Exploring Public Preference and Willingness to Pay for the Ecosystem Benefits of Urban Green Infrastructure: Evidence from a Discrete Choice Experiment of Pilot Sponge Cities in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology and Data Collection
2.2.1. Attributes and Levels
2.2.2. Experimental Design
2.2.3. Questionnaire Design
2.2.4. Data Collection
2.3. Econometric Model
3. Results
3.1. Sample Characteristics
3.2. Results of Basic Model
3.2.1. Regression Results of the Basic Model
3.2.2. Results of Cross-Regression
3.2.3. Marginal Willingness to Pay
4. Discussion
4.1. Public Preferences on GI Facilities’ Functions
4.1.1. Reduction in Run-Off Pollutant
4.1.2. Degrees of Ponding
4.1.3. Plant Type and Planting Aesthetics
4.2. Influencing Factors of WTP
4.2.1. Cognitive Level
4.2.2. Gender
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meng, M.; Dąbrowski, M.; Tai, Y.; Stead, D.; Chan, F. Collaborative spatial planning in the face of flood risk in delta cities: A policy framing perspective. Environ. Sci. Policy 2019, 96, 95–104. [Google Scholar] [CrossRef]
- Wang, Y.T.; Sun, M.X.; Song, B.M. Public perceptions of and willingness to pay for sponge city initiatives in China. Resour. Conserv. Recycl. 2017, 122, 11–20. [Google Scholar] [CrossRef]
- Wilkerson, B.; Romanenko, E.; Barton, D.N. Modeling reverse auction-based subsidies and stormwater fee policies for Low Impact Development (LID) adoption: A system dynamics analysis. Sustain. Cities Soc. 2022, 79, 103602. [Google Scholar] [CrossRef]
- Debortoli, N.S.; Camarinha, P.I.M.; Marengo, J.A.; Rodrigues, R.R. An index of Brazil’s vulnerability to expected increases in natural flash flooding and landslide disasters in the context of climate change. Nat. Hazards 2017, 86, 557–582. [Google Scholar] [CrossRef]
- Berndtsson, R.; Becker, P.; Persson, A.; Aspegren, H.; Haghighatafshar, S.; Jonsson, K.; Larsson, R.; Mobini, S.; Mottaghi, M.; Nilsson, J.; et al. Drivers of changing urban flood risk: A framework for action. J. Environ. Manag. 2019, 240, 47–56. [Google Scholar] [CrossRef]
- Qiao, X.-J.; Liao, K.-H.; Randrup, T.B. Sustainable stormwater management: A qualitative case study of the Sponge Cities initiative in China. Sustain. Cities Soc. 2020, 53, 101963. [Google Scholar] [CrossRef]
- Griffiths, J.; Chan, F.K.S.; Shao, M.; Zhu, F.; Higgitt, D.L. Interpretation and application of Sponge City guidelines in China. Philos. Trans. A Math. Phys. Eng. Sci. 2020, 378, 20190222. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.; Ren, X.Y.; Gu, R.Z.; Che, Y. Implementation of the “sponge city” development plan in China: An evaluation of public willingness to pay for the life-cycle maintenance of its facilities. Cities 2019, 93, 13–30. [Google Scholar] [CrossRef]
- Tuholske, C.; Caylor, K.; Funk, C.; Verdin, A.; Sweeney, S.; Grace, K.; Peterson, P.; Evans, T. Global urban population exposure to extreme heat. Proc. Natl. Acad. Sci. USA 2021, 118, e2024792118. [Google Scholar] [CrossRef] [PubMed]
- Eckart, K.; McPhee, Z.; Bolisetti, T. Multiobjective optimization of low impact development stormwater controls. J. Hydrol. 2018, 562, 564–576. [Google Scholar] [CrossRef]
- Liang, C.; Zhang, X.; Xia, J.; Xu, J.; She, D. The Effect of Sponge City Construction for Reducing Directly Connected Impervious Areas on Hydrological Responses at the Urban Catchment Scale. Water 2020, 12, 1163. [Google Scholar] [CrossRef] [Green Version]
