | ||
(3) | woody plants—2 m | [71] | 15,693 | ||
(4) | perennials, shrubs | [71] | 553 | ||
(5) | grasses, herbs | [71] | 1103 | ||
(6) | sedum, succulents | [71,72,73,84] | 3, 1, 5, 38 |
Appendix E
Parameter | Unit | Estimate | Parameter Choice 1 | Source 2 | Sensitivity 3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Site- Specific | Plant- Specific | Fixed | SWMM | Section 3.1.1 | Section 3.2.1 | Literature | Assumption | WB 4 | P 5 | ||||
vegetation | crop factor | Veg_cf | - | 1 | 1.6 | ✓ | ✓ | +++ | o | ||||||
leaf area index | Veg_LAI | m2·m−2 | 1 | 10 | ✓ | ✓ | + | o | |||||||
leaf storage coef. | Veg_sl | - | 0 | 1 | 0.29 | + | o | ||||||||
aWC-threshold | Veg_aWC_th | - | 0 | 1 | 0.6 | [41] | o | o | |||||||
surface | surface storage | Su_Depth | mm | 0 | 304.8 | ✓ | ✓ | o | + | ||||||
surface veg. volume | Su_VegVol | - | - | 0 | o | o | |||||||||
surface roughness | Su_ManN | s·m−1/3 | 0.001 | 0.8 | ✓ | ✓ | o | + | |||||||
surface slope | Su_Slope | % | 0 | 10 | ✓ | [44] | o | o | |||||||
soil | soil depth | So_Depth | mm | 200 | 1200 | ✓ | ✓ | ++ | ++ | ||||||
porosity | So_Por | - | 0.35 | 0.6 | ✓ | ✓ | ++ | + | |||||||
field capacity | So_FC | - | 0.15 | 0.25 | ✓ | ✓ | + | o | |||||||
wilting point | So_WP | - | 0.05 | 0.15 | ✓ | ✓ | + | o | |||||||
conductivity | So_Cond | mm·h−1 | 30 | 140 | ✓ | ✓ | o | o | |||||||
conductivity slope | So_CondSl | - | 30 | 55 | ✓ | ✓ | o | o | |||||||
suction head | So_SucH | mm | 50 | 100 | ✓ | ✓ | o | o | |||||||
storage | storage height | St_Depth | mm | - | 0 | #NV | #NV | ||||||||
void ratio | St_VoidR | - | - | 0 | #NV | #NV | |||||||||
seepage rate | St_SeepR | mm·h−1 | 18 | 360 | ✓ | [49] | o | o | |||||||
UD | drain coefficient | UD_Coeff | mm·h−1 | - | 0 | #NV | #NV | ||||||||
drain exponent | UD_Exp | - | - | 0 | #NV | #NV | |||||||||
offset | UD_OffS | mm | - | 0 | #NV | #NV |
Parameter | Unit | Estimate | Parameter Choice 1 | Source 2 | Sensitivity 3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Site- Specific | Plant- Specific | Fixed | Swmm | Section 3.1.1 | Section 3.2.1 | Literature | Assumption | WB 4 | P 5 | ||||
vegetation | crop factor | Veg_cf | - | 1 | 1.6 | ✓ | ✓ | +++ | o | ||||||
leaf area index | Veg_LAI | m2·m−2 | 1 | 10 | ✓ | ✓ | o | o | |||||||
leaf storage coef. | Veg_sl | - | 0 | 1 | 0.29 | [41] | o | o | |||||||
aWC-threshold | Veg_aWC_th | - | 0 | 1 | 0.6 | [41] | o | o | |||||||
surface | surface storage | Su_Depth | mm | 0 | 304.8 | ✓ | ✓ | o | o | ||||||
surface veg. volume | Su_VegVol | - | - | - | 0 | o | o | ||||||||
surface roughness | Su_ManN | s·m−1/3 | 0.001 | 0.8 | ✓ | ✓ | o | o | |||||||
surface slope | Su_Slope | % | 0 | 10 | ✓ | [44] | o | o | |||||||
soil | soil depth | So_Depth | mm | 450 | 1200 | ✓ | ✓ | ++ | ++ 7/o 6,8 | ||||||
porosity | So_Por | - | 0.45 | 0.6 | ✓ | ✓ | ++ | + | |||||||
field capacity | So_FC | - | 0.15 | 0.25 | ✓ | ✓ | + | o | |||||||
wilting point | So_WP | - | 0.05 | 0.15 | ✓ | ✓ | + | o | |||||||
conductivity | So_Cond | mm·h−1 | 50 | 140 | ✓ | ✓ | o | + 7/o 6,8 | |||||||
conductivity slope | So_CondSl | - | 30 | 55 | ✓ | ✓ | + | o | |||||||
suction head | So_SucH | mm | 50 | 100 | ✓ | ✓ | o | o | |||||||
storage | storage height | St_Depth | mm | 80 | 1000 | ✓ | + 7/o 6,8 | + 7/o 6,8 | |||||||
void ratio | St_VoidR | - | 0.2 | 0.75 | ✓ | o | o | ||||||||
seepage rate | St_SeepR | mm·h−1 | 3.6 | 72 6,8 | ✓ 6,8 | 0 7 | [49] | o | o | ||||||
UD | drain coefficient | UD_Coeff | mm·h−1 | 0.1 | 100 7,8 | 0 3 | ✓ | o | + 7/o 8 | ||||||
drain exponent | UD_Exp | - | 0 | 1 7,8 | 0 3 | ✓ | o | o | |||||||
offset | UD_OffS | mm | 0 | 1000 7,8 | 0 3 | ✓ | + 7/o 8 | + 7/o 8 |
Parameter | Unit | Estimate | Parameter Choice 1 | Source 2 | Sensitivity 3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Site- Specific | Plant- Specific | Fixed | Swmm | Section 3.1.1 | Section 3.2.1 | Literature | Assumption | WB 4 | P 5 | ||||
vegetation | crop factor | Veg_cf | - | 1 | 1.6 | ✓ | ✓ | +++ | + | ||||||
leaf area index | Veg_LAI | m2·m−2 | 1 | 10 | ✓ | ✓ | o | o | |||||||
leaf storage coef. | Veg_sl | - | 0 | 1 | 0.29 | [41] | + | o | |||||||
aWC-threshold | Veg_aWC_th | - | 0 | 1 | 0.6 | [41] | o | o | |||||||
surface | surface storage | Su_Depth | mm | 0 | 76.2 | ✓ | ✓ | o | o | ||||||
surface veg. volume | Su_VegVol | - | - | - | 0 | o | o | ||||||||
surface roughness | Su_ManN | s·m−1/3 | 0.001 | 0.8 | ✓ | ✓ | o | o | |||||||
surface slope | Su_Slope | % | 0 | 45 | ✓ | [59] | o | o | |||||||
soil | soil depth | So_Depth | mm | 50 | 500 | ✓ | [59] | ++ | ++ | ||||||
porosity | So_Por | - | 0.45 | 0.6 | ✓ | ✓ | ++ | + | |||||||
field capacity | So_FC | - | 0.2 | 0.5 | ✓ | ✓ | o | o | |||||||
wilting point | So_WP | - | 0.05 | 0.2 | ✓ | ✓ | + | o | |||||||
conductivity | So_Cond | mm·h−1 | 30 | 360 | ✓ | [59] | o | + | |||||||
conductivity slope | So_CondSl | - | 30 | 55 | ✓ | ✓ | + | + | |||||||
suction head | So_SucH | mm | 50 | 100 | ✓ | ✓ | o | o | |||||||
storage | storage height | St_Depth | mm | 10 | 75 | ✓ | + | + | |||||||
void ratio | St_VoidR | - | 0.14 | 0.5 | ✓ | o | o | ||||||||
seepage rate | St_SeepR | mm·h−1 | - | - | 0 | #NV | #NV | ||||||||
UD | drain coefficient | UD_Coeff | mm·h−1 | 0.1 | 100 | ✓ | o | o | |||||||
drain exponent | UD_Exp | - | 0 | 1 | ✓ | o | o | ||||||||
offset | UD_OffS | mm | 0 | 75 | ✓ | o | o |
References
- Fletcher, T.D.; Andrieu, H.; Hamel, P. Understanding, Management and Modelling of Urban Hydrology and Its Consequences for Receiving Waters: A State of the Art. Adv. Water Resour. 2013, 51, 261–279. [Google Scholar] [CrossRef]
- Landsberg, H.E. The Urban Climate; International Geophysics Series; Academic Press: College Park, MD, USA, 1981; Volume 28, ISBN 0-08-092419-0. [Google Scholar]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017; ISBN 0-521-84950-0. [Google Scholar]
- Palla, A.; Gnecco, I.; La Barbera, P. Assessing the Hydrologic Performance of a Green Roof Retrofitting Scenario for a Small Urban Catchment. Water 2018, 10, 1052. [Google Scholar] [CrossRef] [Green Version]
- Vijayaraghavan, K.; Joshi, U.M.; Balasubramanian, R. A Field Study to Evaluate Runoff Quality from Green Roofs. Water Res. 2012, 46, 1337–1345. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, D.Q.; Su, J.; Dong, J.W.; Tan, S.K. Assessing Hydrological Effects and Performance of Low Impact Development Practices Based on Future Scenarios Modeling. J. Clean. Prod. 2018, 179, 12–23. [Google Scholar] [CrossRef]
- Rahman, M.A.; Hartmann, C.; Moser-Reischl, A.; Freifrau von Strachwitz, M.; Peath, H.; Pretzsch, H.; Pauleit, S.; Rötzer, T. Tree Cooling Effects and Human Thermal Comfort under Contrasting Species and Sites. Agric. For. Meteorol. 2020, 287, 107947. [Google Scholar] [CrossRef]
