Sea Level Rise Effects on the Sedimentary Dynamics of the Douro Estuary Sandspit (Portugal)
Abstract
1. Introduction
2. Materials and Methods
2.1. Numerical Models
2.2. Calibration of SWAN
2.3. Model Set-Up and Validation
2.4. Storm Christina Coastal Model Validation
3. Results and Discussion
Storm Christina Simulation Scenarios
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bastos, L.; Bio, A.; Pinho, J.L.S.; Granja, H.; Jorge da Silva, A. Dynamics of the Douro Estuary Sand Spit before and after Breakwater Construction. Estuar. Coast. Shelf Sci. 2012, 109, 53–69. [Google Scholar] [CrossRef]
- Schwartz, M. The Encyclopedia of Beaches and Coastal Environments; Encyclopedia of Earth Sciences Series; Springer: New York, NY, USA, 1984. [Google Scholar]
- Robin, N.; Levoy, F.; Anthony, E.J.; Monfort, O. Sand Spit Dynamics in a Large Tidal-Range Environment: Insight from Multiple LiDAR, UAV and Hydrodynamic Measurements on Multiple Spit Hook Development, Breaching, Reconstruction, and Shoreline Changes. Earth Surf. Process. Landf. 2020, 45, 2706–2726. [Google Scholar] [CrossRef]
- Sakho, I.; Mesnage, V.; Deloffre, J.; Lafite, R.; Niang, I.; Faye, G. The Influence of Natural and Anthropogenic Factors on Mangrove Dynamics over 60 Years: The Somone Estuary, Senegal. Estuar. Coast. Shelf Sci. 2011, 94, 93–101. [Google Scholar] [CrossRef]
- Suursaar, Ü.; Jaagus, J.; Kont, A.; Rivis, R.; Tõnisson, H. Field Observations on Hydrodynamic and Coastal Geomorphic Processes off Harilaid Peninsula (Baltic Sea) in Winter and Spring 2006–2007. Estuar. Coast. Shelf Sci. 2008, 80, 31–41. [Google Scholar] [CrossRef]
- Liu, H.; Tajima, Y.; Sato, S. Long-Term Monitoring on the Sand Spit Morphodynamics at the Tenryu River Mouth. Int. Conf. Coastal. Eng. 2011, 1, sediment.87. [Google Scholar] [CrossRef]
- Santos, I.; Teodoro, A.C.; Taveira-Pinto, F. Análise da evolução morfológica da restinga do rio Douro. In Proceedings of the 5as Jornadas de Hidráulica, Recursos Hídricos e Ambiente, FEUP, Porto, Portugal, 25 October 2010; p. 13. [Google Scholar]
- Teixeira, R. Quebramares Portugueses. Inventário e Análise Comparativa de Soluções. Master’s Thesis, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal, 2012. [Google Scholar]
- Viitak, M.; Avilez-Valente, P.; Bio, A.; Bastos, L.; Iglesias, I. Evaluating Wind Datasets for Wave Hindcasting in the NW Iberian Peninsula Coast. J. Oper. Oceanogr. 2021, 14, 152–165. [Google Scholar] [CrossRef]
- Veloso-Gomes, F.; Taveira-Pinto, F.; Paredes, G.M. Estudo da evolução da fisiografia da restinga do Douro desde 2002. In Proceedings of the 4as Jornadas de Hidráulica, Recursos Hídricos e Ambiente, FEUP, Porto, Portugal, 26 October 2009; p. 10. [Google Scholar]
- Iglesias, I.; Venâncio, S.; Pinho, J.L.; Avilez-Valente, P.; Vieira, J.M.P. Two Models Solutions for the Douro Estuary: Flood Risk Assessment and Breakwater Effects. Estuaries Coasts 2019, 42, 348–364. [Google Scholar] [CrossRef]
- Holzapfel, J. Tiefdruckgebiet CHRISTINA. Available online: https://page.met.fu-berlin.de/wetterpate/static/lebensgeschichten/Tief_CHRISTINA_03_01_14.htm (accessed on 9 June 2022).
