Simple Preparation of Lignin-Based Phenolic Resin Carbon and Its Efficient Adsorption of Congo Red
Abstract
:1. Introduction
2. Materials and Chemicals
2.1. Materials
2.2. Methods
3. Results
3.1. Characterization of LPFC
3.2. Removal of Organic Dyes
3.3. Adsorption Kinetics and Adsorption Isotherms
3.4. Reuse of Adsorbents
3.5. Adsorption Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Botkin, D.B.; Keller, E.A. Environmental Science: Earth as a Living Planet; Willey: Hoboken, NJ, USA, 2007. [Google Scholar]
- Sharma, K.; Vyas, R.K.; Dalai, A.K. Thermodynamic and kinetic studies of methylene blue degradation using reactive adsorption and its comparison with adsorption. J. Chem. Eng. Data 2017, 62, 3651–3662. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, K.; Gupta, S.P. Structure and properties of dyes and pigments. In Dyes and Pigments; Dixit, U., Ed.; IntechOpen: Rijeka, Croatia, 2021; Chapter 8. [Google Scholar]
- Adeyemo, A.A.; Adeoye, I.O.; Bello, O.S. Metal organic frameworks as adsorbents for dye adsorption: Overview, prospects and future challenges. Toxicol. Environ. Chem. 2012, 94, 1846–1863. [Google Scholar] [CrossRef]
- Sellamuthu, K.M.; Mayilswami, C.; Valliammai, A.; Chellamuthu, S. Effect of textile and dye industry polluted ground water on growth and yield of sunflower. Res. Crops 2012, 12, 868–874. [Google Scholar]
- Khattab, T.A.; Abdelrahman, M.S.; Rehan, M. Textile dyeing industry: Environmental impacts and remediation. Environ. Sci. Pollut. Res. 2020, 27, 3803–3818. [Google Scholar] [CrossRef]
- Carmen, Z.; Daniel, S. Organic Pollutants Ten Years after the Stockholm Convention—Environmental and Analytical Update, 1st ed.; InTech: Rijeka, Croatia, 2012. [Google Scholar]
- Zhu, X.H.; Sheng, F.; Wang, W.; Shi, F.Y.; Ding, G.H.; Zhang, R.; Wang, P.Y. Polyoxometalates for photocatalytic degradation of aqueous dyestuff solutions and quantitative structure-property relationship study on photolysis rate constants. Toxicol. Environ. Chem. 2017, 99, 363–375. [Google Scholar]
- Gaffer, H.E.; Shabaan, S.; Abed, N.A.; Abdel-latif, E. Synthesis of some new symmetrical diselenide dyestuffs for dyeing polyester fabrics. Pigm. Resin Technol. 2015, 45, 431–438. [Google Scholar] [CrossRef]
- Poorasadollah, D.; Lotfabad, T.B.; Heydarinasab, A.; Yaghmaei, S.; Mohseni, F.A. Biological activated carbon process for biotransformation of azo dye Carmoisine by Klebsiella spp. Environ. Technol. 2022, 43, 2713–2729. [Google Scholar] [CrossRef]
- Bharathi, D.; Nandagopal, J.G.T.; Ranjithkumar, R.; Gupta, P.K.; Djearamane, S. Microbial approaches for sustainable remediation of dye-contaminated wastewater: A review. Arch. Microbiol. 2022, 204, 169. [Google Scholar] [CrossRef]
- Wang, Y.G.; Zhu, P.P.; Li, X.; Zhou, K.F.; Yang, J.B.; Ma, X.L.; Sha, J.Q. Construction, PPy loading and photocatalytic performance of a polyoxometalate-templated metallacycle compound. J. Coord. Chem. 2017, 70, 3353–3362. [Google Scholar] [CrossRef]