- Zinzi, M.; Agnoli, S. Cool and Green Roofs. An Energy and Comfort Comparison between Passive Cooling and Mitigation Urban Heat Island Techniques for Residential Buildings in the Mediterranean Region. Energy Build. 2012, 55, 66–76. [Google Scholar] [CrossRef]
- Zölch, T.; Maderspacher, J.; Wamsler, C.; Pauleit, S. Using Green Infrastructure for Urban Climate-Proofing: An Evaluation of Heat Mitigation Measures at the Micro-Scale. Urban For. Urban Green. 2016, 20, 305–316. [Google Scholar] [CrossRef]
- Langergraber, G.; Pucher, B.; Simperler, L.; Kisser, J.; Katsou, E.; Buehler, D.; Mateo, M.C.G.; Atanasova, N. Implementing Nature-Based Solutions for Creating a Resourceful Circular City. Blue-Green Syst. 2020, 2, 173–185. [Google Scholar] [CrossRef]
- Panno, A.; Carrus, G.; Lafortezza, R.; Mariani, L.; Sanesi, G. Nature-Based Solutions to Promote Human Resilience and Wellbeing in Cities during Increasingly Hot Summers. Environ. Res. 2017, 159, 249–256. [Google Scholar] [CrossRef]
- Raymond, C.M.; Frantzeskaki, N.; Kabisch, N.; Berry, P.; Breil, M.; Nita, M.R.; Geneletti, D.; Calfapietra, C. A Framework for Assessing and Implementing the Co-Benefits of Nature-Based Solutions in Urban Areas. Environ. Sci. Policy 2017, 77, 15–24. [Google Scholar] [CrossRef]
- Palla, A.; Gnecco, I.; La Barbera, P. The Impact of Domestic Rainwater Harvesting Systems in Storm Water Runoff Mitigation at the Urban Block Scale. J. Environ. Manag. 2017, 191, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Sims, A.W.; Robinson, C.E.; Smart, C.C.; Voogt, J.A.; Hay, G.J.; Lundholm, J.T.; Powers, B.; O’Carroll, D.M. Retention Performance of Green Roofs in Three Different Climate Regions. J. Hydrol. 2016, 542, 115–124. [Google Scholar] [CrossRef]
- Hamel, P.; Tan, L. Blue–Green Infrastructure for Flood and Water Quality Management in Southeast Asia: Evidence and Knowledge Gaps. Environ. Manag. 2022, 69, 699–718. [Google Scholar] [CrossRef]
- Chatzimentor, A.; Apostolopoulou, E.; Mazaris, A.D. A Review of Green Infrastructure Research in Europe: Challenges and Opportunities. Landsc. Urban Plan. 2020, 198, 103775. [Google Scholar] [CrossRef]
- Feng, Y.; Burian, S. Improving Evapotranspiration Mechanisms in the U.S. Environmental Protection Agency’s Storm Water Management Model. J. Hydrol. Eng. 2016, 21, 06016007. [Google Scholar] [CrossRef]
- Johannessen, B.G.; Hamouz, V.; Gragne, A.S.; Muthanna, T.M. The Transferability of SWMM Model Parameters between Green Roofs with Similar Build-Up. J. Hydrol. 2019, 569, 816–828. [Google Scholar] [CrossRef]
- Krebs, G.; Kuoppamäki, K.; Kokkonen, T.; Koivusalo, H. Simulation of Green Roof Test Bed Runoff: Simulation of Green Roof Test Bed Runoff. Hydrol. Process. 2016, 30, 250–262. [Google Scholar] [CrossRef]
- Poë, S.; Stovin, V.; Berretta, C. Parameters Influencing the Regeneration of a Green Roof’s Retention Capacity via Evapotranspiration. J. Hydrol. 2015, 523, 356–367. [Google Scholar] [CrossRef]
- Kroes, J.G.; van Dam, J.C.; Groenendijk, P.; Hendriks, R.F.A.; Jacobs, C.M.J. SWAP Version 3.2—Theory Description and User Manual; Alterra Wageningen, Ed.; Alterra Report; Alterra Wageningen: Wageningen, The Netherlands, 2008; ISSN 1566-7197. [Google Scholar]
- Schulla, J. Model Description WaSiM (Water Balance Simulation Model); Hydrology Software Consulting, Ed.; Hydrology Software Consulting: Zürich, Switzerland, 2017. [Google Scholar]
- Šimůnek, J.; Šejna, M.; Saito, H.; Sakai, M.; van Genuchten, M.T. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media—Version 4.17; Department of Environmental Sciences, Ed.; University of California Riverside: Riverside, CA, USA, 2013. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper; FAO: Rome, Italy, 1998; Volume 56. [Google Scholar]
- Ludwig, K.; Bremicker, M. The Water Balance Model LARSIM—Design, Content and Applications; Freiburger Schriften zur Hydrologie; Institut für Hydrologie, Universität Freiburg i. Br.: Freiburg, Germany, 2006; Volume 22, ISSN 0945-1609. [Google Scholar]
- Bremicker, M. Aufbau Eines Wasserhaushaltsmodells für das Weser-und das Ostsee-Einzugsgebiet als Baustein Eines Atmosphären-Hydrologie-Modells. Ph.D. Thesis, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany, 1998. [Google Scholar]
- Bremicker, M. Das Wasserhaushaltsmodell LARSIM—Modellgrundlagen und Anwendungsbeispiele; Freiburger Schriften für Hydrologie; Freiburger Schriften zur Hydrologie; Institut für Hydrologie, Universität Freiburg i. Br.: Freiburg, Germany, 2000; Volume 11, ISSN 0945-1609. [Google Scholar]
- Wigmosta, M.S.; Nijssen, B.; Strorck, P. The Distributed Hydrology Soil Vegetation Model. In Mathematical Models of Small Watershed Hydrology and Applications; Water Resources Publications LLC: Chelsea, UK, 2002; pp. 7–42. [Google Scholar]
- Wang, J.; Endreny, T.A.; Nowak, D.J. Mechanistic Simulation of Tree Effects in an Urban Water Balance Model. JAWRA J. Am. Water Resour. Assoc. 2008, 44, 75–85. [Google Scholar] [CrossRef]
- Dunin, F.X.; O’Loughlin, E.M.; Reyenga, W. Interception Loss from Eucalypt Forest: Lysimeter Determination of Hourly Rates for Long Term Evaluation. Hydrol. Process. 1988, 2, 315–329. [Google Scholar] [CrossRef]
- Running, S.W.; Coughlan, J.C. A General Model of Forest Ecosystem Processes for Regional Applications I. Hydrologic Balance, Canopy Gas Exchange and Primary Production Processes. Ecol. Model. 1988, 42, 125–154. [Google Scholar] [CrossRef]
- Braden, H. Ein Energiehaushalts-Und Verdunstungsmodell Für Wasser Und Stoffhaushaltsuntersuchungen Landwirtschaftlich Genutzer Einzugsgebiete. Mitteilungen Dtsch. Bodenkd. Ges. 1985, 42, 294–299. [Google Scholar]
- Richards, L.A. Capillary Conduction of Liquids through Porous Mediums. Physics 1931, 1, 318–333. [Google Scholar] [CrossRef]
- Broekhuizen, I.; Sandoval, S.; Gao, H.; Mendez-Rios, F.; Leonhardt, G.; Bertrand-Krajewski, J.-L.; Viklander, M. Performance Comparison of Green Roof Hydrological Models for Full-Scale Field Sites. J. Hydrol. X 2021, 12, 100093. [Google Scholar] [CrossRef]
- Feng, Y.; Burian, S.J.; Pardyjak, E.R. Observation and Estimation of Evapotranspiration from an Irrigated Green Roof in a Rain-Scarce Environment. Water 2018, 10, 262. [Google Scholar] [CrossRef] [Green Version]
- Stovin, V.; Poe, S.; Berretta, C. A Modelling Study of Long Term Green Roof Retention Performance. J. Environ. Manag. 2013, 131, 206–215. [Google Scholar] [CrossRef] [Green Version]
- Rossman, L. Storm Water Management Model User’s Manual Version 5.1; EPA U.S. Environmental Protection Agency: Cincinnati, OH, USA, 2015.