- Santos, Â.; Mendes, S.; Corte-Real, J. Impacts of the storm Hercules in Portugal. Finisterra 2014, 49, 197–220. [Google Scholar] [CrossRef]
- IPMA Informação Mais Detalhada Sobre o Temporal no Atlântico Norte, Entre 3 e 6 Janeiro 2014. Available online: https://www.ipma.pt/pt/media/noticias/news.detail.jsp?f=/pt/media/noticias/arquivo/2014/temporal-atlantico-norte-3-6-jan-2014.html (accessed on 12 March 2022).
- Aleixo Pinto, C. Registo das Ocorrências No Litoral—Temporal de 3 a 7 de Janeiro de 2014; Agência Portuguesa do Ambiente: Amadora, Portugal, 2014; p. 123. [Google Scholar]
- Andrade, C.; Pires, H.O.; Taborda, R.; Freitas, M.C. Projecting Future Changes in Wave Climate and Coastal Response in Portugal by the End of the 21st Century. J. Coast. Res. 2007, 50, 253–257. [Google Scholar]
- Gulev, S.K.; Zolina, O.; Grigoriev, S. Extratropical Cyclone Variability in the Northern Hemisphere Winter from the NCEP/NCAR Reanalysis Data. Clim. Dyn. 2001, 17, 795–809. [Google Scholar] [CrossRef]
- Geng, Q.; Sugi, M. Variability of the North Atlantic Cyclone Activity in Winter Analyzed from NCEP–NCAR Reanalysis Data. J. Clim. 2001, 14, 3863–3873. [Google Scholar] [CrossRef]
- Wang, X.L.; Zwiers, F.W.; Swail, V.R. North Atlantic Ocean Wave Climate Change Scenarios for the Twenty-First Century. J. Clim. 2004, 17, 2368–2383. [Google Scholar] [CrossRef]
- Coelho, C.; Silva, R.; Veloso-Gomes, F.; Taveira-Pinto, F. Potential Effects of Climate Change on Northwest Portuguese Coastal Zones. ICES J. Mar. Sci. 2009, 66, 1497–1507. [Google Scholar] [CrossRef]
- Duc Anh, N.Q.; Tanaka, H.; Tam, H.S.; Tinh, N.X.; Tung, T.T.; Viet, N.T. Comprehensive Study of the Sand Spit Evolution at Tidal Inlets in the Central Coast of Vietnam. J. Mar. Sci. Eng. 2020, 8, 722. [Google Scholar] [CrossRef]
- Lisboa, P.V.; Fernandes, E.H. Anthropogenic Influence on the Sedimentary Dynamics of a Sand Spit Bar, Patos Lagoon Estuary, RS, Brazil. RGCI 2015, 15, 35–46. [Google Scholar] [CrossRef]
- Bugajny, N.; Furmańczyk, K.; Dudzińska-Nowak, J.; Paplińska-Swerpel, B. Modelling Morphological Changes of Beach and Dune Induced by Storm on the Southern Baltic Coast Using XBeach (Case Study: Dziwnow Spit). Coas 2013, 65, 672–677. [Google Scholar] [CrossRef]
- Allard, J.; Bertin, X.; Chaumillon, E.; Pouget, F. Sand Spit Rhythmic Development: A Potential Record of Wave Climate Variations? Arçay Spit, Western Coast of France. Mar. Geol. 2008, 253, 107–131. [Google Scholar] [CrossRef]
- Gruwez, V.; Verheyen, B.; Wauters, P.; Bolle, A. Hindcasting Sand Spit Morphodynamics after Groyne Construction in Ghana. J. Appl. Water Eng. Res. 2017, 5, 167–176. [Google Scholar] [CrossRef]
- Boudet, L.; Sabatier, F.; Radakovitch, O. Modelling of Sediment Transport Pattern in the Mouth of the Rhone Delta: Role of Storm and Flood Events. Estuar. Coast. Shelf Sci. 2017, 198, 568–582. [Google Scholar] [CrossRef]
- Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; et al. Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 1211–1362. [Google Scholar]