- D’Aniello, A.; Cimorelli, L.; Cozzolino, L. The Influence of Soil Stochastic Heterogeneity and Facility Dimensions on Stormwater Infiltration Facilities Performance. Water Resour. Manag. 2019, 33, 2399–2415. [Google Scholar] [CrossRef]
- Darnthamrongkul, W.; Mozingo, L.A. Toward sustainable stormwater management: Understanding public appreciation and recognition of urban Low Impact Development (LID) in the San Francisco Bay Area. J. Environ. Manag. 2021, 300, 113716. [Google Scholar] [CrossRef] [PubMed]
- Frosi, M.H.; Kargar, M.; Jutras, P.; Prasher, S.O.; Clark, O.G. Street Tree Pits as Bioretention Units: Effects of Soil Organic Matter and Area Permeability on the Volume and Quality of Urban Runoff. Water Air Soil Pollut. 2019, 230, 152. [Google Scholar] [CrossRef]
- Zhan, W.; Chui, T.F.M. Evaluating the life cycle net benefit of low impact development in a city. Urban For. Urban Green. 2016, 20, 295–304. [Google Scholar] [CrossRef]
- Kabisch, N.; Frantzeskaki, N.; Hansen, R. Principles for urban nature-based solutions. Ambio 2022, 51, 1388–1401. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Li, R.D.; Liu, H.L.; Ni, G.H. Real-time control enhanced blue-green infrastructure towards torrential events: A smart predictive solution. Urban. Clim. 2023, 49, 101439. [Google Scholar] [CrossRef]
- Zalejska-Jonsson, A.; Wilkinson, S.J.; Wahlund, R. Willingness to Pay for Green Infrastructure in Residential Development-A Consumer Perspective. Atmosphere 2020, 11, 152. [Google Scholar] [CrossRef] [Green Version]
- Feng, M.; Jung, K.; Li, F.; Li, H.; Kim, J.-C. Evaluation of the Main Function of Low Impact Development Based on Rainfall Events. Water 2020, 12, 2231. [Google Scholar] [CrossRef]
- Pons, V.; Abdalla, E.M.H.; Tscheikner-Gratl, F.; Alfredsen, K.; Sivertsen, E.; Bertrand-Krajewski, J.L.; Muthanna, T.M. Practice makes the model: A critical review of stormwater green infrastructure modelling practice. Water Res. 2023, 236, 119958. [Google Scholar] [CrossRef]
- Wang, R.; Brent, D.; Wu, H. Willingness to pay for ecosystem benefits of green stormwater infrastructure in Chinese sponge cities. J. Clean. Prod. 2022, 371, 133462. [Google Scholar] [CrossRef]
- Zheng, S.; Tang, Y.; Chan, F.K.S.; Cao, L.; Song, R. The Demographic Implication for Promoting Sponge City Initiatives in the Chinese Megacities: A Case of Wuhan. Water 2022, 14, 883. [Google Scholar] [CrossRef]
- Wang, R.; Wu, H.; Chiles, R. Ecosystem Benefits Provision of Green Stormwater Infrastructure in Chinese Sponge Cities. Environ. Manag. 2022, 69, 558–575. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y.; Han, Y.F.; Qiao, X.J.; Randrup, T.B. Citizen Willingness to Pay for the Implementation of Urban Green Infrastructure in the Pilot Sponge Cities in China. Forests 2023, 14, 474. [Google Scholar] [CrossRef]
- Ureta, J.; Motallebi, M.; Vassalos, M.; Alhassan, M.; Ureta, J.C. Valuing stakeholder preferences for environmental benefits of stormwater ponds: Evidence from choice experiment. J. Environ. Manag. 2021, 293, 112828. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.J.; Randrup, T.B. Willingness to Pay for the Maintenance of Green Infrastructure in Six Chinese Pilot Sponge Cities. Water 2022, 14, 428. [Google Scholar] [CrossRef]