- Rossman, L.; Huber, W.C. Storm Water Management Model Reference Manual Volume III—Water Quality; EPA U.S. Environmental Protection Agency, Ed.; U.S. Environmental Protection Agency, National Risk Management Laboratory, Office of Research and Development: Cincinnati, OH, USA, 2016.
- Cipolla, S.S.; Maglionico, M.; Stojkov, I. A Long-Term Hydrological Modelling of an Extensive Green Roof by Means of SWMM. Ecol. Eng. 2016, 95, 876–887. [Google Scholar] [CrossRef]
- Peng, Z.; Stovin, V. Independent Validation of the SWMM Green Roof Module. J. Hydrol. Eng. 2017, 22, 04017037. [Google Scholar] [CrossRef]
- Hörnschemeyer, B.; Henrichs, M.; Uhl, M. SWMM-UrbanEVA: A Model for the Evapotranspiration of Urban Vegetation. Water 2021, 13, 243. [Google Scholar] [CrossRef]
- Hörnschemeyer, B.; Uhl, M. Modeling Long-Term Water Balances of Green Infrastructures Using SWMM Extended with the Evapotranspiration Model SWMM-UrbanEVA. In Proceedings of the 12th Urban Drainage Modeling Conference, Costa Mesa, CA, USA, 10–12 January 2022. [Google Scholar]
- Kachholz, F.; Tränckner, J. Long-Term Modelling of an Agricultural and Urban River Catchment with SWMM Upgraded by the Evapotranspiration Model UrbanEVA. Water 2020, 12, 3089. [Google Scholar] [CrossRef]
- Leimgruber, J.; Krebs, G.; Camhy, D.; Muschalla, D. Sensitivity of Model-Based Water Balance to Low Impact Development Parameters. Water 2018, 10, 1838. [Google Scholar] [CrossRef] [Green Version]
- Fava, M.C.; de Macedo, M.B.; Buarque, A.C.S.; Saraiva, A.M.; Delbem, A.C.B.; Mendiondo, E.M. Linking Urban Floods to Citizen Science and Low Impact Development in Poorly Gauged Basins under Climate Changes for Dynamic Resilience Evaluation. Water 2022, 14, 1467. [Google Scholar] [CrossRef]
- Randall, M.; Sun, F.; Zhang, Y.; Jensen, M.B. Evaluating Sponge City Volume Capture Ratio at the Catchment Scale Using SWMM. J. Environ. Manag. 2019, 246, 745–757. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.L.M.; da Silva, D.D.; de Menezes Filho, F.C.M. Methodology for Allocation of Best Management Practices Integrated with the Urban Landscape. Water Resour. Manag. 2021, 35, 1353–1371. [Google Scholar] [CrossRef]
- Rossman, L.; Simon, M.A. Storm Water Management Model User’s Manual Version 5.2; EPA U.S. Environmental Protection Agency: Cincinnati, OH, USA, 2022.
- Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V. (DWA). DWA-A 138 DWA-Regelwerk: Planung, Bau Und Betrieb von Anlagen Zur Versickerung von Niederschlagswasser; Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V. (DWA): Hennef, Germany, 2005. [Google Scholar]
- Harsch, N.; Brandenburg, M.; Klemm, O. Large-Scale Lysimeter Site St. Arnold, Germany: Analysis of 40 Years of Precipitation, Leachate and Evapotranspiration. Hydrol. Earth Syst. Sci. 2009, 13, 305–317. [Google Scholar] [CrossRef] [Green Version]
- Henrichs, M.; Leutnant, D.; Schleifenbaum, R.; Uhl, M. KALIMOD—Programm-Dokumentation; FH Münster: Münster, Germany, 2014. [Google Scholar]
- Henrichs, M. Einfluss von Unsicherheiten auf die Kalibrierung urbanhydrologischer Modelle (“Influence of Uncertainties on the Calibration of Urban Hydrological Models”). Ph.D. Thesis, Technische Universität Dresden, Dresden, Germany, 2015. (In German). [Google Scholar]
- McKay, M.D.; Beckman, R.J.; Conover, W.J. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code. Technometrics 1979, 21, 239–245. [Google Scholar] [CrossRef]
- Helton, J.C.; Davis, F.J. Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems. Reliab. Eng. Syst. Saf. 2003, 81, 23–69. [Google Scholar] [CrossRef] [Green Version]
- Pianosi, F.; Beven, K.; Freer, J.; Hall, J.W.; Rougier, J.; Stephenson, D.B.; Wagener, T. Sensitivity Analysis of Environmental Models: A Systematic Review with Practical Workflow. Environ. Model. Softw. 2016, 79, 214–232. [Google Scholar] [CrossRef]
- Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson Correlation Coefficient. In Noise Reduction in Speech Processing; Cohen, I., Huang, Y., Chen, J., Benesty, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–4. ISBN 978-3-642-00296-0. [Google Scholar]
- Breuer, L.; Eckhardt, K.; Frede, H.-G. Plant Parameter Values for Models in Temperate Climates. Ecol. Model. 2003, 169, 237–293. [Google Scholar] [CrossRef]
- McCuen, R.H. Hydrologic Analysis and Design; Prentice Hall: Upper Saddle River, NJ, USA, 1998. [Google Scholar]
- FLL. Guidelines for the Planning, Construction and Maintenance of Green Roofing; Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau e.V.: Bonn, Germany, 2018. [Google Scholar]
- Blume, H.-P.; Stahr, K.; Leinweber, P. Bodenkundliches Praktikum: Eine Einführung in Pedologisches Arbeiten für Ökologen, Insbesondere Land- und Forstwirte, und für Geowissenschaftler; 3., neubearb. Aufl.; Spektrum, Akad. Verl: Heidelberg, Germany, 2011; ISBN 978-3-8274-1553-0. [Google Scholar]
- Löpmeier, F.-J. Agrarmeteorologisches Modell zur Berechnung der Aktuellen Verdunstung (AMBAV); Dt. Wetterdienst, Zentrale Agrarmeteorologische Forschungsstelle Braunschweig: Braunschweig, Germany, 1983; Volume 39. [Google Scholar]
- Monteith, J.L. Evaporation and Environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar]
- Allen, R.G.; Elliott, R.L.; Howell, T.A.; Itenfisu, D.; Jensen, M.E.; Snyder, R.L. The ASCE Standardized Reference Evapotranspiration Equation; Task Committee on Standardization of Reference Evapotranspiration, Ed.; ASCE-EWRI Task Committee Report; American Society of Civil Engineers (ASCE): Reston, VA, USA, 2005; ISBN 978-0-7844-0805-6. [Google Scholar]
- Roloff, A.; Gillner, S.; Bonn, S. Vorstellung Der KlimaArtenMatrix Für Stadtbaumarten (KLAM-Stadt). Gehölzenwahl Im Urbanen Raum Unter Dem Aspekt Des Klimawandels. In Klimawandel und Gehölze. Sonderheft Grün ist Leben; Bund Deutscher Baumschulen (BdB) e.V., Ed.; Signum: Pinneberg, Germany, 2008; pp. 30–42. ISBN 1861-7077. [Google Scholar]
- GALK. GALK-Straßenbaumliste. Available online: https://galk.de/arbeitskreise/stadtbaeume/themenuebersicht/strassenbaumliste (accessed on 30 November 2022).