- Booij, N.; Ris, R.C.; Holthuijsen, L.H. A Third-Generation Wave Model for Coastal Regions: 1. Model Description and Validation. J. Geophys. Res. Ocean. 1999, 104, 7649–7666. [Google Scholar] [CrossRef]
- Ris, R.C.; Holthuijsen, L.H.; Booij, N. A Third-Generation Wave Model for Coastal Regions: 2. Verification. J. Geophys. Res. Ocean. 1999, 104, 7667–7681. [Google Scholar] [CrossRef]
- GEBCO Compilation Group. GEBCO 2021 Grid. 2021. [CrossRef]
- Roelvink, D.; Reniers, A.; van Dongeren, A.; van Thiel de Vries, J.; McCall, R.; Lescinski, J. Modelling Storm Impacts on Beaches, Dunes and Barrier Islands. Coast. Eng. 2009, 56, 1133–1152. [Google Scholar] [CrossRef]
- Roelvink, D.; Reniers, A.; van Dongeren, A.; van Thiel de Vries, J.; Lescinski, J.; McCall, R. XBeach Model Description and Manual; Unesco-IHE Institute for Water Education, Deltares and Delft University of Technology: Delft, The Netherlands, 2010; p. 108. [Google Scholar]
- EMODnet Bathymetry Consortium. EMODnet Digital Bathymetry (DTM). 2020. Available online: https://sextant.ifremer.fr/record/bb6a87dd-e579-4036-abe1-e649cea9881a/ (accessed on 28 July 2023). [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Dullaart, J.C.M.; Muis, S.; Bloemendaal, N.; Aerts, J.C.J.H. Advancing Global Storm Surge Modelling Using the New ERA5 Climate Reanalysis. Clim. Dyn. 2020, 54, 1007–1021. [Google Scholar] [CrossRef]
- Baordo, F.; Clementi, E.; Iovino, D.; Masina, S. Intercomparison and Assessement of Wave Models at Global Scale; Centro Euro-Mediterraneo sui Cambiamenti Climatici: Lecce, Italy, 2020; p. 49. [Google Scholar]
- Sharmar, V.; Markina, M. Validation of Global Wind Wave Hindcasts Using ERA5, MERRA2, ERA-Interim and CFSRv2 Reanalyzes. IOP Conf. Ser. Earth Environ. Sci. 2020, 606, 012056. [Google Scholar] [CrossRef]
- Monteiro, N.M.R.; Oliveira, T.C.A.; Silva, P.A.; Abdolali, A. Wind–Wave Characterization and Modeling in the Azores Archipelago. Ocean Eng. 2022, 263, 112395. [Google Scholar] [CrossRef]
- Beyramzadeh, M.; Siadatmousavi, S.M.; Derkani, M.H. Calibration and Skill Assessment of Two Input and Dissipation Parameterizations in WAVEWATCH-III Model Forced with ERA5 Winds with Application to Persian Gulf and Gulf of Oman. Ocean Eng. 2021, 219, 108445. [Google Scholar] [CrossRef]
- Çalışır, E.; Soran, M.B.; Akpınar, A. Quality of the ERA5 and CFSR Winds and Their Contribution to Wave Modelling Performance in a Semi-Closed Sea. J. Oper. Oceanogr. 2023, 16, 106–130. [Google Scholar] [CrossRef]
- Akinsanola, A.A.; Ogunjobi, K.O.; Abolude, A.T.; Salack, S. Projected Changes in Wind Speed and Wind Energy Potential over West Africa in CMIP6 Models. Environ. Res. Lett. 2021, 16, 044033. [Google Scholar] [CrossRef]
- García San Martín, L.; Barrera, E.; Toledo, C.; Sotillo, M. Atlantic-Iberian Biscay Irish-Ocean Wave Reanalysis; E.U. Copernicus Marine Service Information (CMEMS); Marine Data Store (MDS). 2012. Available online: https://cmems-catalog-ro.cls.fr/geonetwork/srv/api/records/25d28fb7-231c-4fc4-b97c-59495d87ec22 (accessed on 27 June 2023).
