Quantifying Environmental Flow in the Form of Pulse Flow for Fish Protection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Framework for Quantifying Pulse Flow
2.3. Fish Assessment
2.4. Fish Habitat Modeling
2.5. Nature Flow Analysis
3. Results
3.1. Peak Flow
3.2. Flow Duration
3.3. Occurrence Time
3.4. Recommended Pulse Flow
4. Discussion
4.1. Contrast of Habitat-Based Environmental Flow and Recommended Pulse Flow
4.2. The Practical Significance of Pulsed Discharge to River Management
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.-I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.-H.; Soto, D.; Stiassny, M.L.J.; et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 2006, 81, 163–182. [Google Scholar] [CrossRef] [PubMed]
- Strayer, D.L.; Dudgeon, D. Freshwater biodiversity conservation: Recent progress and future challenges. J. N. Am. Benthol. Soc. 2010, 29, 344–358. [Google Scholar] [CrossRef] [Green Version]
- Quiroga, A.P.; Lancelotti, J.L.; Riva-Rossi, C.M.; Tagliaferro, M.; Garcia Asorey, M.; Pascual, M.A. Dams versus habitat: Predicting the effects of dams on habitat supply and juvenile rainbow trout along the Santa Cruz River, Patagonia. Hydrobiologia 2015, 755, 57–72. [Google Scholar] [CrossRef]
- Yang, Q.; Hu, P.; Yang, Z.F. Suitable flow velocity conditions and adaptive threshold of grass carp’s migration. J. Fish. 2019, 47, 47–53. [Google Scholar]
- Arthington, A.H.; Pusey, B.J. Flow restoration and protection in Australian rivers. River Res. Appl. 2003, 16, 377–395. [Google Scholar] [CrossRef]
- Richter, B.D.; Thomas, G.A. Restoring environmental flows by modifying dam operations. Ecol. Soc. 2007, 12, 12. [Google Scholar] [CrossRef]
- Shafroth, P.B.; Wilcox, A.C.; Lytle, D.A.; Hickey, J.T.; Andersen, D.C.; Beauchamp, V.B.; Hautzinger, A.; McMullen, L.E.; Warner, A. Ecosystem effects of environmental flows: Modelling and experimental floods in a dryland river. Freshw. Biol. 2010, 55, 68–85. [Google Scholar] [CrossRef]
- Bovee, K.D. A Guide to Stream Habitat Analysis Using the Instream Flow Incremental Methodology; Western Energy and Land Use Team: Washington, DC, USA; Office of Biological Services: Washington, DC, USA; Fish and Wildlife Service: Washington, DC, USA; US Department of the Interior: Washington, DC, USA, 1982; Volume 1. [Google Scholar]
- Yi, Y.; Wang, Z.; Yang, Z. Impact of the Gezhouba and Three Gorges Dams on habitat suitability of carps in the Yangtze River. J. Hydrol. 2010, 387, 283–291. [Google Scholar] [CrossRef]
- Boodoo, K.S.; McClain, M.E.; Upegui, J.J.V.; López, O.L.O. Impacts of implementation of Colombian environmental flow methodologies on the flow regime and hydropower production of the Chinchiná River, Colombia. Ecohydrol. Hydrobiol. 2014, 14, 267–284. [Google Scholar] [CrossRef]
- Fornaroli, R.; Cabrini, R.; Sartori, L.; Marazzi, F.; Canobbio, S.; Mezzanotte, V. Optimal flow for brown trout: Habitat–prey optimization. Sci. Total Environ. 2016, 566, 1568–1578. [Google Scholar] [CrossRef]