- Eben, P.; Duthweiler, S.; Moning, C. Multifunktionale Versickerungsmulden im Siedlungsraum—Optimierung der Bepflanzung durch heimische Arten. In Proceedings of the “Grün statt grau” Tagungsband der Aqua Urbanica 2022 Konferenz, Glattfelden, Switzerland, 14–15 November 2022; Disch, A., Rieckermann, J., Eds.; Eawag, Abteilung für Siedlungswasserwirtschaft: Glattfelden, Switzerland, 2022; pp. 43–47. [Google Scholar]
- Optigrün Planerportal. Vegetation für Dachbegrünungen. Available online: https://www.optigruen.de/planerportal/vegetation (accessed on 23 May 2023).
- ZinCo Pflanzlisten. Available online: https://www.zinco.de/pflanzenlisten (accessed on 23 May 2023).
- Jansen, F.; Dengler, J. GermanSL—Eine universelle taxonomische Referenzliste für Vegetationsdatenbanken in Deutschland. Tuexenia Mitteilungen Florist.-Soziol. Arbeitsgemeinschaft 2008, 28, 239–253. [Google Scholar]
- IIO; ITO. A Global Database of Field-Observed Leaf Area Index in Woody Plant Species, 1932–2011; ORNL DAAC: Oak Ridge, TN, USA, 2014. [Google Scholar] [CrossRef]
- Kattge, J.; Bönisch, G.; Diaz, S. TRY Plant Trait Database—Enhanced Coverage and Open Access. Glob. Chang. Biol. 2020, 26, 119–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Körner, C.; Scheel, J.A.; Bauer, H. Maximum Leaf Diffusive Conductance in Vascular Plants (Review). Photosynthetica 1979, 13, 45–82. [Google Scholar]
- Askari, S.; De-Ville, S.; Hathway, E.; Stovin, V. Estimating Evapotranspiration from Commonly Occurring Urban Plant Species Using Porometry and Canopy Stomatal Conductance. Water 2021, 13, 2262. [Google Scholar] [CrossRef]
- Di Miceli, G.; Iacuzzi, N.; Licata, M.; La Bella, S.; Tuttolomondo, T.; Aprile, S. Growth and Development of Succulent Mixtures for Extensive Green Roofs in a Mediterranean Climate. PLoS ONE 2022, 17, e0269446. [Google Scholar] [CrossRef]
- Feng, C.; Wu, C.C.; Meng, Q.L. Experimental Study on the Radiative Properties of a Sedum lineare Greenroof. Appl. Mech. Mater. 2012, 174–177, 1986–1989. [Google Scholar] [CrossRef]
- Ferrante, P.; La Gennusa, M.; Peri, G.; Rizzo, G.; Scaccianoce, G. Vegetation Growth Parameters and Leaf Temperature: Experimental Results from a Six Plots Green Roofs’ System. Energy 2016, 115, 1723–1732. [Google Scholar] [CrossRef]
- Johnson, A.J.; Davidson, C.I.; Cibelli, E.; Wojcik, A. Estimating Leaf Area Index and Coverage of Dominant Vegetation on an Extensive Green Roof in Syracuse, NY. Nat.-Based Solut. 2023, 3, 100068. [Google Scholar] [CrossRef]
- Shetty, N.H.; Elliott, R.M.; Wang, M.; Palmer, M.I.; Culligan, P.J. Comparing the Hydrological Performance of an Irrigated Native Vegetation Green Roof with a Conventional Sedum Spp. Green Roof in New York City. PLoS ONE 2022, 17, e0266593. [Google Scholar] [CrossRef]
- Starry, O. The Comparative Effects of Three Sedum Species on Green Roof Stormwater Retention. Ph.D. Thesis, University of Maryland, College Park, MD, USA, 2013. [Google Scholar]
- Tabares-Velasco, P.C.; Srebric, J. A Heat Transfer Model for Assessment of Plant Based Roofing Systems in Summer Conditions. Build. Environ. 2012, 49, 310–323. [Google Scholar] [CrossRef]
- Xiong, Y.H.; Yang, X.E.; Ye, Z.Q.; He, Z.L. Characteristics of Cadmium Uptake and Accumulation by Two Contrasting Ecotypes of Sedum Alfredii Hance. J. Environ. Sci. Health Part—Toxic Hazardous Subst. Environ. Eng. 2004, 39, 2925–2940. [Google Scholar] [CrossRef]
- Zheng, Y.; Clark, M.J. Optimal Growing Substrate PH for Five Sedum Species. HortScience 2013, 48, 448–452. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.W.; Wang, Q.; Li, Y.; Liu, M.; Wang, R.Z. Green Roof Simulation with a Seasonally Variable Leaf Area Index. Energy Build. 2018, 174, 156–167. [Google Scholar] [CrossRef]
- Arriola-Cepeda, R.; Vera, S.; Albornoz, F.; Steinfort, U. Experimental Study on the Stomatal Resistance of Green Roof Vegetation of Semiarid Climates for Building Energy Simulations. In Proceedings of the 7th International Building Physics Conference, Syracuse, NY, USA, 25 September 2018. [Google Scholar]
- ISO/IEC. Uncertainty of Measurement—Part 3: Guide to the Expression of Uncertainty in Measurement (GUM:1995), 1st ed.; International Bureau of Weights and Measures, International Organization for Standardization, Eds.; International Organization for Standardization: Genève, Switzerland, 2008; ISBN 978-92-67-10188-0. [Google Scholar]
- Bertrand-Krajewski, J.-L.; Uhl, M.; Clemens-Meyer, F.H.L.R. Uncertainty Assessment. In Metrology in Urban Drainage and Stormwater Management: Plug and Pray; Bertrand-Krajewski, J.-L., Clemens-Meyer, F., Lepot, M., Eds.; IWA Publishing: London, UK, 2021; pp. 263–326. ISBN 978-1-78906-011-9. [Google Scholar]
- Bai, Y.; Li, Y.; Zhang, R.; Zhao, N.; Zeng, X. Comprehensive Performance Evaluation System Based on Environmental and Economic Benefits for Optimal Allocation of LID Facilities. Water 2019, 11, 341. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Qiu, L.; Gao, T.; Zhang, S. Systematic Application of Sponge City Facilities at Community Scale Based on SWMM. Water 2022, 14, 591. [Google Scholar] [CrossRef]
- Kang, T.; Koo, Y.; Lee, S. Design of Stormwater Pipe Considering Vegetative Swale with Water Conveyance. J. Korean Soc. Hazard Mitig. 2015, 15, 335–343. [Google Scholar] [CrossRef]
- Kong, F.; Ban, Y.; Yin, H.; James, P.; Dronova, I. Modeling Stormwater Management at the City District Level in Response to Changes in Land Use and Low Impact Development. Environ. Model. Softw. 2017, 95, 132–142. [Google Scholar] [CrossRef]
- Men, H.; Lu, H.; Jiang, W.; Xu, D. Mathematical Optimization Method of Low-Impact Development Layout in the Sponge City. Math. Probl. Eng. 2020, 2020, e6734081. [Google Scholar] [CrossRef]
- Niu, S.; Cao, L.; Li, Y.; Huang, J. Long-Term Simulation of the Effect of Low Impact Development for Highly Urbanized Areas on the Hydrologic Cycle in China. Int. J. Environ. Sci. Dev. 2016, 7, 225. [Google Scholar] [CrossRef] [Green Version]