- Li, Y.; Meas, A.; Shan, S.; Yang, R.; Gai, X.; Wang, H.; Tsend, N. Characterization, isotherm and kinetic data for adsorption of CR and 2-naphthol on different bamboo hydrochars. Data Brief. 2018, 19, 49–54. [Google Scholar] [CrossRef]
- Harja, M.; Lupu, N.; Chiriac, H.; Herea, D.D.; Buema, G. Studies on the removal of congo red dye by an adsorbent based on Fly-ash@Fe3O4 mixture. Magnetochemistry 2020, 8, 125. [Google Scholar] [CrossRef]
- Wei, Q.S.; Zhang, Y.X.; Zhang, K.; Mwasiagi, J.I.; Zhao, X.X.; Chow, C.W.K.; Tang, R. Removal of direct dyes by coagulation: Adaptability and mechanism related to the molecular structure. J. Chem. Eng. 2022, 39, 1850–1862. [Google Scholar] [CrossRef]
- Ye, H.; Zhang, C.L.; Huo, C.W.; Zhao, B.Y.; Zhou, Y.H.; Wu, Y.C.; Shi, S.P. Advances in the application of polymers of intrinsic microporosity in liquid separation and purification: Membrane separation and adsorption separation. Korean J. Chem. Eng. 2022, 39, 1850–1862. [Google Scholar] [CrossRef]
- Wang, X.P.; Hou, C.; Qiu, W.; Ke, Y.P.; Xu, Q.C.; Liu, X.Y.; Lin, Y.H. Protein-directed synthesis of bifunctional adsorbent-catalytic hemin-graphene nanosheets for highly efficient removal of dye pollutants via synergistic adsorption and degradation. ACS Appl. Mater. Interfaces 2019, 9, 684–692. [Google Scholar] [CrossRef] [PubMed]
- Dong, K.J.; Hu, T.; Wei, G.; Liu, Q.Z.; Gao, T.T.; Zhang, X.; Yao, J.S. Removal of hexavalent chromium from aqueous solution using novel dye-based adsorbent prepared by flocculation. Sep. Sci. Technol. 2019, 54, 1739–1748. [Google Scholar] [CrossRef]
- Senthamarai, C.; Kumar, P.S.; Priyadharshini, M.; Vijayalakshmi, P.; Kumar, V.V.; Baskaralingam, P.; Thiruvengadaravi, K.V.; Sivanesan, S. Adsorption behavior of methylene blue dye onto surface modified Strychnos potatorum seeds. Environ. Prog. Sustain. 2013, 32, 624–632. [Google Scholar] [CrossRef]
- Khan, N.A.; Shaheen, S.; Najam, T.; Shah, S.S.A.; Javed, M.S.; Nazir, M.A.; Hussain, E.; Shaheen, A.; Hussain, S.; Ashfaq, M. Efficient removal of norfloxacin by MOF@GO composite: Isothermal, kinetic, statistical, and mechanistic study. Toxin Rev. 2021, 40, 915–927. [Google Scholar] [CrossRef]
- Malik, M.; Ibrahim, S.M.; Tahir, A.A.; Nazir, M.A.; Shah, S.S.A.; Wattoo, M.A.; Kousar, R.; Rehman, A.U. Novel approach towards ternary magnetic g-C3N4/ZnO-W/Snx nanocomposite: Photodegradation of nicotine under visible light irradiation. Int. J. Environ. Anal. Chem. 2023. [Google Scholar] [CrossRef]
- Anum, A.; Nazir, M.A.; Ibrahim, S.M.; Shah, S.S.A.; Tahir, A.A.; Malik, M.; Wattoo, M.A.; Rehman, A.U. Synthesis of Bi-Metallic-Sulphides/MOF-5@graphene oxide nanocomposites for the removal of hazardous moxifloxacin. Catalysts 2023, 9, 984. [Google Scholar] [CrossRef]