- Qi, Y.; Chan, F.K.S.; Thorne, C.; O’Donnell, E.; Quagliolo, C.; Comino, E.; Pezzoli, A.; Li, L.; Griffiths, J.; Sang, Y.; et al. Addressing Challenges of Urban Water Management in Chinese Sponge Cities via Nature-Based Solutions. Water 2020, 12, 2788. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Huang, M.; Zuo, J.; Rameezdeen, R. Received vs. given: Willingness to pay for sponge city program from a perceived value perspective. J. Clean. Prod. 2020, 256, 120479. [Google Scholar] [CrossRef]
- Porse, E.; Kerner, M.; Shinneman, J.; Kaplan, J.; Stone, S.; Cadenasso, M.L. Stormwater utility fees and household affordability of urban water services. Water Policy 2022, 24, 998–1013. [Google Scholar] [CrossRef]
- Yoo, J.; Lee, C. A New Methodology for Updating Land Cover Maps in Rapidly Urbanizing Areas of Levying Stormwater Utility Fee. Appl. Sci. 2022, 12, 3254. [Google Scholar] [CrossRef]
- Chang, N.-B.; Lu, J.-W.; Chui, T.F.M.; Hartshorn, N. Global policy analysis of low impact development for stormwater management in urban regions. Land. Use Policy 2018, 70, 368–383. [Google Scholar] [CrossRef]
- Brent, D.A.; Gangadharan, L.; Lassiter, A.; Leroux, A.; Raschky, P.A. Valuing environmental services provided by local stormwater management. Water Resour. Res. 2017, 53, 4907–4921. [Google Scholar] [CrossRef]
- Ando, A.W.; Cadavid, C.L.; Netusil, N.R.; Parthum, B. Willingness-to-Volunteer and Stability of Preferences between Cities: Estimating the Benefits of Stormwater Management. J. Environ. Econ. Manag. 2019. [Google Scholar] [CrossRef]
- Luo, P.P.; Zheng, Y.; Wang, Y.Y.; Zhang, S.P.; Yu, W.Q.; Zhu, X.; Huo, A.D.; Wang, Z.H.; He, B.; Nover, D. Comparative Assessment of Sponge City Constructing in Public Awareness, Xi’an, China. Sustainability 2022, 14, 11653. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, D.; Zhou, L. A game theory analysis of promoting the spongy city construction at the building and community scale. Habitat. Int. 2019, 86, 91–100. [Google Scholar] [CrossRef]
- Wang, M.J.; Lu, Y.Y.; Ge, X.Y. Effect of sponge city construction on urban waterlogging reduction in semi-humid areas of China. J. Water Clim. Chang. 2022, 13, 3532–3546. [Google Scholar] [CrossRef]
- Iles, R.A.; Choi, Y.; Kagundu, S.; Gatumu, H. Estimating willingness-to-pay for a livestock vaccine among the marginalized: The role of reflective thought in discrete choice experiments. Prev. Vet. Med. 2022, 201, 105592. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, C.; Liu, H.Y.; Zheng, S.Q. The role of public information in increasing homebuyers’ willingness-to-pay for green housing: Evidence from Beijing. Ecol. Econ. 2016, 129, 40–49. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, H.; Xu, S.; Wu, L. How cognitive bias and information disclosure affect the willingness of urban residents to pay for green power ? J. Clean. Prod. 2018, 189, 552–562. [Google Scholar] [CrossRef]
- Oerlemans, L.A.G.; Chan, K.Y.; Volschenk, J. Willingness to pay for green electricity: A review of the contingent valuation literature and its sources of error. Renew. Sust. Energ. Rev. 2016, 66, 875–885. [Google Scholar] [CrossRef] [Green Version]
- Hoyos, D. The state of the art of environmental valuation with discrete choice experiments. Ecol. Econ. 2010, 69, 1595–1603. [Google Scholar] [CrossRef]
- Boto-García, D.; Mariel, P.; Pino, J.B.; Alvarez, A. Tourists’ willingness to pay for holiday trip characteristics: A Discrete Choice Experiment. Tour. Econ. 2020, 28, 349–370. [Google Scholar] [CrossRef]
