Will the Structure of Food Imports Improve China’s Water-Intensive Food Cultivation Structure? A Spatial Econometric Analysis
Abstract
:1. Introduction
2. Methods and Materials
2.1. Variable Selection
2.2. Empirical Model Design of the Competitive Effect of Food Imports on the Efficiency of Land for Food Production
2.3. Data
3. Results and Discussion
3.1. Measurement and Spatial-Temporal Variation in Water-Intensive Food Cultivation Structure
3.2. Empirical Analysis of the Structural Effects of Food Imports on Water-Intensive Food Cultivation
3.2.1. Baseline Regression
3.2.2. Robustness Test
3.2.3. Quantile Regression
3.2.4. Heterogeneity Analysis
3.2.5. Spatial Spillover Effect
3.2.6. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Du, T.S.; Kang, S.Z.; Zhang, X.Y.; Zhang, J.H. China’s food security is threatened by the unsustainable use of water resources in North and Northwest China. Food Energy Secur. 2014, 3, 7–18. [Google Scholar] [CrossRef]
- Sun, S.K.; Lu, Y.J.; Gao, H.; Jiang, T.T.; Du, X.Y.; Shen, T.X.; Wu, P.T.; Wang, Y.B. Impacts of food wastage on water resources and environment in China. J. Clean. Prod. 2018, 185, 732–739. [Google Scholar] [CrossRef]
- Han, X.X.Q.; Zhao, Y.; Gao, X.R.; Jiang, S.; Lin, L.X.; An, T.L. Virtual water output intensifies the water scarcity in Northwest China: Current situation, problem analysis and countermeasures. Sci. Total Environ. 2021, 765, 144276. [Google Scholar] [CrossRef] [PubMed]
- Olayungbo, D.O. Global oil price and food prices in food importing and oil exporting developing countries: A panel ARDL analysis. Heliyon 2021, 7, e06357. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.M.; Hubacek, K.; Feng, K.S.; Zhang, W.; Wang, F.; Liu, Y. Tension of Agricultural Land and Water Use in China’s Trade: Tele-Connections, Hidden Drivers and Potential Solutions. Environ. Sci. Technol. 2020, 54, 5365–5375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapagain, A.K.; Hoekstra, A.Y.; Savenije, H.H.G. Water saving through international trade of agricultural products. Hydrol. Earth Syst. Sci. 2006, 10, 455–468. [Google Scholar] [CrossRef] [Green Version]
- Chartres, C.J.; Noble, A. Sustainable intensification: Overcoming land and water constraints on food production. Food Secur. 2015, 7, 235–245. [Google Scholar] [CrossRef]
- Grzelak, A.; Guth, M.; Matuszczak, A.; Czyzewski, B.; Brelik, A. Approaching the environmental sustainable value in agriculture: How factor endowments foster the eco-efficiency. J. Clean. Prod. 2019, 241. [Google Scholar] [CrossRef]
- Redding, S.J. Goods trade, factor mobility and welfare. J. Int. Econ. 2016, 101, 148–167. [Google Scholar] [CrossRef] [Green Version]
- Condon, A.G. Drying times: Plant traits to improve crop water use efficiency and yield. J. Exp. Bot. 2020, 71, 2239–2252. [Google Scholar] [CrossRef]
