High-Efficiency Mixotrophic Denitrification for Nitrate Removal in High-Sulfate Wastewater Using UASB Reactor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reactor Design and Operation
2.2. Properties of Synthetic Wastewater and Seed Sludge
2.3. Analytical Methods
2.4. Microbial Community Analysis
3. Results and Discussion
3.1. Salt-Tolerant Acclimation Stage
3.1.1. Changes in Nitrogen Concentration
3.1.2. Changes in Sulfur Concentration
3.1.3. Changes in COD Concentration
3.2. COD/SO42− Promotion Stage
3.2.1. Changes in Nitrogen Concentration
3.2.2. Changes in Sulfur Concentration
3.2.3. Changes in COD Concentration
3.3. Microbial Community Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Krom, M.D.; Ben David, A.; Ingall, E.D.; Benning, L.G.; Clerici, S.; Bottrell, S.; Davies, C.; Potts, N.J.; Mortimer, R.J.G.; van Rijn, J. Bacterially mediated removal of phosphorus and cycling of nitrate and sulfate in the waste stream of a "zero-discharge" recirculating mariculture system. Water Res. 2014, 56, 109–121. [Google Scholar] [CrossRef]
- Li, Q.; Huang, B.; Chen, X.; Shi, Y. Cost-effective bioregeneration of nitrate-laden ion exchange brine through deliberate bicarbonate incorporation. Water Res. 2015, 75, 33–42. [Google Scholar] [CrossRef]
- Zhou, J.M.; Song, Z.Y.; Yan, D.J.; Liu, Y.L.; Yang, M.H.; Cao, H.B.; Xing, J.M. Performance of a haloalkaliphilic bioreactor under different NO3−/ SO42− ratios. Bioresour. Technol. 2014, 153, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Liu, Y.; Gao, S.H.; Chen, X.; Ni, B.J. Evaluating simultaneous chromate and nitrate reduction during microbial denitrification processes. Water Res. 2016, 89, 1–8. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Liu, Y.; Han, Y.X.; Zhang, Y.L.; Jia, X.B.; Li, W.G.; Li, D.H.; Jing, L.Q. Nitrate removal from low C/N wastewater at low temperature by immobilized Pseudomonas sp. Y39-6 with versatile nitrate metabolism pathways. Bioresour. Technol. 2021, 326, 9. [Google Scholar] [CrossRef]
- Winkler, M.; Coats, E.R.; Brinkman, C.K. Advancing post-anoxic denitrification for biological nutrient removal. Water Res. 2011, 45, 6119–6130. [Google Scholar] [CrossRef] [PubMed]
- Winkler, M.K.; Straka, L. New directions in biological nitrogen removal and recovery from wastewater. Curr. Opin. Biotechnol. 2019, 57, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, H.A.; Ahmad, S.; Gao, L.; Wang, Z.; El-Baz, A.; Ni, S.-Q. Energy-efficient and carbon neutral anammox-based nitrogen removal by coupling with nitrate reduction pathways: A review. Sci. Total Environ. 2023, 889, 164213. [Google Scholar] [CrossRef]
- Yang, S.; Shi, W.; Wang, H.; He, T.; Li, Z. Research Progress in Effect of Additional Carbon Source on Water with Heterotrophic Denitrification. Environ. Sci. Technol. 2014, 37, 54–58. [Google Scholar]
- Chen, X.Y.; Yang, L.; Chen, F.; Song, Q.A.; Feng, C.P.; Liu, X.; Li, M. High efficient bio-denitrification of nitrate contaminated water with low ammonium and sulfate production by a sulfur/pyrite-based bioreactor. Bioresour. Technol. 2022, 346, 8. [Google Scholar] [CrossRef]
- Huang, C.; Liu, Q.; Wang, H.; Gao, L.; Hou, Y.N.; Nan, J.; Ren, N.Q.; Li, Z.L. Influence of microbial spatial distribution and activity in an EGSB reactor under high- and low-loading denitrification desulfurization. Environ. Res. 2021, 195, 8. [Google Scholar] [CrossRef]