- Song, X.; Wang, L.A.; Li, Y.F.; Zeng, Y.M.; Zhan, X.Y.; Gong, J. Application of adsorption potential theory in prediction of CO2 and CH4 adsorption on carbon molecular sieves. Adsorpt. Sci. Technol. 2018, 36, 1669–1686. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.D.; Chen, Y.; Shi, Y.H.; Wan, D.J.; Chen, J.; Xiao, S.H. Adsorption of toxic dye Eo-sin Y from aqueous solution by clay/carbon composite derived from spent bleaching eart. Water Environ. Res. 2021, 93, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Nazir, M.A.; Najam, T.; Shahzad, K.; Wattoo, M.A.; Hussain, T.; Tufail, M.K.; Shah, S.S.A.; Rehman, A.U. Heterointerface engineering of water stable ZIF-8@ZIF-67: Adsorption of rhodamine B from water. Surf. Interfaces 2020, 34, 102324. [Google Scholar] [CrossRef]
- Nazir, M.A.; Najam, T.; Jabeen, S.; Wattoo, M.A.; Bashir, M.S.; Shah, S.S.A.; Rehman, A.U. Facile synthesis of Tri-metallic layered double hydroxides (NiZnAl-LDHs): Adsorption of Rhodamine-B and methyl orange from water. Inorg. Chem. Commun. 2022, 145, 110008. [Google Scholar] [CrossRef]
- Xu, C.; Stromme, M. Sustainable porous carbon materials derived from wood-based biopolymers for CO2 capture. Nanomaterials 2019, 9, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.W.; Murali, S.; Stoller, M.D.; Ganesh, K.J.; Cai, W.W.; Ferreira, P.J.; Pirkle, A.; Wallace, R.M.; Cychosz, K.A. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 322, 1537–1541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, J.B.; Zhang, H.X.; Xie, Z.Z.; Liu, J.Y. Preparation of the lentinus edodes-based porous biomass carbon by hydrothermal method for capacitive desalination. In Proceedings of the International Conference on Green Energy and Sustainable Development (GESD), Chongqing, China, 27–28 May 2017. [Google Scholar]
- Zhang, K.; Hu, Z.; Chen, J. Functional porous carbon-based composite electrode materials for lithium secondary batteries. J. Energy Chem. 2013, 22, 214–225. [Google Scholar] [CrossRef]
- Mezohegyi, G.; van der Zee, F.P.; Font, J.; Fortuny, A.; Fabregat, A. Towards advanced aqueous dye removal processes: A short review on the versatile role of activated carbon. J. Environ. Manag. 2012, 102, 148–164. [Google Scholar] [CrossRef]
- Demirbilek, C.; Dinc, C.O. Diethylaminoethyl dextran/epichlorohydrin (DEAE-D/ECH) hydrogel as adsorbent for murexide. Esalin. Water Treat. 2016, 57, 6884–6893. [Google Scholar] [CrossRef]
- Jeoung, S.; Kim, J.H.; Joo, S.H.; Moon, H.R. Hierarchically porous adamantane-shaped carbon nanoframes. J. Mater. Chem. A 2018, 6, 18906–18911. [Google Scholar] [CrossRef]
- Smith, S.C.; Rodrigues, D.F. Carbon-based nanomaterials for removal of chemical and biological contaminants from water: A review of mechanisms and applications. Carbon 2015, 91, 122–143. [Google Scholar] [CrossRef]
- Liu, L.; Xiong, J.J.; Luo, Y.Y.; Cai, L.C.; Qian, Y.; Wang, H.; Mu, L.W.; Feng, X.; Lu, X.H.; Zhu, J.H. Advanced material-oriented biomass precise reconstruction: A review on porous carbon with inherited natural structure and created artificial structure by post-treatment. Macromol. Biosci. 2022, 22, 2100479. [Google Scholar]