- Londoño Cadavid, C.; Ando, A.W. Valuing preferences over stormwater management outcomes including improved hydrologic function. Water Resour. Res. 2013, 49, 4114–4125. [Google Scholar] [CrossRef]
- Cicatiello, L.; Ercolano, S.; Gaeta, G.L.; Pinto, M. Willingness to pay for environmental protection and the importance of pollutant industries in the regional economy. Evidence from Italy. Ecol. Econ. 2020, 177, 106774. [Google Scholar] [CrossRef]
- Rousseau, S.; Franck, M.; De Jaeger, S. The Impact of Spatial Patterns in Road Traffic Externalities on Willingness-to-Pay Estimates. Environ. Resour. Econ. 2020, 75, 271–295. [Google Scholar] [CrossRef]
- Tanaka, K.; Nelson, H.; McCullar, N.; Parulekar, N. Citizens’ preferences on green infrastructure practices and their enhancement in Portland, Oregon. J. Environ. Manag. 2022, 318, 115415. [Google Scholar] [CrossRef]
- Chen, S.Y.; Wang, Y.F.; Ni, Z.B.; Zhang, X.B.; Xia, B.C. Benefits of the ecosystem services provided by urban green infrastructures: Differences between perception and measurements. Urban For. Urban Green. 2020, 54, 126774. [Google Scholar] [CrossRef]
- Tsai, P.; Onishi, A. Urban households’ willingness to pay for improvements in rainwater harvesting and rainwater infiltration system: Case study in Japan. Water Environ. J. 2022, 36, 494–503. [Google Scholar] [CrossRef]
- Thistlethwaite, J.; Henstra, D.; Brown, C.; Scott, D. How Flood Experience and Risk Perception Influences Protective Actions and Behaviours among Canadian Homeowners. Environ. Manag. 2018, 61, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Martin-Lopez, B.; Iniesta-Arandia, I.; Garcia-Llorente, M.; Palomo, I.; Casado-Arzuaga, I.; Del Amo, D.G.; Gomez-Baggethun, E.; Oteros-Rozas, E.; Palacios-Agundez, I.; Willaarts, B.; et al. Uncovering Ecosystem Service Bundles through Social Preferences. PLoS ONE 2012, 7, e38970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agbenyega, O.; Burgess, P.J.; Cook, M.; Morris, J. Application of an ecosystem function framework to perceptions of community woodlands. Land. Use Policy 2009, 26, 551–557. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Bao, Z.; Tang, G. On the Assessment of Recreational Value of Hangzhou Landscape Plants Based on Willingness-to-Pay Method. Chin. Landsc. Archit. 2010, 26, 63–67. [Google Scholar]
- Grala, R.K.; Tyndall, J.C.; Mize, C.W. Willingness to pay for aesthetics associated with field windbreaks in Iowa, United States. Landsc. Urban Plan. 2012, 108, 71–78. [Google Scholar] [CrossRef]
- Liu, P.; Guo, Q.R.; Ren, F.; Wang, L.; Xu, Z.G. Willingness to pay for self-driving vehicles: Influences of demographic and psychological factors. Transp. Res. C-Emer. 2019, 100, 306–317. [Google Scholar] [CrossRef]
- Cai, K.H.; Wang, L.; Ke, J.C.; He, X.; Song, Q.B.; Hu, J.Q.; Yang, G.M.; Li, J.H. Differences and determinants for polluted area, urban and rural residents’ willingness to hand over and pay for waste mobile phone recycling: Evidence from China. Waste Manag. 2023, 157, 290–300. [Google Scholar] [CrossRef]
- Hwang, K.; Lee, J. Antecedents and Consequences of Ecotourism Behavior: Independent and Interdependent Self-Construals, Ecological Belief, Willingness to Pay for Ecotourism Services and Satisfaction with Life. Sustainability 2018, 10, 789. [Google Scholar] [CrossRef] [Green Version]
