Roughness Inversion of Water Transfer Channels from a Data-Driven Perspective
Abstract
:1. Introduction
2. Inversion Model and Encryption Processing
2.1. One-Dimensional Hydrodynamic Model
2.2. Encryption Processing
3. Study Area and Methods
3.1. Study Area
3.2. Methods
4. Results and Discussion
4.1. Sequence Length
4.2. Time Step
4.3. Abnormal Data Points
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Manning’s roughness coefficient | coefficient of the equation | ||||
the channel cross-sectional width | m | coefficient of the equation | |||
the water level | m | coefficient of the equation | |||
time | s | coefficient of the equation | |||
the discharge | m3/s | coefficient of the equation | |||
the distance along the channel | m | coefficient of the equation | |||
the lateral inflow per unit length of channel | m2/s | the objective function of roughness | |||
the momentum correction coefficient | the number of cross sections | ||||
the wetted cross-sectional area | m2 | the number of boundary sequences | |||
the gravitational acceleration | m/s2 | the end time of the boundary sequence | minute | ||
the friction slope | the start time of the boundary sequence | minute | |||
the hydraulic radius of the channel section | m | the time step of the boundary sequence | minute | ||
the wetted perimeter | m | the calculated water levels | m | ||
the function value | the observed water levels | m | |||
the channel section | a | the binomial coefficient | |||
the moment | s | b | the monomial coefficient | ||
the time step | s | R2 | coefficient of determination | ||
the spatial step | m | k | the number of data points with the same simulated water level | ||
the weighting factor | SV | the storage volume deviation | m3 | ||
the initial water depth | m | WL | the water level deviation | m |
References
- Yao, L.; Peng, Y.; Yu, X.; Zhang, Z.; Luo, S. Optimal Inversion of Manning’s Roughness in Unsteady Open Flow Simulations Using Adaptive Parallel Genetic Algorithm. Water Resour. Manag. 2023, 37, 879–897. [Google Scholar] [CrossRef]
- Yen, B. Open Channel Flow Resistance. J. Hydraul. Eng. 2002, 128, 20–39. [Google Scholar] [CrossRef]
- Fard, R.S.; Heidarnejad, M.; Zohrabi, N. Study Factors Influencing the Hydraulic Roughness Coefficient of the Karun River (Iran). Int. J. Fish. Aquat. Stud. 2013, 2, 976–981. [Google Scholar]
- Green, J.C. Effect of macrophyte spatial variability on channel resistance. Adv. Water Resour. 2006, 29, 426–438. [Google Scholar] [CrossRef]
- Shi, J.Z.; Li, Y.-H.; Hughes, J.M.R.; Zhao, M. Hydrological characteristics of vegetated river flows: A laboratory flume study. Hydrol. Sci. J. 2013, 58, 1047–1058. [Google Scholar] [CrossRef]
- Okhravi, S.; Schügerl, R.; Velísková, Y. Flow Resistance in Lowland Rivers Impacted by Distributed Aquatic Vegetation. Water Resour. Manag. 2022, 36, 2257–2273. [Google Scholar] [CrossRef]
- Mavrommatis, A.; Christodoulou, G. Comparative Experimental Study of Flow through Various Types of Simulated Vegetation. Environ. Process. 2022, 9, 33. [Google Scholar] [CrossRef]
- Bray, D.I. Estimating Average Velocity in Gravel-Bed Rivers. J. Hydraul. 1979, 105, 1103–1122. [Google Scholar] [CrossRef]