- Rosa, D.J.; Clausen, J.C.; Dietz, M.E. Calibration and Verification of SWMM for Low Impact Development. JAWRA J. Am. Water Resour. Assoc. 2015, 51, 746–757. [Google Scholar] [CrossRef]
- She, L.; Wei, M.; You, X. Multi-Objective Layout Optimization for Sponge City by Annealing Algorithm and Its Environmental Benefits Analysis. Sustain. Cities Soc. 2021, 66, 102706. [Google Scholar] [CrossRef]
- Wang, D.; Fu, X.; Luan, Q.; Liu, J.; Wang, H.; Zhang, S. Effectiveness Assessment of Urban Waterlogging Mitigation for Low Impact Development in Semi-Mountainous Regions under Different Storm Conditions. Hydrol. Res. 2020, 52, 284–304. [Google Scholar] [CrossRef]
- Xiao, S.; Feng, Y.; Xue, L.; Ma, Z.; Tian, L.; Sun, H. Hydrologic Performance of Low Impact Developments in a Cold Climate. Water 2022, 14, 3610. [Google Scholar] [CrossRef]
- Xie, J.; Wu, C.; Li, H.; Chen, G. Study on Storm-Water Management of Grassed Swales and Permeable Pavement Based on SWMM. Water 2017, 9, 840. [Google Scholar] [CrossRef] [Green Version]
- Bond, J.; Batchabani, E.; Fuamba, M.; Courchesne, D.; Trudel, G. Modeling a Bioretention Basin and Vegetated Swale with a Trapezoidal Cross Section Using SWMM LID Controls. J. Water Manag. Model. 2021, 29, C474. [Google Scholar] [CrossRef]
- Leimgruber, J.; Krebs, G.; Camhy, D.; Muschalla, D. Model-Based Selection of Cost-Effective Low Impact Development Strategies to Control Water Balance. Sustainability 2019, 11, 2440. [Google Scholar] [CrossRef] [Green Version]
- Qin, H.P.; Li, Z.X.; Fu, G.T. The Effects of Low Impact Development on Urban Flooding under Different Rainfall Characteristics. J. Environ. Manag. 2013, 129, 577–585. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Zhao, N.; Zhang, R.; Zeng, X. Storm Water Management of Low Impact Development in Urban Areas Based on SWMM. Water 2019, 11, 33. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Chen, L.; Hou, X.; Wei, G.; Zhang, X.; Shen, Z. Detailed Quantification of the Reduction Effect of Roof Runoff by Low Impact Development Practices. Water 2020, 12, 795. [Google Scholar] [CrossRef] [Green Version]
- Cui, T.; Long, Y.; Wang, Y. Choosing the LID for Urban Storm Management in the South of Taiyuan Basin by Comparing the Storm Water Reduction Efficiency. Water 2019, 11, 2583. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.S. Analysis of Runoff According to Application of SWMM-LID Element Technology (I): Parameter Sensitivity Analysis. J. Korean Soc. Hazard Mitig. 2020, 20, 437–444. [Google Scholar] [CrossRef]
- Park, J.-Y.; Lim, H.-M.; Lee, H.-I.; Yoon, Y.-H.; Oh, H.-J.; Kim, W.-J. Water Balance and Pollutant Load Analyses according to LID Techniques for a Town Development. J. Korean Soc. Environ. Eng. 2013, 35, 795–802. [Google Scholar] [CrossRef]
- Starzec, M.; Dziopak, J.; Słyś, D. An Analysis of Stormwater Management Variants in Urban Catchments. Resources 2020, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Di Vittorio, D. Spatial Translation and Scaling Up of LID Practices in Deer Creek Watershed in East Missouri. Master’s Thesis, Southern Illinois University at Edwardsville, Ann Arbor, MI, USA, 2014. [Google Scholar]
- Di Vittorio, D.; Ahiablame, L. Spatial Translation and Scaling Up of Low Impact Development Designs in an Urban Watershed. J. Water Manag. Model. 2015, 23, C388. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Kim, G. An Effectiveness Study on the Use of Different Types of LID for Water Cycle Recovery in a Small Catchment. Land 2021, 10, 1055. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Li, Y. SWMM-Based Evaluation of the Effect of Rain Gardens on Urbanized Areas. Environ. Earth Sci. 2015, 75, 17. [Google Scholar] [CrossRef]
- Metcalf, J.D. Monitored Rain Garden Case Study Comparison to Continuous Simulation and Design Storm Methodology for Water Quality and Quantity. Master’s Thesis, Villanova University, Ann Arbor, MI, USA, 2022. [Google Scholar]
- Rosenberger, L.; Leandro, J.; Pauleit, S.; Erlwein, S. Sustainable Stormwater Management under the Impact of Climate Change and Urban Densification. J. Hydrol. 2021, 596, 126137. [Google Scholar] [CrossRef]
- Yang, Y.; Li, J.; Huang, Q.; Xia, J.; Li, J.; Liu, D.; Tan, Q. Performance Assessment of Sponge City Infrastructure on Stormwater Outflows Using Isochrone and SWMM Models. J. Hydrol. 2021, 597, 126151. [Google Scholar] [CrossRef]
- Bardhipur, S. Modeling the Effect of Green Infrastructure on Direct Runoff Reduction in Residential Areas. Master’s Thesis, Cleveland State University, Cleveland, OH, USA, 2017. [Google Scholar]
- Bouattour, O. Caractérisation de L’impact de Cellules de Biorétention sur la Qualité et la Quantité des eaux Pluviales à Trois-Rivières, Québec. Master’s Thesis, Polytechnique Montréal, Montreal, QC, Canada, 2021. [Google Scholar]
- Chapman, C.; Hall, J.W. The Influence of Built Form and Area on the Performancec of Sustainable Drainage Systems (SuDS). Future Cities Environ. 2021, 7, 5. [Google Scholar] [CrossRef]
- Choi, J.; Kim, K.; Sim, I.; Lee, O.; Kim, S. Cost-Effectiveness Analysis of Low-Impact Development Facilities to Improve Hydrologic Cycle and Water Quality in Urban Watershed. J. Korean Soc. Water Environ. 2020, 36, 206–219. [Google Scholar] [CrossRef]
- Chui, T.F.M.; Liu, X.; Zhan, W. Assessing Cost-Effectiveness of Specific LID Practice Designs in Response to Large Storm Events. J. Hydrol. 2016, 533, 353–364. [Google Scholar] [CrossRef]
- De-Ville, S.; Green, D.; Edmondson, J.; Stirling, R.; Dawson, R.; Stovin, V. Evaluating the Potential Hydrological Performance of a Bioretention Media with 100% Recycled Waste Components. Water 2021, 13, 2014. [Google Scholar] [CrossRef]
- Ekmekcioğlu, Ö.; Yılmaz, M.; Özger, M.; Tosunoğlu, F. Investigation of the Low Impact Development Strategies for Highly Urbanized Area via Auto-Calibrated Storm Water Management Model (SWMM). Water Sci. Technol. 2021, 84, 2194–2213. [Google Scholar] [CrossRef]
