Implications of Extended Environmental Multimedia Modeling System (EEMMS) on Water Allocation Management: Tritium Numerical Case Study
Abstract
:1. Introduction
2. Methodology
3. Case Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yuan, J.; Elektorowicz, M. 2-D numerical multimedia environmental analysis system (NMEAS) for pollution and risk assessment. Adv. Eng. Softw. 2013, 55, 56–63. [Google Scholar] [CrossRef]
- Zhu, D.; Chen, T.; Zhen, N.; Niu, R. Monitoring the effects of open-pit mining on the eco-environment using a moving window-based remote sensing ecological index. Environ. Sci. Pollut. Res. 2020, 27, 15716–15728. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Lei, W. Hydrological interactions between oases and water vapor transportation in the Tarim Basin, northwestern China. Sci. Rep. 2018, 8, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Souza Machado, A.A.; Spencer, K.; Kloas, W.; Toffolon, M.; Zarfl, C. Metal fate and effects in estuaries: A review and conceptual model for better understanding of toxicity. Sci. Total Environ. 2016, 541, 268–281. [Google Scholar] [CrossRef]
- Dippong, T.; Mihali, C.; Năsui, D.; Berinde, Z.; Butean, C. Assessment of Water Physicochemical Parameters in the Strîmtori-Firiza Reservoir in Northwest Romania. Water Environ. Res. 2018, 90, 220–233. [Google Scholar] [CrossRef]
- Gumuła-Kawęcka, A.; Jaworska-Szulc, B.; Szymkiewicz, A.; Gorczewska-Langner, W.; Pruszkowska-Caceres, M.; Angulo-Jaramillo, R.; Šimůnek, J. Estimation of groundwater recharge in a shallow sandy aquifer using unsaturated zone modeling and water table fluctuation method. J. Hydrol. 2022, 605, 127283. [Google Scholar] [CrossRef]
- Abdollahi, K.; Bazargan, A.; McKay, G. Water Balance Models in Environmental Modeling. In Handbook of Environmental Materials Management; Hussain, C.M., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 1961–1976. ISBN 978-3-319-73645-7. [Google Scholar]
- Yuan, J.; Chen, Z.; Ding, S.; Zhang, Q.; Jia, Y. Application of an environmental multimedia modeling system for health risk assessment: Key influencing factors and uncertainties research. Integr. Environ. Assess. Manag. 2021, 17, 877–886. [Google Scholar] [CrossRef]
- Sophocleous, M. Interactions Between Groundwater and Surface Water: The State of the Science. Hydrogeol. J. 2002, 10, 52–67. [Google Scholar] [CrossRef]
- Winter, T.C. Relation of Streams, Lakes, and Wetlands to Groundwater Flow Systems. Hydrogeol. J. 1999, 7, 28–45. [Google Scholar] [CrossRef]
- Bosserelle, A.L.; Morgan, L.K.; Hughes, M.W. Groundwater Rise and Associated Flooding in Coastal Settlements Due To Sea-Level Rise: A Review of Processes and Methods. Earth’s Futur. 2022, 10, e2021EF002580. [Google Scholar] [CrossRef]
- Fennell, J. Groundwater in Alberta—An Assessment of Source, Use and Change; Alberta, 2011. Available online: http://www.albertawater.com/ (accessed on 2 July 2023).