- Coon, W.F. Estimation of Roughness Coefficients for Natural Stream Channels with Vegetated Banks; U.S. Geological Survey: Sunrise Valley Drive Reston, VA, USA, 1998; p. 2441. [Google Scholar]
- Julien, P.Y. River Mechanics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Salah Abd Elmoaty, M.; El-Samman, T.A. Manning roughness coefficient in vegetated open channels. Water Sci. 2020, 34, 124–131. [Google Scholar] [CrossRef]
- Tang, H.-W.; Xin, X.-K.; Dai, W.-H.; Xiao, Y. Parameter identification for modeling river network using a genetic algorithm. J. Hydrodyn. B 2010, 22, 246–253. [Google Scholar] [CrossRef]
- Lin, G.-F.; Wang, C.-M. A nonlinear rainfall–runoff model embedded with an automated calibration method—Part 2: The automated calibration method. J. Hydrol. 2007, 341, 196–206. [Google Scholar] [CrossRef]
- Becker, L.; Yeh, W.W.-G. Identification of parameters in unsteady open channel flows. Water Resour. Res 1972, 8, 956–965. [Google Scholar] [CrossRef]
- Fread, D.L.; Smith, G.F. Calibration Technique for 1-D Unsteady Flow Models. J. Hydraul. 1978, 104, 1027–1044. [Google Scholar] [CrossRef]
- Lal, A.M.W. Calibration of Riverbed Roughness. J. Hydraul. Eng. 1995, 121, 664–671. [Google Scholar]
- Atanov, G.A.; Evseeva, E.G.; Meselhe, E.A. Estimation of Roughness Profile in Trapezoidal Open Channels. J. Hydraul. Eng. 1999, 125, 309–312. [Google Scholar] [CrossRef]
- Ding, Y.; Jia, Y.; Wang, S.S.Y. Identification of Manning‘s Roughness Coefficients in Shallow Water Flows. J. Hydraul. Eng. 2004, 130, 501–510. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Wang, S.S.Y. Identification of Manning’s roughness coefficients in channel network using adjoint analysis. Int. J. Comut. Fluid. Dyn. 2005, 19, 3–13. [Google Scholar] [CrossRef]
- Ramesh, R.; Datta, B.; Bhallamudi, S.M.; Narayana, A. Optimal Estimation of Roughness in Open-Channel Flows. J. Hydraul. Eng. 2000, 126, 299–303. [Google Scholar] [CrossRef]
- Ayvaz, M.T. A linked simulation–optimization model for simultaneously estimating the Manning’s surface roughness values and their parameter structures in shallow water flows. J. Hydrol. 2013, 500, 183–199. [Google Scholar] [CrossRef]
- Wu, X.-l.; Wang, C.-H.; Chen, X.; Xiang, X.-H.; Zhou, Q. Kalman Filtering Correction in Real-Time Forecasting with Hydrodynamic Model. J. Hydrodyn. B 2008, 20, 391–397. [Google Scholar] [CrossRef]
- Lai, R.-X.; Fang, H.-W.; He, G.-J.; Yu, X.; Yang, M.; Wang, M. Dual state-parameter optimal estimation of one-dimensional open channel model using ensemble Kalman filter. J. Hydrodyn. B 2013, 25, 564–571. [Google Scholar] [CrossRef]
- Yan, P.; Zhang, Z.; Lei, X.; Zheng, Y.; Zhu, J.; Wang, H.; Tan, Q. A Simple Method for the Control Time of a Pumping Station to Ensure a Stable Water Level Immediately Upstream of the Pumping Station under a Change of the Discharge in an Open Channel. Water 2021, 13, 355. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, Z.; Zhang, W.; An, K.; Lei, X.; He, M. Real-Time Water Level Prediction in Open Channel Water Transfer Projects Based on Time Series Similarity. Water 2022, 14, 2070. [Google Scholar] [CrossRef]
- Yan, P.; Zhang, Z.; Hou, Q.; Lei, X.; Liu, Y.; Wang, H. A novel IBAS-ELM model for prediction of water levels in front of pumping stations. J. Hydrol. 2023, 616, 128810. [Google Scholar] [CrossRef]
