Changes in Water-Use Efficiency of Eucalyptus Plantations and Its Driving Factors in a Small County in South China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. RapidEye Imagery
2.2.2. Meteorological Data
2.3. Methods
2.3.1. Classification and Regression Tree (CART)
2.3.2. Spectral Vegetation Indices and Fractional Green Vegetation Cover ()
2.3.3. Carnegie–Ames–Stanford Approach (CASA) Model
2.3.4. Priestly–Taylor Jet Propulsion Laboratory (PT-JPL) Model
2.3.5. Water-Use Efficiency ( ) of Eucalyptus Plantations
2.3.6. Validation of the Classification of Eucalyptus Plantations
3. Results
3.1. Classification of Eucalyptus Plantations
3.2. NPP of Eucalyptus Plantations
3.3. Actual Evapotranspiration () and Transpiration of Eucalyptus Plantations
3.4. Water-Use Efficiency () of Eucalyptus Plantations
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cai, W.; Ullah, S.; Yan, L.; Lin, Y. Remote sensing of ecosystem water use efficiency: A review of direct and indirect estimation methods. Remote Sens. 2021, 13, 2393. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Dold, C. Water-use efficiency: Advances and challenges in a changing climate. Front. Plant Sci. 2019, 10, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Guan, H.; Batelaan, O.; McVicar, T.R.; Long, D.; Piao, S.; Liang, W.; Liu, B.; Jin, Z.; Simmons, C.T. Contrasting responses of water use efficiency to drought across global terrestrial ecosystems. Sci. Rep. 2016, 6, 23284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, J.; Zhang, Z.; Lin, B. Towards carbon neutrality: How much do forest carbon sinks cost in China? Environ. Impact Assess. Rev. 2023, 98, 106949. [Google Scholar] [CrossRef]
- United Nations Paris Agreement. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 1 May 2023).
- Wu, J.; Fan, H.; Liu, W.; Huang, G.; Tang, J.; Zeng, R.; Huang, J.; Liu, Z. Should Exotic Eucalyptus be Planted in Subtropical China: Insights from Understory Plant Diversity in Two Contrasting Eucalyptus Chronosequences. Environ. Manag. 2015, 56, 1244–1251. [Google Scholar] [CrossRef] [PubMed]
- Aguilos, M.; Sun, G.; Noormets, A.; Domec, J.C.; McNulty, S.; Gavazzi, M.; Prajapati, P.; Minick, K.J.; Mitra, B.; King, J. Ecosystem productivity and evapotranspiration are tightly coupled in loblolly pine (Pinus taeda l.) plantations along the coastal plain of the southeastern U.S. Forests 2021, 12, 1123. [Google Scholar] [CrossRef]
- Liu, W.; Wu, J.; Fan, H.; Duan, H.; Li, Q.; Yuan, Y.; Zhang, H. Estimations of evapotranspiration in an age sequence of Eucalyptus plantations in subtropical China. PLoS ONE 2017, 12, e0174208. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Sun, P.; Huettmann, F.; Liu, S. Where should China practice forestry in a warming world? Glob. Chang. Biol. 2022, 28, 2461–2475. [Google Scholar] [CrossRef]
- Liu, C.L.C.; Kuchma, O.; Krutovsky, K.V. Mixed-species versus monocultures in plantation forestry: Development, benefits, ecosystem services and perspectives for the future. Glob. Ecol. Conserv. 2018, 15, e00419. [Google Scholar] [CrossRef]
- Du, H.; Zeng, F.; Peng, W.; Wang, K.; Zhang, H.; Liu, L.; Song, T. Carbon storage in a Eucalyptus plantation chronosequence in Southern China. Forests 2015, 6, 1763–1778. [Google Scholar] [CrossRef] [Green Version]
- Jim, M.; Zhang, N.; Yang, Z.; John, C.; Xu, D. Water use by fast-growing Eucalyptus urophylla plantations in southern China. Tree Physiol. 2004, 24, 1035–1044. [Google Scholar] [CrossRef] [Green Version]
- Olbrich, B.W.; Le Roux, D.; Poulter, A.G.; Bond, W.J.; Stock, W.D. Variation in water use efficiency and δ13C levels in Eucalyptus grandis clones. J. Hydrol. 1993, 150, 615–633. [Google Scholar] [CrossRef]