- Gougeon, G.; Bouattour, O.; Formankova, E.; St-Laurent, J.; Doucet, S.; Dorner, S.; Lacroix, S.; Kuller, M.; Dagenais, D.; Bichai, F. Impact of Bioretention Cells in Cities with a Cold Climate: Modeling Snow Management Based on a Case Study. Blue-Green Syst. 2023, 5, 1–17. [Google Scholar] [CrossRef]
- Gülbaz, S.; Kazezyilmaz-Alhan, C. An Evaluation of Hydrologic Modeling Performance of EPA SWMM for Bioretention. Water Sci. Technol. 2017, 76, wst2017464. [Google Scholar] [CrossRef] [PubMed]
- Lisenbee, W.A.; Hathaway, J.M.; Winston, R.J. Modeling Bioretention Hydrology: Quantifying the Performance of DRAINMOD-Urban and the SWMM LID Module. J. Hydrol. 2022, 612, 128179. [Google Scholar] [CrossRef]
- Minaz, A. Simulating Flood Control in Progress Village, Florida Using Storm Water Management Model (SWMM). Master’s Thesis, University of South Florida, Ann Arbor, MI, USA, 2022. [Google Scholar]
- Zhang, L.; Lu, Q.; Ding, Y.; Peng, P.; Yao, Y. Design and Performance Simulation of Road Bioretention Media for Sponge Cities. J. Perform. Constr. Facil. 2018, 32, 04018061. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, Z.; Chen, X.; Yu, G. An Assessment of the Hydrologic Effectiveness of Low Impact Development (LID) Practices for Managing Runoff with Different Objectives. J. Environ. Manag. 2019, 231, 504–514. [Google Scholar] [CrossRef] [PubMed]
- Arjenaki, M.O.; Sanayei, H.R.Z.; Heidarzadeh, H.; Mahabadi, N.A. Modeling and Investigating the Effect of the LID Methods on Collection Network of Urban Runoff Using the SWMM Model (Case Study: Shahrekord City). Model. Earth Syst. Environ. 2021, 7, 1–16. [Google Scholar] [CrossRef]
- Hamouz, V.; Muthanna, T.M. Hydrological Modelling of Green and Grey Roofs in Cold Climate with the SWMM Model. J. Environ. Manag. 2019, 249, 109350. [Google Scholar] [CrossRef]
- Iffland, R.; Förster, K.; Westerholt, D.; Pesci, M.H.; Lösken, G. Robust Vegetation Parameterization for Green Roofs in the EPA Stormwater Management Model (SWMM). Hydrology 2021, 8, 12. [Google Scholar] [CrossRef]
- Jeffers, S.; Garner, B.; Hidalgo, D.; Daoularis, D.; Warmerdam, O. Insights into Green Roof Modeling Using SWMM LID Controls for Detention-Based Designs. J. Water Manag. Model. 2022, 30, C484. [Google Scholar] [CrossRef]
- Kourtis, I.M.; Tsihrintzis, V.A.; Baltas, E. Simulation of Low Impact Development (LID) Practices and Comparison with Conventional Drainage Solutions. Proceedings 2018, 2, 640. [Google Scholar] [CrossRef]
- Worthen, L.; Kelleher, C.; Davidson, C. Investigating Model Performance and Parameter Sensitivity for Runoff Simulation across Multiple Events for a Large Green Roof. Hydrol. Process. 2021, 35, e14387. [Google Scholar] [CrossRef]
- Worthen, L.; Davidson, C. Sensitivity Analysis Using the SWMM LID Control for an Extensive Green Roof in Syracuse, NY. In Proceedings of the International Building Physics Conference, Syracuse, NY, USA, 23–26 September 2018. [Google Scholar]
- McCuen, R.H.; Johnson, P.A.; Ragan, R.M. Highway Hydrology; Hydraulic Design Series No. 2; U.S. Department of Transportation: Greenbelt, MD, USA, 2002.
- Open SWMM Conductivity Slope Values. Available online: https://www.openswmm.org/Topic/9381/conductivity-slope-values (accessed on 17 June 2023).
- Rawls, W.J.; Brakensiek, D.L.; Miller, N. Green-ampt Infiltration Parameters from Soils Data. J. Hydraul. Eng. 1983, 109, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Song, J.-Y.; Chung, E.-S.; Kim, S.H. Decision Support System for the Design and Planning of Low-Impact Development Practices: The Case of Seoul. Water 2018, 10, 146. [Google Scholar] [CrossRef] [Green Version]
- Metropolis, N.; Ulam, S. The Monte Carlo Method. J. Am. Stat. Assoc. 1949, 44, 335–341. [Google Scholar] [CrossRef]
- Morris, M.D. Factorial Sampling Plans for Preliminary Computational Experiments. Technometrics 1991, 33, 161–174. [Google Scholar] [CrossRef]
- Saltelli, A.; Ratto, M.; Tarantola, S.; Campolongo, F. Sensitivity Analysis Practices: Strategies for Model-Based Inference. Reliab. Eng. Syst. Saf. 2006, 91, 1109–1125. [Google Scholar] [CrossRef]
- Sobol, I.M. Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates. Second IMACS Semin. Monte Carlo Methods 2001, 55, 271–280. [Google Scholar] [CrossRef]
- Treder, J.; Treder, W.; Klamkowski, K. Determination of Irrigation Requirements and Crop Coefficients Using Weighing Lysimeters in Perennial Plants. Infrastrukt. Ekol. Teren. Wiej. Infrastucture Ecol. Rural Areas 2017, 3, 1213–1228. [Google Scholar] [CrossRef]
- Schneider, D. Quantifying Evapotranspiration from a Green Roof Analytically; Villanova University: Villanova, PA, USA, 2011. [Google Scholar]
- Guidi, W.; Piccioni, E.; Bonari, E. Evapotranspiration and Crop Coefficient of Poplar and Willow Short-Rotation Coppice Used as Vegetation Filter. Bioresour. Technol. 2008, 99, 4832–4840. [Google Scholar] [CrossRef] [PubMed]
- Nagase, A.; Dunnett, N. Amount of Water Runoff from Different Vegetation Types on Extensive Green Roofs: Effects of Plant Species, Diversity and Plant Structure. Landsc. Urban Plan. 2012, 104, 356–363. [Google Scholar] [CrossRef]
- Lundholm, J.; MacIvor, J.S.; MacDougall, Z.; Ranalli, M. Plant Species and Functional Group Combinations Affect Green Roof Ecosystem Functions. PLoS ONE 2010, 5, e9677. [Google Scholar] [CrossRef] [Green Version]
- Patanè, C. Leaf Area Index, Leaf Transpiration and Stomatal Conductance as Affected by Soil Water Deficit and VPD in Processing Tomato in Semi Arid Mediterranean Climate. J. Agron. Crop Sci. 2011, 197, 165–176. [Google Scholar] [CrossRef]
- Evett, S.; Howell, T.; Todd, R.; Schneider, A.D.; Tolk, J. Evapotranspiration of Irrigated Alfalfa in a Semi-Arid Environment; ASAE Paper; USDA-Agricultural Research Service: Bushland, TX, USA, 1998.