- Shang, Y.; Liu, R.; Li, T.; Zhang, C.; Wang, G. Transient flow control for an artificial open channel based on finite difference method. Sci. China Tech. Sci. 2011, 54, 781–792. [Google Scholar] [CrossRef]
- Lu, L.-B.; Tian, Y.; Lei, X.-H.; Wang, H.; Qin, T.; Zhang, Z. Numerical analysis of the hydraulic transient process of the water delivery system of cascade pump stations. Water Supply 2017, 18, 1635–1649. [Google Scholar] [CrossRef]
Scheme ID | Three Decimal Places (Function Values) | Four Decimal Places (Function Values) | Five Decimal Places (Function Values) |
---|---|---|---|
S6-1 | 0.013 (0.1121) | 0.0127 (0.0040) | 0.01268 (0.0038) |
S12-1 | 0.013 (0.1914) | 0.0127 (0.0165) | 0.01272 (0.0145) |
S24-1 | 0.013 (0.3158) | 0.0129 (0.2538) | 0.01288 (0.2521) |
S40-1 | 0.013 (0.6180) | 0.0128 (0.4567) | 0.01284 (0.4446) |
S88-1 | 0.013 (1.5459) | 0.0128 (1.1387) | 0.01283 (1.1216) |
S142-1 | 0.013 (6.6240) | 0.0126 (2.8486) | 0.01264 (2.7848) |
Scheme ID | Fitted Curve Formulas | R2 | |
---|---|---|---|
S40-5 | y = 1,500,371.11x2 − 38,500.94x + 247.09 | 1 | 0.0128 |
S40-10 | y = 746,138x2 − 19,170x + 123.18 | 0.9986 | 0.0128 |
S40-15 | y = 492,742x2 − 12,674x + 81.534 | 0.9987 | 0.0129 |
S40-30 | y = 244,725x2 − 6306x + 40.642 | 0.9989 | 0.0129 |
S40-60 | y = 122,774x2 − 3164.1x + 20.397 | 0.9989 | 0.0129 |
S40-120 | y = 59,201x2 − 1535.8x + 9.9656 | 0.9995 | 0.0130 |
Deviation Percentage | Deviation (m3/s) | Datasets and Roughness Values | |||
---|---|---|---|---|---|
S40-1 | S40-30 | S40-60 | S40-120 | ||
0% | 0 | 0.0128 | 0.0129 | 0.0129 | 0.0130 |
10% | 1.75 | 0.0128 | 0.0129 | 0.0129 | 0.0129 |
20% | 3.5 | 0.0128 | 0.0129 | 0.0128 | 0.0128 |
30% | 5.25 | 0.0128 | 0.0128 | 0.0127 | 0.0126 |
40% | 7 | 0.0128 | 0.0128 | 0.0126 | 0.0123 |
Deviation Percentage | Deviation (m3/s) | S40-1 | S40-30 | S40-60 | S40-120 | ||||
---|---|---|---|---|---|---|---|---|---|
SV(m3) | WL(m) | SV(m3) | WL(m) | SV(m3) | WL(m) | SV(m3) | WL(m) | ||
0% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
10% | 1.75 | 0.875 | 0.02 | 26.25 | 0.03 | 52.5 | 0.04 | 105 | 0.06 |
20% | 3.5 | 1.75 | 0.04 | 52.5 | 0.07 | 105 | 0.09 | 210 | 0.12 |
30% | 5.25 | 2.625 | 0.06 | 78.75 | 0.1 | 157.5 | 0.14 | 315 | 0.18 |
40% | 7 | 3.5 | 0.09 | 105 | 0.14 | 210 | 0.19 | 420 | 0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Yan, P.; Han, Z.; Zhang, Z.; Lei, X.; Wang, H. Roughness Inversion of Water Transfer Channels from a Data-Driven Perspective. Water 2023, 15, 2822. https://doi.org/10.3390/w15152822
Zhou L, Yan P, Han Z, Zhang Z, Lei X, Wang H. Roughness Inversion of Water Transfer Channels from a Data-Driven Perspective. Water. 2023; 15(15):2822. https://doi.org/10.3390/w15152822
Chicago/Turabian StyleZhou, Luyan, Peiru Yan, Zhongkai Han, Zhao Zhang, Xiaohui Lei, and Hao Wang. 2023. "Roughness Inversion of Water Transfer Channels from a Data-Driven Perspective" Water 15, no. 15: 2822. https://doi.org/10.3390/w15152822
APA StyleZhou, L., Yan, P., Han, Z., Zhang, Z., Lei, X., & Wang, H. (2023). Roughness Inversion of Water Transfer Channels from a Data-Driven Perspective. Water, 15(15), 2822. https://doi.org/10.3390/w15152822