- Zhang, W.L.; Yin, J.; Wang, C.W.; Zhao, L.; Jian, W.B.; Lu, K.; Lin, H.B.; Qiu, X.Q.; Alshareef, H.N. Lignin derived porous carbons: Synthesis methods and supercapacitor applications. Small Methods 2011, 5, 2100896. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.M.; Larsson, A.; Annelie, M.; Edlund, U. Comparison of Lignin Distribution, Structure, and Morphology in wheat straw and wood. Ind. Crops Prod. 2022, 187, 115432. [Google Scholar] [CrossRef]
- Baynast, H.D.; Tribot, A.; Niez, B.; Audonnet, F.; Badel, E.; Cesar, G.; Dussap, C.G.; Gastaldi, E.; Massacrier, L.; Michaud, P.; et al. Effects of kraft lignin and corn cob agro-residue on the properties of injected-moulded biocomposites. Ind. Crops Prod. 2022, 177, 114421. [Google Scholar] [CrossRef]
- Ma, Y.Z.; Zheng, D.F.; Mo, Z.Y.; Dong, R.J.; Qiu, X.Q. Magnetic lignin-based carbon nanoparticles and the adsorption for removal of methyl orange. Colloids Surf. A Physicochem. Eng. Asp. 2018, 559, 226–234. [Google Scholar] [CrossRef]
- Wu, Q.; Shao, W.L.; Zhang, Y.J.; Su, T.; Zhao, X.; Kong, F.G.; Xia, N.N.; Wang, Z.W. Use of lignin-based carbons for decolorization of wastewater dyes. Bioresources 2020, 15, 105–116. [Google Scholar] [CrossRef]
- Zhu, S.Y.; Xu, J.; Yu, W.Q.; Kuang, Y.S.; Wang, B.; Ying, G.D.; Li, J.P.; Zheng, C.; Li, J.; Chen, K.F. Simultaneous production of clean water and organic dye from dyeing wastewater by reusable lignin-derived porous carbon. Ind. Crops Prod. 2022, 187, 115314. [Google Scholar] [CrossRef]
- Giraldo, L.; Moreno-Piraján, J.C. Study of adsorption of phenol on activated carbons obtained from eggshells. J. Anal. Appl. Pyrol. 2014, 106, 41–47. [Google Scholar] [CrossRef]
- Lorenc-Grabowska, E.; Diez, M.A.; Gryglewicz, G. Influence of pore size distribution on the adsorption of phenol on PET-based activated carbons. J. Colloid Interface Sci. 2016, 469, 205–212. [Google Scholar] [CrossRef]
- Wanassi, B.; Ben, H.I.; Ghimbeu, C.M.; Vaulot, C.; Jeguirim, M. Green carbon composite-derived polymer resin and waste cotton fibers for the removal of alizarin red s dye. Energies 2017, 10, 1321. [Google Scholar] [CrossRef] [Green Version]
- Li, J.H.; Shi, C.; Bao, A. Design of boron-doped mesoporous carbon materials for multifunctional applications: Dye adsorption and CO2 capture. J. Environ. Chem. Eng. 2021, 9, 105250. [Google Scholar] [CrossRef]
- Ariyanto, T.; Kurniasari, M.; Laksmana, W.T.; Rochmadi; Prasetyo, I. Pore size control of polymer-derived carbon adsorbent and its application for dye removal. Int. J. Environ. Sci. Technol. 2019, 16, 4631–4636. [Google Scholar] [CrossRef]
- Wu, X.S.; Zhu, Y.Z.; Huang, Q.; Huang, Z.R. Facile synthesis of magnetic hi-erarchical porous carbon and the adsorption properties. Mater. Charact. 2022, 193, 112273. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Li, L.Q.; Duan, Z.S.; You, Q.L.; Liao, G.Y.; Wang, D.S. Chitosan modified nitrogen-doped porous carbon composite as a highly-efficient adsorbent for phenolic pollutants removal. Colloid. Surface. A 2021, 610, 125728. [Google Scholar] [CrossRef]