- Gong, L.; Xu, C.; Chen, D.; Halldin, S.; Chen, Y.D. Sensitivity of the Penman–Monteith Reference Evapotranspiration to Key Climatic Variables in the Changjiang (Yangtze River) Basin. J. Hydrol. 2006, 329, 620–629. [Google Scholar] [CrossRef]
- Majozi, N.P.; Mannaerts, C.M.; Ramoelo, A.; Mathieu, R.; Verhoef, W. Uncertainty and Sensitivity Analysis of a Remote-Sensing-Based Penman–Monteith Model to Meteorological and Land Surface Input Variables. Remote Sens. 2021, 13, 882. [Google Scholar] [CrossRef]
- Watson, D.J. Comparative Physiological Studies on the Growth of Field Crops: I. Variation in Net Assimilation Rate and Leaf Area between Species and Varieties, and within and between Years. Ann. Bot. 1947, 11, 41–76. [Google Scholar] [CrossRef]
- Beven, K. A Sensitivity Analysis of the Penman-Monteith Actual Evapotranspiration Estimates. J. Hydrol. 1979, 44, 169–190. [Google Scholar] [CrossRef]
- Rana, G.; Katerji, N. A Measurement Based Sensitivity Analysis of the Penman-Monteith Actual Evapotranspiration Model for Crops of Different Height and in Contrasting Water Status. Theor. Appl. Climatol. 1998, 60, 141–149. [Google Scholar] [CrossRef]
- Jarvis, P.G.; James, G.B.; Landsberg, J.J. Coniferous Forest. In Vegetation and the Atmosphere, Volume 2 Case Studies; Monteith, J.L., Ed.; Academic Press: London, UK, 1976; pp. 171–240. ISBN 978-0-12-505102-6. [Google Scholar]
- Hörnschemeyer, B. Modellierung Der Verdunstung Urbaner Vegetation—Weiterentwicklung Des LID-Bausteins Im US EPA Storm Water Management Model, 1st ed.; Forschungsreihe der FH Münster; Springer Spektrum: Münster, Germany, 2019; ISBN 978-3-658-26283-9. [Google Scholar]
BGI Type | Definition | System Elements 1 | Model Output Fluxes 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Su | So | St | St-seal | Dr | R-O | R-D | E | I | |||
2-LAYER | 01_2L-IB | 2-layer system, (i) technical infiltration systems, not providing an additional storage layer, or (ii) natural systems | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
3-LAYER | 02_3L-BC | technical 3-layer system, bioretention cells and structurally similar systems, summarizes types 2a–2c, if infiltration as well as underdrain are not further specified | ✓ | ✓ | ✓ | (✓) | (✓) | ✓ | (✓) | ✓ | (✓) |
02a_3L-BC- infil | technical 3-layer system, bioretention cells and structurally similar systems, providing infiltration, no underdrain | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
02b_3L-BC-drain | technical 3-layer system, bioretention cells and structurally similar systems, providing underdrain, no infiltration | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||
02c_3L-BC- dr-infil | technical 3-layer system, bioretention cells and structurally similar systems, providing infiltration and underdrain | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||
03_3L-GR | technical 3-layer system, green roofs (extensive or intensive systems, with increased retention capacities or as a roof garden), providing underdrain, no infiltration | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
System | 01_2L-IB | 02_3L-BC | 03_3L-GR |
---|---|---|---|
Vegetative swale | ✓ | ✓ | |
Infiltration swale | ✓ | ||
Grass swale | ✓ | ||
Swale | ✓ | ||
Green belt | ✓ | ✓ | |
Rain garden | ✓ | ✓ | |
Bioretention cell | ✓ | ||
Green roof | ✓ | ||
Retention roof | ✓ |
BGI System | 01_2L-IB | 02_3L-BC | 03_3L-GR | |||
---|---|---|---|---|---|---|
Count | References | Count | References | Count | References | |
Vegetative swale | 12 | [87,88,89,90,91,92,93,94,95,96,97] | 1 | [98] | ||
Infiltration swale | 1 | [99] | ||||
Grass swale | 1 | [92] | ||||
Swale | 1 | [100] | ||||
Green belt | 1 | [95,101,102] | 2 | [101] | ||
Rain garden | 9 | [46,47,87,90,103,104,105,106] | 8 | [101,107,108,109,110,111,112,113] | ||
Bioretention cell | 47 | [45,47,87,88,92,93,94,96,98,99,104,109,114,115,116,117,118,119,120,121,122,123,124,125,126] | ||||
Green roof | 48 | [4,18,34,39,40,41,46,47,90,91,94,95,99,100,101,101,102,104,109,112,113,113,116,118,120,127,128,129,130,131,132,133] |
01_2L-IB | 02a_3L-BC-infil | 02b_3L-BC-drain | 02c_3L-BC-dr-inf | 03_3L-GR | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R | E | I | Peak | R | E | I | Peak | R | E | Peak | R | E | I | Peak | R | E | Peak | ||
model output | R | 1 | −0.11 | −0.01 | 0.49 | 1 | −0.01 | 0 | 0.77 | 1 | −1 | 0.28 | 1 | −0.01 | −0.01 | 0.43 | 1 | −1 | 0.39 |
E | −0.11 | 1 | −0.99 | −0.29 | −0.01 | 1 | −1 | −0.04 | −1 | 1 | −0.25 | −0.01 | 1 | −1 | −0.04 | −1 | 1 | −0.38 | |
I | −0.01 | −0.99 | 1 | 0.23 | 0 | −1 | 1 | 0.03 | #NV | #NV | #NV | −0.01 | −1 | 1 | 0.03 | #NV | #NV | #NV | |
Peak | 0.49 | −0.29 | 0.23 | 1 | 0.77 | −0.04 | 0.03 | 1 | 0.28 | −0.25 | 1 | 0.43 | −0.04 | 0.03 | 1 | 0.39 | −0.38 | 1 | |
vegetation | Veg_cf | −0.01 | 0.73 | −0.71 | −0.02 | 0 | 0.78 | −0.75 | 0 | −0.76 | 0.8 | −0.03 | −0.01 | 0.79 | −0.75 | −0.02 | −0.81 | 0.83 | −0.09 |
Veg_LAI | −0.01 | 0.04 | −0.07 | −0.01 | 0.01 | 0 | −0.01 | 0.01 | 0.01 | −0.03 | −0.01 | 0.01 | −0.03 | 0.01 | 0 | −0.04 | 0.02 | −0.02 | |
Veg_sl | −0.02 | 0.04 | −0.07 | −0.04 | −0.02 | −0.01 | −0.01 | −0.01 | −0.01 | −0.02 | −0.01 | 0.01 | −0.02 | 0 | 0 | −0.06 | 0.03 | −0.03 | |
Veg_aWC_th | −0.01 | 0 | 0 | 0 | 0.01 | −0.02 | 0.02 | 0 | 0 | 0 | 0 | 0 | 0.01 | −0.01 | −0.01 | 0.02 | −0.02 | 0 | |
surface | Su_Depth | −0.04 | 0.02 | −0.01 | −0.07 | 0 | 0.01 | −0.01 | −0.02 | −0.01 | 0.01 | 0.02 | 0 | 0 | 0 | −0.02 | −0.01 | 0.01 | 0 |
Su_ManN | 0 | 0 | 0 | −0.05 | 0.01 | −0.01 | 0.01 | 0.02 | −0.01 | 0.01 | −0.02 | −0.02 | 0.01 | −0.01 | −0.01 | −0.01 | 0 | −0.01 | |
Su_Slope | 0.01 | −0.01 | 0.01 | 0.03 | 0.01 | −0.01 | 0.01 | 0.01 | −0.02 | 0.02 | −0.01 | 0 | −0.02 | 0.02 | 0.02 | −0.01 | 0.01 | 0 | |
soil | So_Depth | −0.1 | 0.5 | −0.5 | −0.28 | −0.02 | 0.42 | −0.47 | −0.04 | −0.42 | 0.37 | −0.52 | −0.03 | 0.4 | −0.46 | −0.05 | −0.4 | 0.38 | −0.66 |
So_WP | −0.01 | −0.16 | 0.17 | 0 | 0.01 | −0.13 | 0.15 | 0.01 | 0.14 | −0.12 | 0.01 | 0 | −0.12 | 0.14 | 0.01 | 0.18 | −0.17 | 0.03 | |
So_FC | 0.03 | 0.05 | −0.06 | 0.02 | 0.02 | 0.05 | −0.06 | 0 | −0.04 | 0.03 | 0.03 | 0 | 0.04 | −0.05 | 0.01 | −0.04 | 0.04 | 0.03 | |
So_aWC | 0.02 | 0.16 | −0.17 | 0.02 | 0 | 0.14 | −0.16 | −0.01 | −0.14 | 0.12 | 0.01 | 0 | 0.13 | −0.14 | 0 | −0.17 | 0.17 | −0.01 | |