- Chen, M.L.; Jin, J.L.; Ning, S.W.; Zhou, Y.L.; Udmale, P. Early Warning Method for Regional Water Resources Carrying Capacity Based on the Logical Curve and Aggregate Warning Index. Int. J. Environ. Res. Public. Health 2020, 17, 2206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alessa, L.; Kliskey, A.; Lammers, R.; Arp, C.; White, D.; Hinzman, L.; Busey, R. The arctic water resource vulnerability index: An integrated assessment tool for community resilience and vulnerability with respect to freshwater. Environ. Manag. 2008, 42, 523–541. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Mooney, H.; Wu, W.B.; Tang, H.J.; Tong, Y.X.; Xu, Z.C.; Huang, B.R.; Cheng, Y.Q.; Yang, X.J.; Wei, D.; et al. Importing food damages domestic environment: Evidence from global soybean trade. Proc. Natl. Acad. Sci. USA 2018, 115, 5415–5419. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.M.; Chen, G.Q. Virtual water accounting for the globalized world economy: National water footprint and international virtual water trade. Ecol. Indic. 2013, 28, 142–149. [Google Scholar] [CrossRef]
- Dalin, C.; Hanasaki, N.; Qiu, H.G.; Mauzerall, D.L.; Rodriguez-Iturbe, I. Water resources transfers through Chinese interprovincial and foreign food trade. Proc. Natl. Acad. Sci. USA 2014, 111, 9774–9779. [Google Scholar] [CrossRef]
- Ali, T.; Huang, J.K.; Wang, J.X.; Xie, W. Global footprints of water and land resources through China’s food trade. Glob. Food Secur.-Agric. Policy Econ. Environ. 2017, 12, 139–145. [Google Scholar] [CrossRef]
- Buchthal, O.; Nelson-Hurwitz, D.; Hsu, L.; Byers, M.; Banna, J. Identifying Urban Immigrant Food-Cultivation Practices for Culturally-Tailored Garden-Based Nutrition Programs. J. Immigr. Minor. Health 2020, 22, 778–785. [Google Scholar] [CrossRef]
- Moran, P.A. A test for the serial independence of residuals. Biometrika 1950, 37, 178–181. [Google Scholar] [CrossRef]
- Dubin, R. Spatial lags and spatial errors revisited: Some Monte Carlo evidence. In Spatial and Spatiotemporal Econometrics; LeSage, J.P., Pace, R.K., Eds.; Advances in Econometrics: New York, NY, USA, 2004; Volume 18, pp. 75–98. [Google Scholar]
- Zhao, D.D.; Hubacek, K.; Feng, K.S.; Sun, L.X.; Liu, J.G. Explaining virtual water trade: A spatial-temporal analysis of the comparative advantage of land, labor and water in China. Water Res. 2019, 153, 304–314. [Google Scholar] [CrossRef]
- De Loecker, J.; Goldberg, P.K.; Khandelwal, A.K.; Pavcnik, N. Prices, Markups, and Trade Reform. Econometrica 2016, 84, 445–510. [Google Scholar] [CrossRef] [Green Version]
- Shao, L.; Guan, D.B.; Wu, Z.; Wang, P.S.; Chen, G.Q. Multi-scale input-output analysis of consumption-based water resources: Method and application. J. Clean. Prod. 2017, 164, 338–346. [Google Scholar] [CrossRef] [Green Version]
- Hoang, N.T.T.; Truong, H.Q.; Dong, C.V. Determinants of Trade between Taiwan and ASEAN Countries: A PPML Estimator Approach. Sage Open 2020, 10. [Google Scholar] [CrossRef]
- Rocha, A.; Miranda, M.C. A Robust Version of the FGLS Estimator for Panel Data. In Proceedings of the 25th Congress of the Portuguese-Statistical-Society (SPE), University of Évora, Electr Network, Évora, Portugal, 13–16 October 2021; pp. 325–335. [Google Scholar]
- Dabrowski, P.S. Novel PCSE-based approach of inclined structures geometry analysis on the example of the Leaning Tower of Pisa. Measurement 2022, 189, 110462. [Google Scholar] [CrossRef]
- Liu, W.C.; Lai, S.M.; Chen, H.W. A topological similarity-based bootstrapping method for inferring food web parameters. Ecol. Res. 2017, 32, 797–809. [Google Scholar] [CrossRef]