- Egbert, G.D.; Bennett, A.F.; Foreman, M.G.G. TOPEX/POSEIDON Tides Estimated Using a Global Inverse Model. J. Geophys. Res. Ocean. 1994, 99, 24821–24852. [Google Scholar] [CrossRef]
- Parker, B.B. Tidal Analysis and Prediction; NOAA Special Publication NOS CO-OPS 3; NOAA, NOS Center for Operational Oceanographic Products and Services: Washington, DC, USA, 2007; p. 378. [Google Scholar]
- MarRISK-Plataforma Interoperável Para Observações e Indicadores. Available online: https://marrisk.inesctec.pt/public/#!/timeseries (accessed on 2 April 2022).
- Bryant, M.A.; Hesser, T.J.; Jensen, R.E. Evaluation Statistics Computed for the Wave Information Studies (WIS); US Army Corps of Engineers: Washington, DC, USA, 2016. [Google Scholar]
- Perez, V. Monitorização e Evolução Da Restinga; Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto: Porto, Portugal, 2013. [Google Scholar]
- Van Rijn, L.C. Unified View of Sediment Transport by Currents and Waves. I: Initiation of Motion, Bed Roughness, and Bed-Load Transport. J. Hydraul. Eng. 2007, 133, 649–667. [Google Scholar] [CrossRef]
- Van Rijn, L.C. Unified View of Sediment Transport by Currents and Waves. II: Suspended Transport. J. Hydraul. Eng. 2007, 133, 668–689. [Google Scholar] [CrossRef]
- Van Thiel de Vries, J.S.M. Dune Erosion during Storm Surges; Deltares Select Series; IOS Press: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Dean, R.G.; Dalrymple, R.A. Water Wave Mechanics for Engineers and Scientists; World Scientific: Singapore, 1991. [Google Scholar]
Boundary Conditions | Physical Processes | ||||||
---|---|---|---|---|---|---|---|
ECMWF | CMEMS-IBI | Friction | Linear Growth | Exponential Growth | Whitecapping | Wind Drag | |
T01 | ✓ | JONSWAP | Activated | Komen | Komen | Fit | |
T02 | ✓ | JONSWAP | Activated | Komen | Janssen | Fit | |
T03 | ✓ | JONSWAP | Activated | Komen | Komen | Wu | |
T04 | ✓ | JONSWAP | Activated | Rogers/Babanin | Rogers/Babanin | Hwang | |
T05 | ✓ | JONSWAP | Activated | Komen | Komen | Fit | |
T06 | ✓ | JONSWAP | Activated | Westhhuysen/Yan | Alves-Banner | Fit |
T01 | T02 | T03 | T04 | T05 | T06 | |||
---|---|---|---|---|---|---|---|---|
(m) | 0.580 | 0.625 | 0.567 | 0.492 | 0.456 | 0.440 | ||
(—) | 0.147 | 0.159 | 0.144 | 0.125 | 0.116 | 0.112 | ||
(m) | −0.336 | −0.392 | −0.315 | −0.182 | 0.031 | −0.020 | ||
(—) | 0.894 | 0.880 | 0.899 | 0.937 | 0.990 | 0.989 | ||
(—) | 0.960 | 0.957 | 0.959 | 0.956 | 0.955 | 0.957 | ||
(s) | 0.999 | 0.958 | 0.931 | 0.593 | 1.950 | 1.594 | ||
(—) | 0.113 | 0.108 | 0.105 | 0.067 | 0.221 | 0.180 | ||
(s) | 0.692 | 0.609 | 0.600 | −0.038 | 1.769 | 1.451 | ||
(—) | 1.084 | 1.075 | 1.073 | 0.996 | 1.207 | 1.165 | ||