- Odonkor, S.T.; Adom, P.K. Environment and health nexus in Ghana: A study on perceived relationship and willingness-to-participate (WTP) in environmental policy design. Urban. Clim. 2020, 34, 100689. [Google Scholar] [CrossRef]
- Guo, X.X.; Jiao, W.X.; Wang, K.; Wang, H.; Chen, J.Y.; Yan, Y.T.; Huang, Y.T. Attitudes and willingness to pay for clean heating by typical households: A case study of rural areas in Yongcheng City, Henan Province, China. Environ. Sci. Pollut. R. 2023, 30, 15842–15860. [Google Scholar] [CrossRef]
- Chui, T.F.M.; Ngai, W.Y. Willingness to pay for sustainable drainage systems in a highly urbanised city: A contingent valuation study in Hong Kong. Water Environ. J. 2016, 30, 62–69. [Google Scholar] [CrossRef]
Attributes | Levels | Explanation |
---|---|---|
Reduction in run-off pollutant | 0% | Status quo |
40–80% | Reduce leaves and impurities brought by part of the rainwater | |
80–100% | Reduce the leaves and impurities brought by most of the rainwater, making the rainwater meet the standard of reclaimed water, and reduce the sewage treatment fee | |
Degrees of ponding | Level three | Status quo |
Level two | Shoes get wet but there are no splashes when stepping on it | |
Level one | Shoes do not get wet while the ground gets wet | |
Plant type | *** | Status quo |
**** | One level higher than the status quo | |
***** | Two levels higher than the status quo | |
Planting aesthetics | *** | Status quo |
**** | One level higher than the status quo | |
***** | Two levels higher than the status quo | |
Cost | 0 yuan | Status quo |
5% of water fee | 5% of personal annual average water bill | |
10% of water fee | 10% of personal annual average water bill | |
15% of water fee | 15% of personal annual average water bill | |
20% of water fee | 20% of personal annual average water bill | |
25% of water fee | 25% of personal annual average water bill |
Attribute | Status Quo | Option 1 | Option 2 |
---|---|---|---|
Reduction in run-off pollutant | 0% | 80–100% | 40–80% |
Degrees of ponding | Level three | Level one | Level three |
Plant type | *** | *** | ***** |
Planting aesthetics | *** | ***** | *** |
Cost | 0 yuan | 141.31 yuan | 141.31 yuan |
Your choice: | □ | □ | □ |
Variable | Xianyang | Xi’xian New Area | Total | Percentage |
---|---|---|---|---|
Sample population | 146 | 121 | 267 | |
Gender (ratio of male to female) | 65.91% | 89.06% | ||
Age | ||||
18–25 | 42 | 35 | 77 | 28.84% |
26–30 | 10 | 14 | 24 | 8.99% |
31–40 | 23 | 25 | 48 | 17.98% |
41–50 | 24 | 16 | 40 | 14.98% |
51–60 | 26 | 15 | 41 | 15.36% |
Over 60 | 21 | 16 | 37 | 13.86% |
Monthly family income | ||||
1000 yuan | 5 | 10 | 15 | 5.62% |
1000–1999 yuan | 5 | 12 | 17 | 6.37% |
2000–4999 yuan | 39 | 22 | 61 | 22.85% |
5000–9999 yuan | 61 | 55 | 116 | 43.45% |
Over 10,000 yuan | 36 | 22 | 58 | 21.72% |
Education | ||||
Primary school and below | 11 | 10 | 21 | 7.87% |
Junior high school | 24 | 16 | 40 | 14.98% |
Senior middle school | 39 | 38 | 77 | 28.84% |
Bachelor | 69 | 50 | 119 | 44.57% |
Postgraduate | 3 | 7 | 10 | 3.75% |
Housing type | ||||
Owner-occupied | 122 | 96 | 218 | 81.65% |
Rental | 24 | 25 | 49 | 18.35% |
Understanding level | ||||
Familiar | 10 | 10 | 20 | 7.49% |
Have heard of | 42 | 33 | 75 | 28.09% |
Don’t know at all | 94 | 78 | 172 | 64.42% |
Attributes | Model I | Model II | ||||
---|---|---|---|---|---|---|
Coefficient | SD | Coefficient | SD | |||
(SE) | (95% CI) | (SE) | (SE) | (95% CI) | (SE) | |
ASC | 3.7432 *** | 3.5325 | ||||