- Lu, Y.J.; Yan, D.H.; Qin, T.L.; Song, Y.F.; Weng, B.S.; Yuan, Y.; Dong, G.Q. Assessment of Drought Evolution Characteristics and Drought Coping Ability of Water Conservancy Projects in Huang-Huai-Hai River Basin, China. Water 2016, 8, 378. [Google Scholar] [CrossRef]
- Niu, S.D.; Lyu, X.; Gu, G.Z. A New Framework of Green Transition of Cultivated Land-Use for the Coordination among the Water-Land-Food-Carbon Nexus in China. Land 2022, 11, 933. [Google Scholar] [CrossRef]
- Qi, Y.Y.; Farnoosh, A.; Lin, L.; Liu, H. Coupling coordination analysis of China’s provincial water-energy-food nexus. Environ. Sci. Pollut. Res. 2022, 29, 23303–23313. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Mantovani, A.; Frazzoli, C. Analysis of Food Safety and Security Challenges in Emerging African Food Producing Areas through a One Health Lens: The Dairy Chains in Mali. J. Food Prot. 2017, 80, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Yuan, S.C.; Wang, J.; Cheng, J.; Zhu, D.L. How Do the Different Types of Land Costs Affect Agricultural Crop-Planting Selections in China? Land 2022, 11, 1890. [Google Scholar] [CrossRef]
Variable Category | Variable | Calculation Method | Unit |
---|---|---|---|
Dependent variable |
|
|
|
Independent variable |
|
|
|
Instrumental variable |
|
|
|
Control variables |
|
|
|
|
|
| |
|
|
| |
|
|
| |
|
|
| |
|
|
|
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
Structural effects of food imports | −0.161 *** | −0.407 ** | ||
(−2.929) | (−2.180) | |||
First-order lagged term for “Structural effects of food imports” | −0.140 ** | |||
(−2.440) | ||||
Technical environment | −3.347 | −3.489 | −2.737 | −3.287 |
(−1.353) | (−1.420) | (−1.048) | (−1.220) | |
Water use structure | 7.474 | 9.965 | 8.519 | 7.245 |
(0.790) | (1.058) | (0.810) | (0.749) | |
Irrigation ratio | 11.298 | 12.099 | 16.546 | 8.291 |
(0.597) | (0.651) | (0.715) | (0.426) | |
Financial support level for agriculture | −0.015 | 0.242 | 0.595 | 0.310 |
(−0.017) | (0.273) | (0.608) | (0.331) | |
Disaster rate | −4.898 | −5.551 | −5.859 | −8.547 |
(−0.462) | (−0.527) | (−0.526) | (−0.759) | |
Agricultural machinery level | −1.392 ** | −1.335 ** | −1.229 ** | −1.383 ** |
(−2.418) | (−2.334) | (−2.018) | (−2.339) | |
Time fixed effects | yes | yes | yes | yes |
Individual fixed effects | yes | yes | yes | yes |
Phase I F-statistic values | 57.83 | |||
Wald test value | 4.93 ** | |||
Constant term | 42.988 *** | 42.388 *** | 41.237 *** | 42.990 *** |
(3.728) | (3.745) | (3.526) | (3.752) | |
Observation value | 540 | 540 | 540 | 510 |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
Structural effects of food imports | −0.008 *** | −0.196 *** | −0.157 *** | −0.161 ** |
(−5.777) | (−2.985) | (−4.534) | (−2.418) | |
Technical environment | −0.408 *** | −7.707 * | −1.064 | −3.489 ** |
(−4.675) | (−1.956) | (−0.469) | (−2.470) | |
Water use structure | 0.888 *** | 15.133 | 1.488 | 9.965 |
(4.564) | (1.585) | (0.317) | (0.682) | |
Irrigation ratio | 0.275 | 2.086 | 7.454 | 12.099 |
(0.694) | (0.109) | (0.212) | (1.250) | |
Financial support level for agriculture | 0.028 * | −0.940 | −2.671 ** | 0.242 |
(1.949) | (−0.695) | (−2.016) | (0.477) | |
Disaster rate | −0.192 | −27.298 ** | −28.192 ** | −5.551 |