- Zong, P.F.; Wang, S.F.; Liang, G.H.; Shao, M.; Yan, N.; Xu, X.J.; Xu, M.; Li, W.; Yang, Y.X.; Chen, J.H.; et al. Eco-friendly approach for effective removal for Congo red dye from wastewater using reusable Zn-Al layered double hydroxide anchored on multiwalled carbon nanotubes supported sodium dodecyl sulfonate composites. J. Mol. Liq. 2022, 349, 118468. [Google Scholar] [CrossRef]
- Li, K.; Yu, L.; Cai, J.J.; Zhang, L.X. Removal of dyes from aqueous solution using novel C@C composite adsorbents. Micropor. Mesopor. Mat. 2021, 313, 110840. [Google Scholar] [CrossRef]
- Meng, Y.; Liu, T.L.; Yu, S.S.; Cheng, Y.; Lu, J.; Yuan, X.Z.; Wang, H.S. Biomimic-inspired and recyclable nanogel for contamination removal from water and the application in treating bleaching effluents. Ind. Eng. Chem. Res. 2020, 59, 8622–8631. [Google Scholar] [CrossRef]
- Zhao, W.T.; Cui, Y.D.; Zhou, S.Z.; Ye, J.Q.; Sun, J.; Liu, X.M. Rapid adsorption of dyes from aqueous solutions by modified lignin derived superparamagnetic composites. J. Mol. Struct. 2020, 1261, 132954. [Google Scholar] [CrossRef]
- Li, Z.L.; Kong, Y.; Ge, Y.Y. Synthesis of porous lignin xanthate resin for Pb2+ removal from aqueous solution. Chem. Eng. J. 2015, 270, 229–234. [Google Scholar] [CrossRef]
- Hu, H.J.; Liu, J.Y.; Xu, Z.H.; Zhang, L.Y.; Cheng, B.; Ho, W.K. Hierarchical porous Ni/Co-LDH hollow dodecahedron with excellent adsorption property for Congo red and Cr(VI) ions. Appl. Surf. 2019, 478, 981–990. [Google Scholar] [CrossRef]
- Wang, X.H.; Jiang, C.L.; Hou, B.X.; Wang, Y.Y.; Hao, C.; Wu, J.B. Carbon composite lignin-based adsorbents for the adsorption of dyes. Chemosphere 2018, 206, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Nair, V.; Panigrahy, A.; Vinu, R. Development of novel chitosan-lignin composites for adsorption of dyes and metal ions from wastewater. Chem. Eng. J. 2014, 254, 491–502. [Google Scholar] [CrossRef]
- Zhuang, X.; Wan, Y.; Feng, C.M.; Shen, Y.; Zhao, D.Y. Highly Efficient Ad-sorption of Bulky Dye Molecules in Wastewater on Ordered Mesoporous Carbons. Chem. Mater. 2009, 21, 706–716. [Google Scholar] [CrossRef]
- Han, X.B.; Li, R.; Miao, P.P.; Gao, J.; Hu, G.W.; Zhao, Y.; Chen, T. Design, Synthesis and Adsorption Evaluation of Bio-Based Lignin/Chitosan Beads for Congo Red Removal. Materials 2022, 15, 2310. [Google Scholar] [CrossRef]
- An, L.; Si, C.L.; Bae, J.H.; Jeong, H.; Kim, Y.S. One-step silanization and amination of lignin and its adsorption of Congo red and Cu(II) ions in aqueous solution. Int. J. Biol. Macromol. 2020, 159, 222–230. [Google Scholar] [CrossRef]
- Deng, S.B.; Yu, G.; Ting, Y.P. Production of a bioflocculant by Aspergillus parasiticus and its application in dye removal. Colloid. Surface. B 2005, 44, 179–186. [Google Scholar] [CrossRef]
- Borsalani, H.; Nikzad, M.; Ghoreyshi, A.A. Extraction of Lignosulfonate from Black Liquor into Construction of a Magnetic Lignosulfonate-Based Adsorbent and Its Adsorption Properties for Dyes from Aqueous Solutions. J. Polym. Environ. 2022, 30, 4068–4085. [Google Scholar] [CrossRef]