(1.2194) | (1.3532, 6.1332) | (5.9240) | (−8.0783, 15.1432) | |||
Cost | −0.0044 | −0.0052 | ||||
(0.0047) | (−0.0136, 0.0048) | (0.0050) | (−0.1495, 0.0045) | |||
Reduction in run-off pollutant | −0.2753 | 0.7260 ** | −0.3085 | 0.8336 *** | ||
(0.1876) | (−0.6431, 0.0924) | (0.3399) | (0.1968) | (−0.6942, 0.0772) | (0.3180) | |
Degrees of ponding | 0.6185 ** | 0.5225 ** | 0.6547 *** | 0.5902 ** | ||
(0.1482) | (0.3280, 0.9090) | (0.2629) | (0.1585) | (0.3441, 0.9654) | (0.2585) | |
Plant type | −0.3878 ** | 0.9251 *** | −0.4193 ** | 1.0112 *** | ||
(0.1808) | (−0.7422, −0.0335) | (0.3071) | (0.1904) | (−0.7926, −0.0460) | (0.3107) | |
Planting aesthetics | −0.0050 | 0.0676 | −0.0007 | 0.0595 | ||
(0.1376) | (−0.2746, 0.2646) | (0.4238) | (0.1438) | (−0.2826, 0.2812) | (0.3539) | |
ASC × Gender | 5.1656 * | −9.9350 *** | ||||
(2.6704) | (−0.0683, 10.3996) | (2.8239) | ||||
ASC × Age | −1.0310 ** | 1.1117 *** | ||||
(0.4911) | (−1.994, −0.0684) | (0.3429) | ||||
ASC × Monthly family income | 0.1850 | 0.2625 | ||||
(0.7066) | (−1.2000, 1.5700) | (0.3277) | ||||
ASC × Education | 1.0995 | 0.0202 | ||||
(1.0231) | (−0.9058, 3.1048) | (0.2773) | ||||
ASC × Housing type | 1.7843 | 0.6936 | ||||
(2.0058) | (−2.1470, 5.7157) | (0.9188) | ||||
ASC × Understanding level | −1.5961 | 1.0909 ** | ||||
(1.1123) | (−3.7762, 0.5840) | (0.4715) | ||||
Number of observations | 1314 | 1314 | ||||
Chi2 | 195.33 | 177.90 | ||||
Log likelihood | −360.02 *** | −344.56 *** |
Attributes | Model I | Model II | ||||
---|---|---|---|---|---|---|
Coefficient | SD | Coefficient | SD | |||
(SE) | (95% CI) | (SE) | (SE) | (95% CI) | (SE) | |
ASC | 1.0451 | 10.5644 | ||||
(1.0029) | (−0.9206, 3.0107) | (4.9308) | (0.9003, 20.2286) | |||
Cost | −0.0022 | −0.0025 | ||||
(0.0044) | (−0.0108, 0.0064) | (0.0044) | (−0.0111, 0.0062) | |||
Reduction in run-off pollutant | 0.1803 | 0.0207 | 0.1669 | −0.0483 | ||
(0.1763) | (−0.1653, 0.5258) | (0.4247) | (0.1722) | (−0.1675, 0.5073) | (0.5668) | |
Degrees of ponding | 0.4920 *** | 0.5732 ** | 0.4863 *** | 0.4828 ** | ||
(0.1424) | (0.2129, 0.7710) | (0.2395) | (0.1365) | (0.2187, 0.7538) | (0.2407) | |
Plant type | −0.1123 | 0.9086 *** | −0.0956 | 0.8537 *** | ||
(0.1927) | (−0.4900, 0.2654) | (0.3221) | (0.1849) | (−0.4581, 0.2669) | (0.3023) | |
Planting aesthetics | 0.2692 ** | −0.0727 | 0.2557 * | 0.0597 | ||
(0.1619) | (−0.0482, 0.5866) | (0.4429) | (0.1577) | (−0.0534, 0.5649) | (0.3021) | |
ASC × Gender | −2.3637 * | 0.3663 | ||||
(1.3495) | (−5.0086, 0.2812) | (1.4813) | ||||
ASC × Age | 0.4277 | 2.5550 *** | ||||
(0, 4713) | (−0.4961, 1.3515) | (0.7107) | ||||
ASC × Monthly family income | 0.1534 | 0.0207 | ||||
(0.5096) | (−0.8454, 1.1522) | (0.2104) | ||||
ASC × Education | 0.3172 | −0.0256 | ||||
(1.2523) | (−2.1373, 2.7716) | (0.2297) | ||||
ASC × Housing type | −3.9394 ** | −0.0530 | ||||
(1.7776) | (−7.4234, −0.4554) | (0.7155) | ||||
ASC × Understanding level | −2.4101 ** | 0.8684 ** | ||||
(1.0495) | (−4.4671, −0.3530) | (0.3526) | ||||
Number of observations | 1089 | 1089 | ||||
Chi2 | 171.13 | 150.18 | ||||
Log likelihood | −301.97 *** | −284.17 *** |
Variable | Coefficient Mean | Z-Value | Standard Deviation |
---|---|---|---|
Additional annual fee required | −0.0052 (0.0050) | −1.05 | |
Reduction in run-off pollutant | −0.3085 (0.1968) | −1.57 | 0.8336 *** (0.3180) |
Degrees of ponding | 0.6547 *** (0.1585) | 4.13 | 0.5902 ** (0.2585) |