(−0.746) | (−2.393) | (−2.295) | (−0.476) | |
Agricultural machinery level | −0.048 | −0.534 | −0.291 | −1.335 |
(−1.066) | (−0.670) | (−0.073) | (−1.317) | |
Time fixed effects | no | yes | yes | yes |
Individual fixed effects | no | yes | yes | yes |
Constant term | 3.694 *** | 59.295 *** | 51.801 *** | 42.388 *** |
(20.038) | (3.310) | (3.676) | (5.654) | |
Observation value | 540 | 510 | 540 | 540 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) |
---|---|---|---|---|---|---|---|---|---|
Structural effects of food imports | −0.053 ** | −0.072 ** | −0.120 *** | −0.127 *** | −0.145 *** | −0.155 *** | −0.269 *** | −0.283 *** | −0.277 *** |
(−2.172) | (−2.233) | (−3.139) | (−3.106) | (−3.150) | (−2.913) | (−4.873) | (−7.978) | (−6.051) | |
Technical environment | −5.352 *** | −8.052 *** | −7.727 *** | −9.215 *** | −12.537 *** | −17.552 *** | −22.549 *** | −23.141 *** | −13.687 *** |
(−3.831) | (−6.882) | (−3.511) | (−2.842) | (−3.106) | (−3.988) | (−5.569) | (−5.469) | (−3.367) | |
Water use structure | 23.981 *** | 33.749 *** | 36.330 *** | 54.838 *** | 75.376 *** | 65.127 *** | 42.714 ** | 68.494 *** | 75.939 *** |
(3.367) | (6.320) | (4.266) | (4.174) | (5.244) | (3.799) | (2.473) | (3.976) | (4.311) | |
Irrigation ratio | −9.203 *** | −10.945 ** | −9.106 | 7.713 | 11.939 | 2.552 | −39.889 ** | −48.594 *** | −50.834 *** |
(−2.872) | (−1.994) | (−0.788) | (0.460) | (0.583) | (0.121) | (−2.328) | (−3.477) | (−3.823) | |
Financial support level for agriculture | −0.677 | −0.405 | 0.287 | 0.699 | 0.588 | −0.783 | −1.974 * | −1.696 | −1.076 |
(−1.529) | (−0.870) | (0.625) | (1.561) | (0.823) | (−0.650) | (−1.652) | (−1.243) | (−0.863) | |
Disaster rate | −13.652 ** | −5.594 | 2.804 | 13.215 | 23.047 | 33.058 | 2.610 | 9.570 | 5.642 |
(−2.030) | (−0.576) | (0.290) | (0.983) | (1.251) | (1.409) | (0.142) | (0.800) | (0.611) | |
Agricultural machinery level | −1.666 ** | −1.860 ** | −1.535 | −2.719 * | −3.133 | −4.678 * | −2.009 | 0.269 | −0.073 |
(−2.537) | (−2.207) | (−1.350) | (−1.725) | (−1.515) | (−1.903) | (−0.781) | (0.116) | (−0.039) | |
Constant term | 17.480 *** | 18.527 ** | 24.798 ** | 18.489 | 11.451 | 37.952 * | 87.406 *** | 81.285 *** | 78.047 *** |
(2.916) | (2.402) | (2.564) | (1.516) | (0.785) | (1.931) | (5.862) | (9.299) | (11.643) |
Region | Northern Region | Southern Region | ||||||
---|---|---|---|---|---|---|---|---|
Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
Structural effects of food imports | −0.048 ** | −0.171 * | −0.079 | −12.226 | ||||
(−2.061) | (−1.685) | (−0.720) | (−0.669) | |||||
First-order lagged term for “Structural effects of food imports” | −0.046 ** | −0.170 | ||||||
(−2.054) | (−1.482) | |||||||
Technical environment | −0.348 | −0.451 | −0.684 | −0.205 | −4.720 | −5.166 | −35.107 | −6.928 |
(−0.417) | (−0.542) | (−0.719) | (−0.247) | (−0.645) | (−0.704) | (−0.507) | (−0.808) | |
Water use structure | 8.713 * | 9.017 * | 9.945 * | 9.381 ** | −5.915 | −4.270 | 230.637 | −5.877 |
(1.835) | (1.911) | (1.862) | (2.068) | (−0.387) | (−0.277) | (0.632) | (−0.376) | |
Irrigation ratio | −12.045 * | −13.102 * | −15.590 * | −14.330 ** | 95.417 *** | 99.238 *** | 510.957 | 106.910 *** |
(−1.654) | (−1.810) | (−1.783) | (−2.021) | (2.623) | (2.694) | (0.681) | (2.780) | |