- Van Liefferinge, C.; Seeuws, P.; Meire, P.; Verheyen, R.F. Microhabitat use and preferences of the endangered Cottus gobio in the River Voer, Belgium. J. Fish Biol. 2005, 67, 897–909. [Google Scholar] [CrossRef]
- Li, W.; Chen, Q.; Cai, D.; Li, R. Determination of an appropriate ecological hydrograph for a rare fish species using an improved fish habitat suitability model introducing landscape ecology index. Ecol. Model. 2015, 311, 31–38. [Google Scholar] [CrossRef]
- Fukuda, S.; De Baets, B.; Mouton, A.M.; Waegeman, W.; Nakajima, J.; Mukai, T.; Hiramatsu, K.; Onikura, N. Effect of model formulation on the optimization of a genetic Takagi–Sugeno fuzzy system for fish habitat suitability evaluation. Ecol. Model. 2011, 222, 1401–1413. [Google Scholar] [CrossRef]
- Maeda, S. A simulation-optimization method for ecohydraulic design of fish habitat in a canal. Ecol. Eng. 2013, 61, 182–189. [Google Scholar] [CrossRef]
- Mouton, A.M.; De Baets, B.; Goethals, P.L. Knowledge-based versus data-driven fuzzy habitat suitability models for river management. Environ. Model. Softw. 2009, 24, 982–993. [Google Scholar] [CrossRef]
- Shim, T.; Kim, Z.; Seo, D.; Jung, J. National-Scale Assessment of Climate Change Impacts on Two Native Freshwater Fish Using a Habitat Suitability Model. Water 2022, 14, 1825. [Google Scholar] [CrossRef]
- Erős, T.; Gustafsson, P.; Greenberg, L.A.; Bergman, E. Forest-stream linkages: Effects of terrestrial invertebrate input and light on diet and growth of brown trout (Salmo trutta) in a boreal forest stream. PLoS ONE 2012, 7, e36462. [Google Scholar] [CrossRef]
- Junk, W.J.; Bayley, P.B.; Sparks, R.E. The flood pulse concept in river-floodplain systems. Can. J. Fish. Aquat. Sci. 1989, 10, 110–127. [Google Scholar]
- Pitt, J.; Kendy, E. Shaping the 2014 Colorado River Delta pulse flow: Rapid environmental flow design for ecological outcomes and scientific learning. Ecol. Eng. 2017, 106, 704–714. [Google Scholar] [CrossRef]
- Yang, Z.F.; Yu, S.-W.; Chen, H.; She, D.X. Model for defining environmental flow thresholds of spring flood period using abrupt habitat change analysis. Adv. Water Sci. 2010, 21, 567–574. [Google Scholar]
- Xu, X.H.; Liu, M.Y.; Sun, C.S.; Sun, Y.; Zhang, Y.; Zhai, T.T.; Chen, Y.J. The Investigation of the Second Songhua River’s Source Area Ecological Sustainable Development and Countermeasure. Res. Soil Water Conserv. 2007, 3, 55–56. [Google Scholar]
- Chen, M.J.; Feng, H.L.; Wang, L.Q.; Chen, Q.Y. Calculation methods for appropriate ecological flow. Adv. Water Sci. 2007, 18, 750. [Google Scholar]
- Nixdorf, E.; Sun, Y.; Lin, M.; Kolditz, O. Development and application of a novel method for regional assessment of groundwater contamination risk in the Songhua River Basin. Sci. Total Environ. 2017, 605, 598–609. [Google Scholar] [CrossRef] [PubMed]
- Tennant, D.A. Flow regulation and fish habitat. In River Restoration: A Biologist’s Handbook; Naiman, D.C., Coe, J.P., Eds.; National Wildlife Federation: Washington, DC, USA, 1976; pp. 25–51. [Google Scholar]