- Connoor, B.F.; Rose, D.L.; Noriega, M.C.; Murtagh, L.K.; Abney, S.R. Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of 86 Volatile Organic Compounds in Water by Gas Chromatography/Mass Spectrometry, Including Detections Less Than Reporting Limits. U.S. Geol. Surv. 1998, 97, 78. [Google Scholar] [CrossRef]
- Balugani, E.; Lubczynski, M.W.; Reyes-acosta, L.; Van Der Tol, C.; Francés, A.P.; Metselaar, K. Groundwater and unsaturated zone evaporation and transpiration in a semi-arid open woodland. J. Hydrol. 2017, 547, 54–66. [Google Scholar] [CrossRef]
- Evan Dresel, P.; Wellman, D.M.; Cantrell, K.J.; Truex, M.J. Review: Technical and Policy Challenges in Deep Vadose Zone Remediation of Metals and Radionuclides. Truex Environ. Sci. Technol. 2011, 45, 4207–4216. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Pu, S.; Zheng, C.; Yi, S. An improved method for the calculation of unsaturated—Saturated water flow by coupling the FEM and FDM. Sci. Rep. 2019, 9, 14995. [Google Scholar] [CrossRef] [Green Version]
- Arrey, I.; Odiyo, J.O.; Makungo, R.; Kataka, M. Vadose zone infiltration and its implication for groundwater contamination risk assessment in Siloam village, Limpopo province, South Africa. Jàmbá J. Disaster Risk Stud. 2019, 11, 682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Iturbe, I.; D’Odorico, P.; Laio, F.; Ridolfi, L.; Tamea, S. Challenges in humid land ecohydrology: Interactions of water table and unsaturated zone with climate, soil, and vegetation. Water Resour. Res. 2007, 43, W09301. [Google Scholar] [CrossRef]
- Yuan, J.; Elektorowicz, M. Extended environmental multimedia modeling system assessing the risk carried by pollutants in interacted air-unsaturated-groundwater zones. J. Hazard. Mater. 2020, 381, 120852. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Yuan, J. A two-step modelling approach for the recovery of free phase LNAPL in petroleum contaminated groundwater systems. In New Developments in Sustainable Petroleum Engineering (b. Chapter); Nova Science Publishers: Hauppauge, NY, USA, 2011; pp. 53–64. [Google Scholar]
- Yuan, J.; Elektorowicz, M.; Chen, Z. Improved environmental multimedia modeling and its sensitivity analysis. Water Sci. Technol. 2011, 63, 2155–2163. [Google Scholar] [CrossRef]
- Britannica. The Editors of Encyclopaedia. “tritium”. Encycl. Br. Available online: www.britannica.com/science/triton-tritium-nucleus (accessed on 2 July 2023).
- Matsumoto, H.; Shimada, Y.; Nakamura, A.J.; Usami, N.; Ojima, M.; Kakinuma, S.; Shimada, M.; Sunaoshi, M.; Hirayama, R.; Tauchi, H. Health effects triggered by tritium: How do we get public understanding based on scientifically supported evidence? J. Radiat. Res. 2021, 62, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Megdal, S.B. Invisible water: The importance of good groundwater governance and management. Npj. Clean Water 2018, 1, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Coulibaly, L.; Mohamed, E.L.; Robert, H. A GIS-based multimedia watershed model: Development and application. Chemosphere 2004, 55, 1067–1080. [Google Scholar] [CrossRef]
- Montgomery, C. Environmental Geology, 6th ed.; McGraw-Hill: New York, NY, USA, 2003. [Google Scholar]
- Jury, W.A.; Russo, D.; Strelie, G.; Abd, H.E. Evaluation of volatilization by organic chemicals residing below the soil surface. Water Resour. Res. 1990, 26, 13–20. [Google Scholar] [CrossRef]
- Robinson, H.D.; Gronow, J.R. Tritium Levels in Leachates and Condensates from Domestic Wastes in Landfill Sites. J. Chart. Inst. Water Environ. Manag. 1996, 10, 391–398. [Google Scholar] [CrossRef]
- PADER. Radiological Investigation Results for Pennsylvania Landfill Leachate Fall 2005, Tritium Update. 2005. Available online: https://www.everglow.us/pdf/tritium-in-pa-landfills-april-2006.pdf (accessed on 2 July 2023).
- Feehley, C.E.; Zheng, C.; Molz, F. A dual-domain mass transfer approach for modeling solute transport in heterogeneous aquifers: Application to the MADE site. Water Resour. Res. 2002, 36, 2501–2516. [Google Scholar] [CrossRef] [Green Version]
- Tsuang, B.J.; Chao, J.P. Development of a circuit model to describe the advection–diffusion equation for air pollution. Atmos. Environ. 1997, 31, 639–657. [Google Scholar] [CrossRef]
- Hanna, S.; Briggs, G.A.; Hosker, R.P. Handbook on Atmospheric Diffusion; DOE/TIC-11223; Technical Information Center U.S. Department of Energy: Oak Ridge, TN, USA, 1982. [CrossRef] [Green Version]
- Sudicky, E.A. The Laplace transform Galerkin technique: A time-continuous finite element theory and application to mass transport in groundwater. Water Resour. Res 1989, 25, 1833–1846. [Google Scholar] [CrossRef]
- Zheng, C.; Jiao, J.J. Numerical simulation of tracer tests in a heterogeneous aquifer. J. Environ. Eng. 1998, 124, 510–516. [Google Scholar] [CrossRef] [Green Version]
- USNRC. Criteria for Preparation and Evaluation of Radiological Emergency Response Plans and Preparedness in Support of Nuclear Power Plants: Final Report. ACCESSION. NUMBER. NUREG-0654. Available online: https://www.nrc.gov/reading-rm/doc-collections/nuregs/pubs/2019/ (accessed on 1 December 2019).