(—) | 0.933 | 0.933 | 0.936 | 0.936 | 0.936 | 0.930 | ||
(s) | 0.765 | 0.789 | 0.779 | 1.348 | 1.281 | 0.711 | ||
(—) | 0.087 | 0.089 | 0.088 | 0.153 | 0.145 | 0.080 | ||
(s) | 0.009 | −0.114 | −0.129 | −1.203 | 0.626 | −0.291 | ||
(—) | 1.009 | 0.995 | 0.993 | 0.861 | 1.085 | 0.967 | ||
(—) | 0.926 | 0.922 | 0.924 | 0.932 | 0.891 | 0.920 | ||
(1) | (°N) | 21.31 | 21.53 | 20.52 | 20.60 | 21.75 | 22.00 | |
(°N) | 7.64 | 6.93 | 7.44 | 7.47 | 9.05 | 8.99 | ||
(—) | 0.661 | 0.672 | 0.698 | 0.693 | 0.603 | 0.586 |
Scenario | Year | ||||
---|---|---|---|---|---|
(%) | (m MSL) | (m NMM) | |||
S1 | Historical | 2021 | 0.000 | 0.221 | |
S2 | SSP2-4.5 | 2100 | 5 | 0.253 | 0.480 |
S3 | SSP2-4.5 | 2100 | 50 | 0.473 | 0.753 |
S4 | SSP2-4.5 | 2100 | 95 | 0.867 | 1.206 |
S5 | SSP5-8.5 | 2100 | 5 | 0.424 | 0.651 |
S6 | SSP5-8.5 | 2100 | 50 | 0.784 | 0.949 |
S7 | SSP5-8.5 | 2100 | 95 | 1.391 | 1.502 |
(m, s, °) | (—) | (m, s, °) | (—) | (—) | |
---|---|---|---|---|---|
0.447 | 0.093 | −0.171 | 0.958 | 0.957 | |
1.319 | 0.094 | 0.593 | 1.006 | 0.764 | |
0.667 | 0.074 | 0.149 | 0.997 | 0.911 | |
8.744 | −0.182 | 0.937 | 0.613 |
Scenario | Volume | Area | ||||||
---|---|---|---|---|---|---|---|---|
Accretion | Erosion | Budget | Accretion | Erosion | ||||
(%) | (m NMM) | (m3) | (m3) | (m3) | (%) | (%) | ||
S1 | Historical | 0.221 | 187,862 | 193,761 | −5899 | 44 | 35 | |
S2 | SSP2-4.5 | 5 | 0.480 | 196,804 | 201,908 | −5104 | 45 | 35 |
S3 | SSP2-4.5 | 50 | 0.753 | 198,131 | 196,242 | +1889 | 48 | 34 |
S4 | SSP2-4.5 | 95 | 1.206 | 217,982 | 211,624 | +6358 | 51 | 33 |
S5 | SSP5-8.5 | 5 | 0.651 | 208,310 | 214,428 | −6117 | 45 | 36 |
S6 | SSP5-8.5 | 50 | 0.949 | 216,886 | 209,653 | +7233 | 48 | 33 |
S7 | SSP5-8.5 | 95 | 1.502 | 239,407 | 239,354 | +53 | 54 | 34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caeiro-Gonçalves, F.; Bio, A.; Iglesias, I.; Avilez-Valente, P. Sea Level Rise Effects on the Sedimentary Dynamics of the Douro Estuary Sandspit (Portugal). Water 2023, 15, 2841. https://doi.org/10.3390/w15152841
Caeiro-Gonçalves F, Bio A, Iglesias I, Avilez-Valente P. Sea Level Rise Effects on the Sedimentary Dynamics of the Douro Estuary Sandspit (Portugal). Water. 2023; 15(15):2841. https://doi.org/10.3390/w15152841
Chicago/Turabian StyleCaeiro-Gonçalves, Francisca, Ana Bio, Isabel Iglesias, and Paulo Avilez-Valente. 2023. "Sea Level Rise Effects on the Sedimentary Dynamics of the Douro Estuary Sandspit (Portugal)" Water 15, no. 15: 2841. https://doi.org/10.3390/w15152841
APA StyleCaeiro-Gonçalves, F., Bio, A., Iglesias, I., & Avilez-Valente, P. (2023). Sea Level Rise Effects on the Sedimentary Dynamics of the Douro Estuary Sandspit (Portugal). Water, 15(15), 2841. https://doi.org/10.3390/w15152841