Financial support level for agriculture | 0.139 | 0.372 | 1.000 | 0.442 | −0.278 | −0.159 | 7.670 | 0.044 |
(0.336) | (0.870) | (1.471) | (1.040) | (−0.173) | (−0.099) | (0.478) | (0.026) | |
Disaster rate | 9.707 ** | 9.960 ** | 10.878 ** | 6.848 | −8.659 | −9.819 | −145.059 | −10.100 |
(2.319) | (2.392) | (2.321) | (1.609) | (−0.386) | (−0.438) | (−0.604) | (−0.428) | |
Agricultural machinery level | −3.013 *** | −2.981 *** | −3.033 *** | −2.823 *** | −0.996 | −0.993 | 0.675 | −1.051 |
(−6.428) | (−6.392) | (−5.775) | (−6.078) | (−1.186) | (−1.184) | (0.107) | (−1.220) | |
Time fixed effects | yes | yes | yes | yes | yes | yes | yes | yes |
Individual fixed effects | yes | yes | yes | yes | yes | yes | yes | yes |
Phase I F-statistic values | 16.31 | 0.45 | ||||||
Wald test value | 3.19 * | 19.66 | ||||||
Constant term | 36.540 *** | 36.686 *** | 37.206 *** | 34.634 *** | 37.055 ** | 36.257 * | −59.173 | 34.662 * |
(5.482) | (5.651) | (7.012) | (5.498) | (1.997) | (1.950) | (−0.275) | (1.898) | |
Observation value | 270 | 270 | 270 | 255 | 270 | 270 | 270 | 255 |
Region | Major Food-Producing Areas | Non-Major Food-Producing Areas | ||||||
---|---|---|---|---|---|---|---|---|
Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
Structural effects of food imports | −0.081 *** | −0.072 ** | −0.197 | −1.404 | ||||
(−4.143) | (−1.990) | (−1.545) | (−1.471) | |||||
First-order lagged term for “Structural effects of food imports” | −0.068 *** | −0.185 | ||||||
(−3.669) | (−1.391) | |||||||
Technical environment | −1.679 | −1.481 | −1.539 | −0.891 | −3.696 | −3.631 | −2.174 | −3.853 |
(−1.103) | (−1.005) | (−0.982) | (−0.640) | (−1.008) | (−0.995) | (−0.498) | (−0.945) | |
Water use structure | 50.945 *** | 57.771 *** | 57.816 *** | 71.378 *** | 4.977 | 7.241 | 16.194 | 3.943 |
(3.181) | (3.715) | (3.387) | (4.732) | (0.391) | (0.567) | (0.825) | (0.300) | |
Irrigation ratio | −14.443 | −14.467 | −12.102 | −25.120 * | 19.830 | 21.325 | 29.765 | 19.629 |
(−0.917) | (−0.951) | (−0.742) | (−1.701) | (0.787) | (0.843) | (0.798) | (0.746) | |
Financial support level for agriculture | 1.669 *** | 1.700 *** | 1.725 *** | 1.616 *** | 0.370 | 0.656 | 2.093 | 0.773 |
(4.196) | (4.419) | (4.223) | (4.417) | (0.208) | (0.367) | (0.841) | (0.408) | |
Disaster rate | 13.687 ** | 14.373 *** | 14.006 ** | 11.158 ** | −22.480 | −23.595 | −29.107 | −24.030 |
(2.516) | (2.730) | (2.505) | (2.210) | (−1.283) | (−1.352) | (−1.371) | (−1.301) | |
Agricultural machinery level | −2.255 *** | −2.195 *** | −2.173 *** | −1.674 *** | −1.145 | −1.102 | −0.879 | −1.214 |
(−3.619) | (−3.641) | (−3.392) | (−2.922) | (−1.458) | (−1.408) | (−0.932) | (−1.499) | |
Time fixed effects | yes | yes | yes | yes | yes | yes | yes | yes |
Individual fixed effects | yes | yes | yes | yes | yes | yes | yes | yes |
Phase I F-statistic values | 97.90 | 7.43 | ||||||
Wald test value | 3.78 * | 2.72 | ||||||
Constant term | 37.585 *** | 34.200 *** | 33.479 *** | 30.309 *** | 40.064 ** | 40.932 ** | 47.317 ** | 42.708 ** |
(3.186) | (3.044) | (3.414) | (2.785) | (2.437) | (2.477) | (2.239) | (2.522) | |
Observation value | 234 | 234 | 234 | 221 | 306 | 306 | 306 | 289 |