- Bartonova, L.; Ruppenthalova, L.; Ritz, M. Adsorption of Naphthol Green B on unburned carbon: 2-and 3-parameter linear and non-linear equilibrium modelling. Chin. J. Chem. Eng. 2017, 25, 37–44. [Google Scholar] [CrossRef]
- Teshager, F.M.; Habtu, N.G.; Mequanint, K. A systematic study of cellulose-reactive anionic dye removal using a sustainable bioadsorbent. Chemosphere 2022, 303, 135024. [Google Scholar] [CrossRef]
- Yu, M.; Zhao, S.; Wu, H.; Asuha, S. Efficient removal of Congo red by magnetically separable mesoporous TiO2 modified with gamma-Fe2O3. J. Porous. Mat. 2013, 20, 1353–1360. [Google Scholar] [CrossRef]
- Liu, J.; Wang, N.; Zhang, H.L.; Baeyens, J. Adsorption of Congo red dye on FexCo3−xO4 nanoparticle. JEM. 2019, 238, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Wang, F.H.; Zhang, C.; Yu, Z.G.; Wei, J.J.; Yang, Z.Z.; Li, Y.Q.; Li, Z.H.; Zhu, M.Y.; Shen, L.Q. Photocatalytic decomposition of Congo red under visible light irradiation using MgZnCr-TiO2 layered double hydroxide. J. Mol. Liq. 2017, 168, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.; Arsyad, F.S.; Royani, I.; Taher, T.; Lesbani, A.; Siregar, P.M.S.B.N. High regeneration of ZnAl/NiAl-Magnetite humic acid for adsorption of Congo red from aqueous solution. Inorg. Chem. Commun. 2023, 150, 110517. [Google Scholar] [CrossRef]
- Tan, Y.M.; Kang, Y.T.; Wang, W.W.; Lv, X.Y.; Wang, B.R.; Zhang, Q.; Cui, C.Y.; Cui, S.Y.; Jiao, S.H.; Pang, G.S. Chitosan modified inorganic nanowires membranes for ultra-fast and efficient removal of Congo red. Appl. Surf. Sci. 2020, 569, 150970. [Google Scholar] [CrossRef]
- Khan, Z.; AL-Thabaiti, S.A. Photogenic MnO2/Ag metal nanocomposites and their dye adsorbing activities. J. Saudi Chem. Soc. 2023, 27, 101646. [Google Scholar] [CrossRef]
- Han, M.Y.; Shen, X.Y.; Shao, H.M.; Wang, X.Y.; Liu, Y.; Zhai, Y.C. Adsorption of Congo red by fibrous xonotlite prepared from waste silicon residue. Water Sci. Technol. 2022, 85, 3159–3168. [Google Scholar] [CrossRef]
- Aigbea, U.O.; Khenfouch, M.; Ho, W.H.; Maity, A.; Vallabhapurapu, V.S.; Hemmaragala, N.M. Congo red dye removal under the influence of rotating magnetic field by polypyrrole magnetic nanocomposite. Desalin. Water Treat. 2018, 131, 328–342. [Google Scholar] [CrossRef] [Green Version]
- Kaur, S.; Rani, S.; Mahajan, R.K. Adsorption kinetics for the removal of hazardous dye congo red by biowaste materials as adsorbents. J. Chem. 2013, 2013, 628582. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Nguyen, N.T.; Nguyen, V.A. In situ synthesis and characterization of ZnO/chitosan nanocomposite as an adsorbent for removal of congo red from aqueous solution. Adv. Polym. Technol. 2020, 2020, 3892694. [Google Scholar] [CrossRef] [Green Version]
- Sharma, G.; AlGarni, T.S.; Kumar, P.S.; Bhogal, S.; Kumar, A.; Sharma, S.; Naushad, M.; ALOthman, Z.A.; Stadler, F.J. Utilization of Ag2O-Al2O3-ZrO2 decorated onto rGO as adsorbent for the removal of Congo red from aqueous solution. Environ. Res. 2021, 197, 111179. [Google Scholar] [CrossRef]