So_Por | −0.05 | 0.23 | −0.24 | −0.1 | −0.02 | 0.19 | −0.23 | −0.02 | −0.23 | 0.19 | −0.12 | −0.01 | 0.22 | −0.26 | 0 | −0.26 | 0.24 | −0.14 | |
So_AC | −0.05 | 0.21 | −0.22 | −0.1 | −0.02 | 0.18 | −0.21 | −0.02 | −0.22 | 0.18 | −0.12 | −0.01 | 0.2 | −0.24 | 0 | −0.24 | 0.23 | −0.14 | |
So_Cond | −0.01 | −0.01 | 0.01 | −0.01 | −0.01 | −0.02 | 0.02 | −0.01 | 0.03 | −0.02 | −0.08 | −0.02 | −0.01 | 0.01 | −0.01 | 0.02 | −0.02 | −0.06 | |
So_CondSl | 0 | 0.04 | −0.05 | 0.01 | 0.01 | 0.04 | −0.05 | 0.01 | −0.05 | 0.05 | 0.02 | 0 | 0.06 | −0.07 | 0 | −0.07 | 0.07 | 0.09 | |
So_SucH | 0.01 | 0 | 0 | 0.02 | 0 | −0.02 | 0.02 | 0 | 0 | 0 | −0.01 | −0.01 | −0.01 | 0.01 | 0 | 0 | 0 | 0 | |
storage | St_Depth | #NV | #NV | #NV | #NV | 0.01 | 0.01 | −0.01 | 0 | −0.07 | 0.07 | −0.09 | −0.02 | 0 | 0 | 0 | −0.05 | 0.05 | −0.06 |
St_VoidR | #NV | #NV | #NV | #NV | 0 | 0 | 0 | 0 | −0.01 | 0.01 | 0 | 0 | 0 | 0.01 | 0 | 0 | 0 | −0.04 | |
St_SeepR | 0 | 0 | 0 | 0 | −0.02 | 0 | 0 | 0 | #NV | #NV | #NV | −0.01 | −0.02 | 0.02 | −0.03 | #NV | #NV | #NV | |
underdrain | UD_Coeff | #NV | #NV | #NV | #NV | #NV | #NV | #NV | #NV | 0 | 0 | 0.05 | −0.02 | −0.03 | 0.03 | −0.01 | 0.01 | −0.01 | 0.1 |
UD_Exp | #NV | #NV | #NV | #NV | #NV | #NV | #NV | #NV | −0.01 | 0.01 | 0.03 | −0.01 | 0.03 | −0.03 | −0.01 | 0.01 | −0.01 | 0.04 | |
UD_OffS | #NV | #NV | #NV | #NV | #NV | #NV | #NV | #NV | −0.05 | 0.02 | 0.07 | 0 | −0.01 | 0.01 | −0.03 | −0.01 | 0 | 0.04 |
Parameter | Unit | Plant Type | Mean | Median | s(y) | VarC | Q1 | Q3 | Count | ||
---|---|---|---|---|---|---|---|---|---|---|---|
H | m | (1) | tree—deciduous | 11.52 | 12.55 | 7.72 | 67% | 3.00 | 19.80 | 0.780 | 98 |
(2) | tree—coniferous | 10.97 | 10.00 | 6.09 | 55% | 5.00 | 15.00 | 1.093 | 31 | ||
(3) | woody plants—2 m | 0.94 | 1.00 | 0.73 | 77% | 0.33 | 1.00 | 0.069 | 110 | ||
(4) | perennials, shrubs | 0.29 | 0.35 | 0.14 | 72% | 0.10 | 0.30 | 0.005 | 677 | ||
(5) | grasses, herbs | 0.21 | 0.20 | 0.14 | 69% | 0.10 | 0.30 | 0.006 | 662 | ||
(6) | sedum, succulents | 0.07 | 0.05 | 0.03 | 41% | 0.05 | 0.08 | 0.005 | 38 | ||
LAI | m2 × m−2 | (1) | tree—deciduous | 4.8 | 4.8 | 2.0 | 41% | 3.4 | 6.1 | 0.06 | 1108 |
(2) | tree—coniferous | 4.1 | 3.5 | 2.5 | 60% | 2.2 | 5.4 | 0.08 | 918 | ||
(3) | woody plants—2 m | 5.5 | 5.2 | 2.8 | 51% | 3.5 | 7.7 | 0.15 | 323 | ||
(4) | perennials, shrubs | 3.6 | 3.6 | 2.2 | 61% | 2.5 | 5.5 | 0.66 | 11 | ||
(5) | grasses, herbs | 3.9 | 3.2 | 1.6 | 41% | 2.8 | 5.4 | 0.46 | 12 | ||
(6) | sedum, succulents | 5.0 | 4.8 | 2.5 | 50% | 2.9 | 6.8 | 0.49 | 26 | ||
gs | mm × s−1 | (1) | tree—deciduous | 3.29 | 3.13 | 1.68 | 51% | 2.11 | 4.35 | 0.012 | 19,270 |
(2) | tree—coniferous | 3.03 | 2.96 | 1.62 | 53% | 1.75 | 4.16 | 0.009 | 30,461 | ||
(3) | woody plants—2 m | 3.13 | 3.03 | 1.59 | 51% | 1.90 | 4.21 | 0.013 | 15,693 | ||
(4) | perennials, shrubs | 4.54 | 3.82 | 3.43 | 76% | 1.71 | 6.81 | 0.146 | 553 | ||
(5) | grasses, herbs | 3.76 | 3.03 | 2.64 | 70% | 1.73 | 5.28 | 0.080 | 1103 | ||
(6) | sedum, succulents | 1.89 | 1.82 | 0.74 | 39% | 1.43 | 2.38 | 0.107 | 47 |
Plant Type | KC | uc(KC) | |||||||
---|---|---|---|---|---|---|---|---|---|
m | m | m2 × m−2 | m2 × m−2 | mm × s−1 | mm × s−1 | - | - | ||
(1) | tree—deciduous | 11.52 | 0.780 | 4.8 | 0.06 | 3.29 | 0.012 | 1.60 | 0.0265 |
(2) | tree—coniferous | 10.97 | 1.093 | 4.1 | 0.08 | 3.03 | 0.009 | 1.37 | 0.0656 |
(3) | woody plants—2 m | 0.94 | 0.069 | 5.5 | 0.15 | 3.13 | 0.013 | 1.17 | 0.0003 |
(4) | perennials, shrubs | 0.29 | 0.005 | 3.6 | 0.66 | 4.54 | 0.146 | 1.06 | 0.0093 |
(5) | grasses, herbs | 0.21 | 0.006 | 3.9 | 0.46 | 3.76 | 0.080 | 1.05 | 0.0007 |
(6) | sedum, succulents | 0.07 | 0.005 | 5.0 | 0.49 | 2.38 | 0.107 | 0.94 | 0.0003 |
Parameter | Unit | Estimate | Parameter Choice 1 | Source 2 | Sensitivity 3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Site- Specific | Plant- Specific | Fixed | Swmm | Section 3.1.1 | Section 3.2.1 | Literature | Assumption | WB 4 | P 5 | ||||
vegetation | crop factor | Veg_cf | - | 1 | 1.6 | ✓ | ✓ | +++ | o | ||||||
leaf area index | Veg_LAI | m2·m−2 | 1 | 10 | ✓ | ✓ | + | o | |||||||
leaf storage coef. | Veg_sl | - | 0 | 1 | 0.29 | [41] | + | o | |||||||
aWC-threshold | Veg_aWC_th | - | 0 | 1 | 0.6 | [41] | o | o | |||||||
surface | surface storage | Su_Depth | mm | 0 | 304.8 | ✓ | ✓ | o | + | ||||||
surface veg. volume | Su_VegVol | - | - | 0 | o | o | |||||||||
surface roughness | Su_ManN | s·m−1/3 | 0.001 | 0.8 | ✓ | ✓ | o | + | |||||||
surface slope | Su_Slope | % | 0 | 10 | ✓ | [44] | o | o | |||||||
… |
Sensitivity Rating | Recommendation |
---|---|
+++ | Particularly careful parameter selection is necessary. The entire system behavior is affected. If possible, calibration is strongly recommended. |
++ | Careful parameter selection is necessary. Main system behavior characteristics are affected. If possible, calibration is recommended. |
+ | Process sensitive parameter selection is recommended. The system behavior is slightly influenced. Calibration is not mandatory. |
o | The parameter selection is flexible and can be done site-specific. The parameter has no significant influence on the model outputs water balance, and peak runoff. Calibration is not recommended. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hörnschemeyer, B.; Henrichs, M.; Dittmer, U.; Uhl, M. Parameterization for Modeling Blue–Green Infrastructures in Urban Settings Using SWMM-UrbanEVA. Water 2023, 15, 2840. https://doi.org/10.3390/w15152840
Hörnschemeyer B, Henrichs M, Dittmer U, Uhl M. Parameterization for Modeling Blue–Green Infrastructures in Urban Settings Using SWMM-UrbanEVA. Water. 2023; 15(15):2840. https://doi.org/10.3390/w15152840
Chicago/Turabian StyleHörnschemeyer, Birgitta, Malte Henrichs, Ulrich Dittmer, and Mathias Uhl. 2023. "Parameterization for Modeling Blue–Green Infrastructures in Urban Settings Using SWMM-UrbanEVA" Water 15, no. 15: 2840. https://doi.org/10.3390/w15152840
APA StyleHörnschemeyer, B., Henrichs, M., Dittmer, U., & Uhl, M. (2023). Parameterization for Modeling Blue–Green Infrastructures in Urban Settings Using SWMM-UrbanEVA. Water, 15(15), 2840. https://doi.org/10.3390/w15152840