- Rubilar, R.; Hubbard, R.; Emhart, V.; Mardones, O.; Quiroga, J.J.; Medina, A.; Valenzuela, H.; Espinoza, J.; Burgos, Y.; Bozo, D. Climate and water availability impacts on early growth and growth efficiency of Eucalyptus genotypes: The importance of GxE interactions. For. Ecol. Manag. 2020, 458, 117763. [Google Scholar] [CrossRef]
- Hubbard, R.M.; Carneiro, R.L.; Campoe, O.; Alvares, C.A.; Figura, M.A.; Moreira, G.G. Contrasting water use of two Eucalyptus clones across a precipitation and temperature gradient in Brazil. For. Ecol. Manag. 2020, 475, 118407. [Google Scholar] [CrossRef]
- Forrester, D.I.; Theiveyanathan, S.; Collopy, J.J.; Marcar, N.E. Enhanced water use efficiency in a mixed Eucalyptus globulus and Acacia mearnsii plantation. For. Ecol. Manag. 2010, 259, 1761–1770. [Google Scholar] [CrossRef]
- Hakamada, R.E.; Hubbard, R.M.; Moreira, G.G.; Stape, J.L.; Campoe, O.; Ferraz, S.F. de B. Influence of stand density on growth and water use efficiency in Eucalyptus clones. For. Ecol. Manag. 2020, 466, 118125. [Google Scholar] [CrossRef]
- Lopes, A.d.S.; Folegatti, M.V.; Júnior, E.D.F.; de Oliveira, G.Q.; de Oliveira, J.C.L.; Brito, K.M.R.; Rego, N.H. Volume, biomass, carbon stock and efficiency of water use in irrigated eucalyptus. Cienc. Florest. 2022, 32, 1047–1060. [Google Scholar] [CrossRef]
- Hou, J.; Yin, R.; Wu, W. Intensifying Forest Management in China: What does it mean, why, and how? For. Policy Econ. 2019, 98, 82–89. [Google Scholar] [CrossRef]
- Ouyang, L.; Zhao, P.; Zhou, G.; Zhu, L.; Huang, Y.; Zhao, X.; Ni, G. Stand-scale transpiration of a Eucalyptus urophylla × Eucalyptus grandis plantation and its potential hydrological implication. Ecohydrology 2018, 11, e1938. [Google Scholar] [CrossRef]
- Allen, R.; Pereira, L.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Requirements. Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Chapman & Hall/CRC: Boca Raton, FL, USA, 1984; ISBN 0412048418. [Google Scholar]
- Loh, W.Y. Classification and regression trees. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2011, 1, 14–23. [Google Scholar] [CrossRef]
- Loh, W.Y. Fifty years of classification and regression trees. Int. Stat. Rev. 2014, 82, 329–348. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, R.L.; Andrea, W. Rule-based classification systems using classification and regression tree (CART) analysis. Photogramm. Eng. Remote Sens. 2001, 67, 1137–1142. [Google Scholar]
- Sibanda, M.; Buthelezi, S.; Ndlovu, H.S.; Mothapo, M.C.; Mutanga, O. Mapping the Eucalyptus spp woodlots in communal areas of Southern Africa using Sentinel-2 Multi-Spectral Imager data for hydrological applications. Phys. Chem. Earth 2021, 122, 102999. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Liang, S.; Cheng, J.; Liu, S.; Fisher, J.B.; Zhang, X.; Jia, K.; Zhao, X.; Qin, Q.; Zhao, B.; et al. MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley-Taylor algorithm. Agric. For. Meteorol. 2013, 171–172, 187–202. [Google Scholar] [CrossRef]
- Potter, S.; Randerson, T.; Field, B.; Matson, A.; Mooney, H.A. Terrestrial ecosystem production: A process model based on global satellite and surface data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Field, C.B.; Randerson, J.T.; Malmström, C.M. Global net primary production: Combining ecology and remote sensing. Remote Sens. Environ. 1995, 51, 74–88. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.; Fang, J.; Zhou, L.; Zhu, B.; Tan, K.; Tao, S. Changes in vegetation net primary productivity from 1982 to 1999 in China. Global Biogeochem. Cycles 2005, 19, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Los, S.O. Linkages between Global Vegetation and Climate—An Analysis Based on NOAA Advanced Very High Resolution Radiometer Data; Vrije Universiteit: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Zhu, W.; Pan, Y.; He, H.; Yu, D.; Hu, H. Simulation of maximum light use efficiency for some typical vegetation types in China. Chinese Sci. Bull. 2006, 51, 457–463. [Google Scholar] [CrossRef]