- Xie, H.T.; Xiong, X.P. A porous molybdenum disulfide and reduced graphene oxide nanocomposite (MoS2-rGO) with high adsorption capacity for fast and preferential adsorption towards Congo red. J. Environ. Chem. Eng. 2017, 5, 1150–1158. [Google Scholar] [CrossRef]
- Pan, B.; Xing, B.S. Adsorption mechanisms of organic chemicals on carbonnanotubes. Environ. Sci. Technol. 2008, 42, 9005–9013. [Google Scholar] [CrossRef] [PubMed]
Samples | |||||
---|---|---|---|---|---|
30 °C | 45 °C | 60 °C | |||
CR | −6.37 | −6.67 | −7.00 | 3.00 | 21.62 |
Samples | Quasi-Primary Adsorption Kinetic Model | Quasi-Secondary Adsorption Kinetic Model | ||||
---|---|---|---|---|---|---|
R2 | R2 | |||||
CR | 185.30 | 0.049 | 0.8079 | 425.53 | 0.00030 | 0.9994 |
Samples | The intra-particle diffusion model | |||||
(mg·g−1·min−0.5) | (mg·g−1·min−0.5) | |||||
CR | 61.52 | 0.9176 | 13.59 | 0.6717 |
Langmuir | CR | Freundlich | CR | Temkin | CR | Redlich–Peterson | CR |
---|---|---|---|---|---|---|---|
Qm (mg/g) | 416.67 | KF | 284.60 | Bt | 41.84 | β | 26.18 |
KL (L/mg) | 1.64 | 1/n | 0.13 | KT | 927.97 | A (mg/L) | 0.0026 |
R2 | 0.9978 | R2 | 0.9202 | R2 | 0.9002 | R2 | 0.9860 |
Adsorbent | Maximum Capacity (mg/g) | Removal Rate (%) | Reference |
---|---|---|---|
Magnetically separable mesoporous TiO2 modified with gamma-Fe2O3. | 125.00 | 97 | [64] |
Coconut shell FexCo3-xO4 nanoparticles. | 128.60 | 86.12 | [65] |
MgZnCr-TiO2 layered double hydroxide. | 526.32 | 99.68 | [66] |
NiAl magnetite humic acid. | 178.571 | 97.29 | [67] |
Chitosan-modified hydrogen titanate nanowires membrane. | 374.4 | 99.5 | [68] |
Photogenic MnO2/Ag metal nanocomposites. | 97.10 | 98 | [69] |
Fibrous xonotlite. | 574.71 | 95.5 | [70] |
Polypyrrole magnetic nanocomposite. | 119.76 | 94 | [71] |
Ground nut shells charcoal. | 117.60 | 83 | [72] |
ZnO/chitosan nanocomposite. | 227.30 | 94.8 | [73] |
Reduced graphene oxide composite. | 333.32 | 89 | [74] |
Porous molybdenum disulfide and reduced graphene oxide nanocomposite. | 440.9 | 97 | [75] |
LPFC activated carbon. | 406.35 | 92.1 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, W.; Li, P.; Wang, M.; Yi, D.; Jiang, B.; Wu, W. Simple Preparation of Lignin-Based Phenolic Resin Carbon and Its Efficient Adsorption of Congo Red. Water 2023, 15, 2777. https://doi.org/10.3390/w15152777
Su W, Li P, Wang M, Yi D, Jiang B, Wu W. Simple Preparation of Lignin-Based Phenolic Resin Carbon and Its Efficient Adsorption of Congo Red. Water. 2023; 15(15):2777. https://doi.org/10.3390/w15152777
Chicago/Turabian StyleSu, Wanting, Penghui Li, Mingkang Wang, Dairenjie Yi, Bo Jiang, and Wenjuan Wu. 2023. "Simple Preparation of Lignin-Based Phenolic Resin Carbon and Its Efficient Adsorption of Congo Red" Water 15, no. 15: 2777. https://doi.org/10.3390/w15152777
APA StyleSu, W., Li, P., Wang, M., Yi, D., Jiang, B., & Wu, W. (2023). Simple Preparation of Lignin-Based Phenolic Resin Carbon and Its Efficient Adsorption of Congo Red. Water, 15(15), 2777. https://doi.org/10.3390/w15152777