- Yang, F.; Yan, B.; Wang, Q.; Luan, Z.; Tong, S. Assessment of fish stocks in the lower reaches of the Songhua River. Wetl. Sci. 2015, 13, 87–97. [Google Scholar]
- Zhang, J.M.; Li, H.M.; Dong, C.Z. Fishes of Heilongjiang; Heilongjiang Science and Technology Press: Harbin, China, 1995. [Google Scholar]
- Xie, Y.H. Freshwater Fishes of Northeast China; Liaoning Science and Technology Press: Shenyang, China, 2007. [Google Scholar]
- Hou, H.; She, Y.; Ma, Y.; Hu, C.; Zheng, M.; Zhang, S. Investigations on methyl mercury contamination of fishes in the Second Songhua River. Biomed. Environ. Sci. BES 1988, 1, 79–82. [Google Scholar]
- Tharme, R.E. A global perspective on environmental flow assessment: Emerging trends in the development and application of environmental flow methodologies for rivers. River Res. Appl. 2003, 19, 397–441. [Google Scholar] [CrossRef]
- Leasure, D.R.; Magoulick, D.D.; Longing, S.D. Natural flow regimes of the Ozark–Ouachita interior highlands region. River Res. Appl. 2016, 32, 18–35. [Google Scholar] [CrossRef]
- Hu, P.; Zhou, Z.H.; Jia, Y.W.; Zhou, N. Study on designed flows of water function reaches based on distributed hydrological model. J. Hydraul. Eng. 2013, 44, 42–49. [Google Scholar]
- Yang, Z.; Hu, P.; Wang, J.; Zhao, Y.; Zhang, W. Ecological flow process acknowledging different spawning patterns in the Songhua River. Ecol. Eng. 2019, 132, 56–64. [Google Scholar] [CrossRef]
- Li, R.; Chen, Q.; Duan, C. Ecological hydrograph based on Schizothorax chongi habitat conservation in the dewatered river channel between Jinping cascaded dams. Sci. China Technol. Sci. 2011, 54, 54–63. [Google Scholar] [CrossRef]
Classification | Fish Species | Spawning Season | Spawning Temperature | Egg Properties | Incubation Duration (Day) |
---|---|---|---|---|---|
Cold-water fish | Brachymystax lenok | April | 5 °C–10 °C | adhesive | 15–20 |
Hucho taimen | April | 5 °C–10 °C | adhesive | 20 | |
Esox reicherti | April | 4 °C–7 °C | adhesive | 9–10 | |
Thymallus arcticus grubei | April | 6 °C–10 °C | adhesive | 22–24 | |
Cottus poecilopus | April | 7 °C–11 °C | adhesive | 7–9 | |
Leuciscus waleckii | April–May | 6 °C–14 °C | adhesive | 8–10 | |
Hypomesus olidus | April–May | 4 °C–12 °C | adhesive | 8–9 | |
Hypomesus nipponensis | April–May | 6 °C–16 °C | adhesive | 6–8 | |
Hypothermal-water fish | Barbatula nuda | May | 10 °C–15 °C | adhesive | 7 |
Lampetra reissneri | May | 10 °C–16 °C | adhesive | 7–8 | |
Lampetra japonica | May | 12 °C–16 °C | adhesive | 10–11 | |
Rhodeus sericeus | May | 12 °C–18 °C | adhesive | 4–5 | |
Phoxinus phoxinus | May | 12 °C–15 °C | adhesive | 12–14 | |
Rhynchocypris percnurus | May | 14 °C–16 °C | adhesive | 5 | |
Phoxinus lagowskii | May | 14 °C–17 °C | adhesive | 5–7 | |
Saurogobio dabryi | May–June | 12 °C–20 °C | adhesive | 3–4 | |
Aphyocypris chinensis | May–June | 15 °C–20 °C | adhesive | 3–4 | |
Perccottus glenii | May–June | 15 °C–20 °C | adhesive | 5–6 | |