Plant type | −0.4193 ** (0.1904) | −2.20 | 1.0112 *** (0.3107) |
Planting aesthetics | −0.0007 (0.1438) | 0.00 | 0.0595 (0.3539) |
Constant term | 3.5325 (5.9240) | 0.60 | 1.4683 *** (0.8913) |
Constant term × Gender | 5.1656 * (2.6704) | 1.93 | −9.9350 *** (2.8239) |
Constant term × Age | −1.0310 ** (0.4911) | −2.10 | 1.1117 (0.3429) |
Constant term × Monthly family income | 0.1850 (0.7066) | 0.26 | 0.2625 (0.3277) |
Constant term × Education | 1.0995 (1.0231) | 1.07 | 0.0202 (0.2773) |
Constant term × Housing type | 1.7843 (2.0058) | 0.89 | 0.6936 (0.9188) |
Constant term × Understanding level | −1.5961 (1.1123) | −1.43 | 1.0909 *** (0.4715) |
Number of observations | 1314 | ||
Chi2 | 177.90 | ||
Log likelihood | −344.56 *** |
Variable | Coefficient Mean | Z-Value | Standard Deviation |
---|---|---|---|
Additional annual fee required | −0.0025 (0.0044) | −0.56 | |
Reduction in run-off pollutant | 0.1699 (0.1722) | 0.99 | −0.0483 (0.5668) |
Degrees of ponding | 0.4863 *** (0.1365) | 3.56 | 0.4828 ** (0.2407) |
Plant type | −0.0956 (0.1849) | −0.52 | 0.8537 *** (0.3023) |
Planting aesthetics | 0.2557 * (0.1577) | 1.62 | 0.0597 (0.3021) |
Constant term | 10.5644 (4.9308) | 2.14 | −2.6374 ** (1.2067) |
Constant term × Gender | −2.3637 * (1.3495) | −1.75 | 0.3663 (1.4813) |
Constant term × Age | 0.4277 (0.4713) | 0.91 | 2.5550 (0.7107) |
Constant term × Monthly family income | 0.1534 (0.5096) | 0.30 | 0.0207 *** (0.2104) |
Constant term × Education | 0.3172 (1.2523) | 0.25 | −0.0256 (0.2297) |
Constant term × Housing type | −3.9394 ** (1.7776) | −2.22 | −0.0530 (0.7155) |
Constant term × Understanding level | −2.4101 ** (1.0495) | −2.30 | 0.8684 ** (0.3526) |
Number of observations | 1089 | ||
Chi2 | 150.18 | ||
Log likelihood | −284.17 *** |
Area | Attributes | MWTP [Yuan/(Family·Year)] | Confidence Interval | |
---|---|---|---|---|
Xianyang | Degrees of ponding | 139.8469 | 74.1564 | 205.5374 |
Plant type | −87.6946 | −167.8135 | −7.5757 | |
Xi’xian New Area | Degrees of ponding | 197.8169 | 88.9740 | 306.6597 |
Planting aesthetics | 104.0322 | −21.7299 | 229.7944 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Zhang, J.; Han, Y.; Zhou, N.; Qiao, X.-J.; Han, C. Exploring Public Preference and Willingness to Pay for the Ecosystem Benefits of Urban Green Infrastructure: Evidence from a Discrete Choice Experiment of Pilot Sponge Cities in China. Water 2023, 15, 2767. https://doi.org/10.3390/w15152767
Wu X, Zhang J, Han Y, Zhou N, Qiao X-J, Han C. Exploring Public Preference and Willingness to Pay for the Ecosystem Benefits of Urban Green Infrastructure: Evidence from a Discrete Choice Experiment of Pilot Sponge Cities in China. Water. 2023; 15(15):2767. https://doi.org/10.3390/w15152767
Chicago/Turabian StyleWu, Xinyang, Jingyi Zhang, Yunfan Han, Nan Zhou, Xiu-Juan Qiao, and Chao Han. 2023. "Exploring Public Preference and Willingness to Pay for the Ecosystem Benefits of Urban Green Infrastructure: Evidence from a Discrete Choice Experiment of Pilot Sponge Cities in China" Water 15, no. 15: 2767. https://doi.org/10.3390/w15152767
APA StyleWu, X., Zhang, J., Han, Y., Zhou, N., Qiao, X.-J., & Han, C. (2023). Exploring Public Preference and Willingness to Pay for the Ecosystem Benefits of Urban Green Infrastructure: Evidence from a Discrete Choice Experiment of Pilot Sponge Cities in China. Water, 15(15), 2767. https://doi.org/10.3390/w15152767