Year | Proximity Weight Matrix | Year | Proximity Weight Matrix | Year | Proximity Weight Matrix |
---|---|---|---|---|---|
2003 | 0.569 *** | 2009 | 0.640 *** | 2015 | 0.660 *** |
2004 | 0.641 *** | 2010 | 0.635 *** | 2016 | 0.653 *** |
2005 | 0.589 *** | 2011 | 0.692 *** | 2017 | 0.637 *** |
2006 | 0.628 *** | 2012 | 0.642 *** | 2018 | 0.677 *** |
2007 | 0.625 *** | 2013 | 0.651 *** | 2019 | 0.631 *** |
2008 | 0.654 *** | 2014 | 0.101 *** | 2020 | 0.646 *** |
Variables | (1) | (2) |
---|---|---|
Structural effects of food imports | 0.423 *** | |
(9.936) | ||
First-order lagged term for “Structural effects of food imports” | −0.137 *** | −0.263 ** |
(−3.368) | (−2.334) | |
Technical environment | −3.923 | −12.509 *** |
(−1.614) | (−2.804) | |
Water use structure | 0.018 | 45.744 *** |
(0.002) | (2.714) | |
Irrigation ratio | 18.850 | 0.852 |
(1.396) | (0.039) | |
Financial support level for agriculture | −0.740 | −2.011 |
(−0.975) | (−1.365) | |
Disaster rate | −1.542 | −27.869 |
(−0.128) | (−1.481) | |
Agricultural machinery level | −0.047 | −0.703 |
(−0.080) | (−0.770) | |
Time fixed effects | yes | yes |
Individual fixed effects | yes | yes |
Observation value | 510 | 510 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
Structural effects of food imports | −0.147 *** | −0.296 ** | −0.443 *** | −0.270 *** | −0.609 ** | −0.878 *** |
(−3.743) | (−2.425) | (−3.392) | (−3.838) | (−2.420) | (−3.183) | |
Technical environment | −4.088 * | −13.997 *** | −18.085 *** | −7.729 * | −28.019 *** | −35.749 *** |
(−1.750) | (−3.002) | (−3.285) | (−1.871) | (−2.978) | (−3.187) | |
Water use structure | 1.262 | 49.144 *** | 50.405 *** | 4.244 | 95.084 *** | 99.328 *** |
(0.155) | (2.826) | (3.077) | (0.303) | (2.911) | (3.104) | |
Irrigation ratio | 19.216 | 3.738 | 22.953 | 33.737 | 11.837 | 45.574 |
(1.505) | (0.157) | (1.021) | (1.538) | (0.257) | (0.999) | |
Financial support level for agriculture | −0.760 | −2.341 | −3.101 | −1.431 | −4.738 | −6.169 |
(−0.988) | (−1.451) | (−1.538) | (−1.044) | (−1.442) | (−1.511) | |
Disaster rate | −2.552 | −29.875 | −32.426 | −5.797 | −58.864 | −64.661 |
(−0.208) | (−1.410) | (−1.394) | (−0.271) | (−1.388) | (−1.356) | |
Agricultural machinery level | −0.086 | −0.856 | −0.942 | −0.186 | −1.675 | −1.861 |
(−0.157) | (−0.847) | (−0.805) | (−0.194) | (−0.841) | (−0.795) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Zheng, C. Will the Structure of Food Imports Improve China’s Water-Intensive Food Cultivation Structure? A Spatial Econometric Analysis. Water 2023, 15, 2800. https://doi.org/10.3390/w15152800
Jiang H, Zheng C. Will the Structure of Food Imports Improve China’s Water-Intensive Food Cultivation Structure? A Spatial Econometric Analysis. Water. 2023; 15(15):2800. https://doi.org/10.3390/w15152800
Chicago/Turabian StyleJiang, Hanyuan, and Ciwen Zheng. 2023. "Will the Structure of Food Imports Improve China’s Water-Intensive Food Cultivation Structure? A Spatial Econometric Analysis" Water 15, no. 15: 2800. https://doi.org/10.3390/w15152800
APA StyleJiang, H., & Zheng, C. (2023). Will the Structure of Food Imports Improve China’s Water-Intensive Food Cultivation Structure? A Spatial Econometric Analysis. Water, 15(15), 2800. https://doi.org/10.3390/w15152800