warm-water fish with adhesive eggs | Carassius auratus gibelio | May–June | 17 °C–22 °C | adhesive | 3–5 |
Hemibarbus maculatus | May–June | 16 °C–23 °C | adhesive | 4–5 | |
Abbottina rivularis | June–July | 18 °C–25 °C | adhesive | 5–6 | |
Cultrichthys erythropterus | June–July | 18 °C–23 °C | adhesive | 3–4 | |
Cyprinus carpio | June–July | 18 °C–25 °C | adhesive | 4–5 | |
Hemibarbus labeo | June–July | 17 °C–22 °C | adhesive | 3 | |
Megalobrama skolkovii | June–July | 20 °C–26° C | adhesive | 2 | |
Pelteobagrus nitidus | June–July | 22 °C–30 °C | adhesive | 3 | |
Pelteobagrus fulvidraco | June–July | 22 °C–30 °C | adhesive | 3 | |
Pseudobagrus ussuriensis | June–July | 20 °C–25 °C | adhesive | 2 | |
Squalidus chankaensis | June–July | 18 °C–25 °C | adhesive | 5 | |
Warm-water fish with drifting eggs | Gobiobotia pappenheimi | June–July | 11 °C–26 °C | drifting | 4 |
Aristichthys nobilis | June–July | 20 °C–28 °C | drifting | 2 | |
Culter alburnus | June–July | 22 °C–25 °C | drifting | 2 | |
Elopichthys bambusa | June–July | 18 °C–26 °C | drifting | 2 | |
Chanodichthys mongolicus | June–July | 20 °C–24 °C | drifting | 2 | |
Ctenopharyngodon idellus | June–July | 18 °C–28 °C | drifting | 2 | |
Hemiculter leucisculus | June–July | 20 °C–26 °C | drifting | 2 | |
Hypophthalmichthys molitrix | June–July | 18 °C–28 °C | drifting | 2 | |
Parabramis pekinensis | June–July | 16 °C–25 °C | drifting | 2 | |
Pseudaspius leptocephalus | June–July | 17 °C–23 °C | drifting | 3–4 | |
Pseudobrama simoni | June–July | 24 °C–26 °C | drifting | 1–2 | |
Rostrogobio amurensis | June–July | 20 °C–26 °C | drifting | 2 | |
Sarcocheilichthys lacustris | June–July | 24 °C–26 °C | drifting | 4 | |
Siniperca chawtsi | June–July | 22 °C–24 °C | drifting | 2–3 | |
Xenocypris argentea | June–July | 20 °C–26 °C | drifting | 2 | |
Xenocypris microlepis | June–July | 18 °C–26 °C | drifting | 3 |
Occurring Time | Duration (Day) | Peak Flow (m3/s) | Base Flow (m3/s) |
---|---|---|---|
Mid–late April | 15 | 700 | 320 |
Early May | 10 | 900 | 320 |
Late May | 8 | 900 | 320 |
Early June | 8 | 1000 | 320 |
Late June | 5 | 1200 | 320 |
Early July | 5 | 1200 | 320 |
Late July | 5 | 2000 | 320 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, X.; Yang, Z.; Hu, P.; Wang, W.; Zeng, Q.; Yan, X. Quantifying Environmental Flow in the Form of Pulse Flow for Fish Protection. Water 2023, 15, 2820. https://doi.org/10.3390/w15152820
Lv X, Yang Z, Hu P, Wang W, Zeng Q, Yan X. Quantifying Environmental Flow in the Form of Pulse Flow for Fish Protection. Water. 2023; 15(15):2820. https://doi.org/10.3390/w15152820
Chicago/Turabian StyleLv, Xiaolong, Zefan Yang, Peng Hu, Weize Wang, Qinghui Zeng, and Xiaoyao Yan. 2023. "Quantifying Environmental Flow in the Form of Pulse Flow for Fish Protection" Water 15, no. 15: 2820. https://doi.org/10.3390/w15152820
APA StyleLv, X., Yang, Z., Hu, P., Wang, W., Zeng, Q., & Yan, X. (2023). Quantifying Environmental Flow in the Form of Pulse Flow for Fish Protection. Water, 15(15), 2820. https://doi.org/10.3390/w15152820