- Yin, J.; Song, Y.; Bi, Y.; Ma, S.; Zhang, Q.; Liu, H.; Wang, M. Detection and application of sulfate-reducing bacteria: Research progress. Chin. J. Microecol. 2016, 28, 737–740. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Sheng, Y.Q.; Zhao, X.F.; Gross, M.; Wen, Z.Y. Treatment of acidic sulfate-containing wastewater using revolving algae biofilm reactors: Sulfur removal performance and microbial community characterization. Bioresour. Technol. 2018, 264, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Lens, P.N.L.; Visser, A.; Janssen, A.J.H.; Pol, L.W.H.; Lettinga, G. Biotechnological treatment of sulfate-rich wastewaters. Crit. Rev. Environ. Sci. Technol. 1998, 28, 41–88. [Google Scholar] [CrossRef]
- Hong, J.; Li, W.; Lin, B.; Zhan, M.; Liu, C.; Chen, B.-Y. Deciphering the effect of salinity on the performance of submerged membrane bioreactor for aquaculture of bacterial community. Desalination 2013, 316, 23–30. [Google Scholar] [CrossRef]
- Lefebvre, O.; Moletta, R. Treatment of organic pollution in industrial saline wastewater: A literature review. Water Res. 2006, 40, 3671–3682. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Zhang, H.H.; Zhang, Z.B.; Wang, Y.C.; Marhaba, T.; Li, J.X.; Sun, C.Z.; Zhang, W. Autohydrogenotrophic Denitrification Using the Membrane Biofilm Reactor for Removing Nitrate from High Sulfate Concentration of Water. Archaea 2018, 2018, 7. [Google Scholar] [CrossRef]
- Liu, C.S.; Li, Y.Z.; Gai, J.N.; Niu, H.Z.; Zhao, D.F.; Wang, A.J.; Lee, D.J. Cultivation of sulfide-driven partial denitrification granules for efficient nitrite generation from nitrate-sulfide-laden wastewater. Sci. Total Environ. 2022, 804, 9. [Google Scholar] [CrossRef]
- Ahmad, A.; Senaidi, A.S. Sustainability for wastewater treatment: Bioelectricity generation and emission reduction. Environ. Sci. Pollut. Res. 2023, 30, 48703–48720. [Google Scholar] [CrossRef]
- Mazhar, M.A.; Khan, N.A.; Khan, A.H.; Ahmed, S.; Siddiqui, A.A.; Husain, A.; Rahisuddin; Tirth, V.; Islam, S.; Shukla, N.K.; et al. Upgrading combined anaerobic-aerobic UASB-FPU to UASB-DHS system: Cost comparison and performance perspective for developing countries. J. Clean Prod. 2021, 284, 124723. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater; American Public Health Association Inc.: Washington, DC, USA, 1998. [Google Scholar]
- Xu, A.O.; Yu, D.S.; Qiu, Y.L.; Chen, G.H.; Tian, Y.; Wang, Y.Y. A novel process of salt tolerance partial denitrification and anammox (ST-PDA) for treating saline wastewater. Bioresour. Technol. 2022, 345, 10. [Google Scholar] [CrossRef] [PubMed]
- Abufayed, A.A.; Schroeder, E.D. Kinetics and stoichiometry of SBR/denitrification with a primary sludge carbon source. J. Water Pollut. Control Fed. 1986, 58, 398–405. [Google Scholar]
- Cui, B.; Liu, X.H.; Yang, Q.; Li, J.M.; Zhou, X.Y.; Peng, Y.Z. Achieving partial denitrification through control of biofilm structure during biofilm growth in denitrifying biofilter. Bioresour. Technol. 2017, 238, 223–231. [Google Scholar] [CrossRef]
- Yongsiri, C.; Vollertsen, J.; Rasmussen, M.; Hvitved-Jacobsen, T. Air-water transfer of hydrogen sulfide: An approach for application in sewer networks. Water Environ. Res. 2004, 76, 81–88. [Google Scholar] [CrossRef]
- Li, J.; Tabassum, S. Synergism of hydrolytic acidification and sulfate reducing bacteria for acid production and desulfurization in the anaerobic baffled reactor: High sulfate sewage wastewater treatment. Chem. Eng. J. 2022, 444, 15. [Google Scholar] [CrossRef]