- USEPA (U.S. Environmental Protection Agency). Ecological Risk Assessments; USEPA: Washington, DC, USA, 2014. Available online: https://www.epa.gov/risk (accessed on 1 December 2019).
- Xu, X.; Yuan, J.; Yu, Q. A Study on Water Rights Allocation in Transboundary Rivers Based on the Transfer and Inequality Index of Virtual Water. Water 2023, 15, 2379. [Google Scholar] [CrossRef]
- Kazemi, M.; Bozorg-Haddad, O.; Fallah-Mehdipour, E.; Chu, X. Optimal water resources allocation in transboundary river basins according to hydropolitical consideration. Environ. Dev. Sustain. 2022, 24, 1188–1206. [Google Scholar] [CrossRef]
- Umata, T. Estimation of Biological Effects of Tritium. J. UOEH 2017, 39, 25–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shozugawa, K.; Hori, M.; Johnson, T.E.; Takahata, N.; Sano, Y.; Kavasi, N.; Sahoo, S.K.; Matsuo, M. Landside tritium leakage over through years from Fukushima Dai-ichi nuclear plant and relationship between countermeasures and contaminated water. Sci. Rep. 2020, 10, 19925. [Google Scholar] [CrossRef] [PubMed]
Parameters | Symbol (Units) | Value |
---|---|---|
recharge | m d−1 | 1.4 × 10−4 |
Water table depth | zwt (m) | 53.75 |
hydraulic conductivity of layer (fine siltstone) | K (cm s−1) | 5 × 10−4 |
hydraulic conductivity of layer (medium grained sandstone) | K (cm s−1) | 1 × 10−2 |
Tritium concentration (patch of 40 m to 80 m) | pCi mL−1 | 300 |
longitudinal dispersivity | DL (m) | 0.1 |
transverse dispersivity | DT (m) | 0.0011 |
effective diffusion coefficient in unsaturated zone | Dx and Dy (cm2 s−1) | 1.34 × 10−5 |
Porosity | φun | 0.35 |
effective diffusion coefficient in the air | Dx and Dy (m2 s−1) | 10 |
Wind speeds | V (m s−1) | 0–10 |
Evaluation Time (Year) | The Total Flux (Curies per Year) | The Air Flux (Curies per Year) | The Flux to the Leachate (Curies per Year) |
---|---|---|---|
1 | 8.3 | 0.59 | 7.7 |
3 | 5.4 | 0.38 | 5.02 |
5 | 1.8 | 0.13 | 1.67 |
10 | 0.36 | 0.03 | 0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, J.; Wang, X.; Guo, Q.; Chen, W.; Xu, X.; Wang, X. Implications of Extended Environmental Multimedia Modeling System (EEMMS) on Water Allocation Management: Tritium Numerical Case Study. Water 2023, 15, 2769. https://doi.org/10.3390/w15152769
Yuan J, Wang X, Guo Q, Chen W, Xu X, Wang X. Implications of Extended Environmental Multimedia Modeling System (EEMMS) on Water Allocation Management: Tritium Numerical Case Study. Water. 2023; 15(15):2769. https://doi.org/10.3390/w15152769
Chicago/Turabian StyleYuan, Jing, Xiao Wang, Qing Guo, Wanke Chen, Xia Xu, and Xiaoyan Wang. 2023. "Implications of Extended Environmental Multimedia Modeling System (EEMMS) on Water Allocation Management: Tritium Numerical Case Study" Water 15, no. 15: 2769. https://doi.org/10.3390/w15152769
APA StyleYuan, J., Wang, X., Guo, Q., Chen, W., Xu, X., & Wang, X. (2023). Implications of Extended Environmental Multimedia Modeling System (EEMMS) on Water Allocation Management: Tritium Numerical Case Study. Water, 15(15), 2769. https://doi.org/10.3390/w15152769