- Shi, Y.P.; Liu, T.; Yu, H.T.; Quan, X. Enhancing anoxic denitrification of low C/N ratio wastewater with novel ZVI composite carriers. J. Environ. Sci. 2022, 112, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.N.; Wang, X.; Zhao, Y.F.; Wang, J.F.; Ding, L.L.; Wang, Y.R.; Ren, H.Q. Biofilm Reactor Performance and Shifts of Microbial Community during the Start-Up and Operation Phase of MBBRs at 8 °C: Effect of Exogenous Quorum Sensing Bacteria. ACS EST Water 2023, 3, 804–816. [Google Scholar] [CrossRef]
- Ju, C.J.; Niyazi, S.; Cao, W.Y.; Wang, Q.; Chen, R.P.; Yu, L. Characteristics and comparisons of the aerobic and anaerobic denitrification of a Klebsiella oxytoca strain: Performance, electron transfer pathway, and mechanism. J. Environ. Manag. 2023, 338, 10. [Google Scholar] [CrossRef]
- Qi, W.; Taherzadeh, M.J.; Ruan, Y.J.; Deng, Y.L.; Chen, J.S.; Lu, H.F.; Xu, X.Y. Denitrification performance and microbial communities of solid-phase denitrifying reactors using poly (butylene succinate)/bamboo powder composite. Bioresour. Technol. 2020, 305, 10. [Google Scholar] [CrossRef]
- Xu, Z.S.; Dai, X.H.; Chai, X.L. Effect of different carbon sources on denitrification performance, microbial community structure and denitrification genes. Sci. Total Environ. 2018, 634, 195–204. [Google Scholar] [CrossRef]
- Tan, Y.; Park, J.; Ikuma, K.; Evans, E.A.; Flamming, J.J.; Ellis, T.G. Feasibility test of autotrophic denitrification of industrial wastewater in sequencing batch and static granular bed reactors. Water Environ. Res. 2020, 92, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.F.; Zhang, Q.F.; Sidike, A.; Ailijiang, N.; Mamat, A.; Zhang, G.X.; Pu, M.; Cheng, W.H.; Pang, Z.T. The impact of different voltage application modes on biodegradation of chloramphenicol and shift of microbial community structure. Front. Environ. Sci. Eng. 2022, 16, 12. [Google Scholar] [CrossRef]
- Morrison, J.M.; Murphy, C.L.; Baker, K.; Zamor, R.M.; Nikolai, S.J.; Wilder, S.; Eishahed, M.S.; Youssef, N.H. Microbial communities mediating algal detritus turnover under anaerobic conditions. PeerJ 2017, 5, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.J.; Wang, F.; Xu, S.H.; Sun, W.; Wang, Y.; Ji, M. Woodchips bioretention column for stormwater treatment: Nitrogen removal performance, carbon source and microbial community analysis. Chemosphere 2021, 285, 10. [Google Scholar] [CrossRef]
Salt-Tolerant Acclimation Stage | COD/SO42− Promotion Stage | |||||||
---|---|---|---|---|---|---|---|---|
0–14 d | 14–28 d | 28–42 d | 42–56 d | 56–84 d | 0–14 d | 14–28 d | 28–42 d | |
Sulfate (g/L) | 1 | 2 | 3 | 5 | 10 | 10 | 10 | 10 |
NO3−-N (mg/L) | 30 | 100 | 200 | 300 | 300 | 300 | 300 | 300 |
COD (mg/L) | 3000 | 3000 | 3000 | 3000 | 3000 | 3000 | 5000 | 10,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Jie, M.; Zhang, H.; Yang, J.; Xu, M. High-Efficiency Mixotrophic Denitrification for Nitrate Removal in High-Sulfate Wastewater Using UASB Reactor. Water 2023, 15, 2819. https://doi.org/10.3390/w15152819
Wang Y, Jie M, Zhang H, Yang J, Xu M. High-Efficiency Mixotrophic Denitrification for Nitrate Removal in High-Sulfate Wastewater Using UASB Reactor. Water. 2023; 15(15):2819. https://doi.org/10.3390/w15152819
Chicago/Turabian StyleWang, Yuqi, Mengrui Jie, Huining Zhang, Jia Yang, and Meijuan Xu. 2023. "High-Efficiency Mixotrophic Denitrification for Nitrate Removal in High-Sulfate Wastewater Using UASB Reactor" Water 15, no. 15: 2819. https://doi.org/10.3390/w15152819
APA StyleWang, Y., Jie, M., Zhang, H., Yang, J., & Xu, M. (2023). High-Efficiency Mixotrophic Denitrification for Nitrate Removal in High-Sulfate Wastewater Using UASB Reactor. Water, 15(15), 2819. https://doi.org/10.3390/w15152819