- Fisher, J.B.; Tu, K.P.; Baldocchi, D.D. Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ. 2008, 112, 901–919. [Google Scholar] [CrossRef]
- Ruimy, A.; Kergoat, L.; Bondeau, A. Comparing global models of terrestrial net primary productivity (NPP): Analysis of differences in light absorption and light-use efficiency. Glob. Chang. Biol. 1999, 5, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Xie, Y.; Arnold, R.J.; Wu, Z.; Chen, S.; Du, A.; Luo, J. Advances in eucalypt research in China. Front. Agric. Sci. Eng. 2017, 4, 380–390. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Zheng, H.; Zhang, K.; Ouyang, Z.; Lan, J.; Li, H.; Shi, Q. Changes in soil microbial community structure and metabolic activity following conversion from native Pinus massoniana plantations to exotic Eucalyptus plantations. For. Ecol. Manag. 2013, 291, 65–72. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, J.; Zhou, L.; Lin, Y.; Fu, S. Effect of understory fern (Dicranopteris dichotoma) removal on substrate utilization patterns of culturable soil bacterial communities in subtropical Eucalyptus plantations. Pedobiologia 2012, 55, 7–13. [Google Scholar] [CrossRef]
- Calviño-Cancela, M.; Rubido-Bará, M.; van Etten, E.J.B. Do eucalypt plantations provide habitat for native forest biodiversity? For. Ecol. Manag. 2012, 270, 153–162. [Google Scholar] [CrossRef]
- Ferraz, S.F.B.; Lima, W. de P.; Rodrigues, C.B. Managing forest plantation landscapes for water conservation. For. Ecol. Manag. 2013, 301, 58–66. [Google Scholar] [CrossRef]
- Soares, J.V.; Almeida, A.C. Modeling the water balance and soil water fluxes in a fast growing Eucalyptus plantation in Brazil. J. Hydrol. 2001, 253, 130–147. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, L.; Xu, H.; Creed, I.F.; Blanco, J.A.; Wei, X.; Sun, G.; Asbjornsen, H.; Bishop, K. Forest water-use efficiency: Effects of climate change and management on the coupling of carbon and water processes. For. Ecol. Manag. 2023, 534, 120853. [Google Scholar] [CrossRef]
- Fan, J.; Wu, L.; Zhang, F.; Xiang, Y.; Zheng, J. Climate change effects on reference crop evapotranspiration across different climatic zones of China during 1956–2015. J. Hydrol. 2016, 542, 923–937. [Google Scholar] [CrossRef]
- Dimitriadou, S.; Nikolakopoulos, K.G. Evapotranspiration trends and interactions in light of the anthropogenic footprint and the climate crisis: A review. Hydrology 2021, 8, 163. [Google Scholar] [CrossRef]
- Martins, F.B.; Benassi, R.B.; Torres, R.R.; de Brito Neto, F.A. Impacts of 1.5 °C and 2 °C global warming on Eucalyptus plantations in South America. Sci. Total Environ. 2022, 825, 153820. [Google Scholar] [CrossRef] [PubMed]
- Hakamada, R.E.; Hubbard, R.M.; Stape, J.L.; de Paula Lima, W.; Moreira, G.G.; de Barros Ferraz, S.F. Stocking effects on seasonal tree transpiration and ecosystem water balance in a fast-growing Eucalyptus plantation in Brazil. For. Ecol. Manag. 2020, 466, 118149. [Google Scholar] [CrossRef]
- Whitehead, D.; Beadle, C.L. Physiological regulation of productivity and water use in Eucalyptus: A review. For. Ecol. Manag. 2004, 193, 113–140. [Google Scholar] [CrossRef]
- Niu, S.; Xing, X.; Zhang, Z.; Xia, J.; Zhou, X.; Song, B.; Li, L.; Wan, S. Water-use efficiency in response to climate change: From leaf to ecosystem in a temperate steppe. Glob. Chang. Biol. 2011, 17, 1073–1082. [Google Scholar] [CrossRef]
- Li, X.; Ye, D.; Liang, H.; Zhu, H.; Qin, L.; Zhu, Y.; Wen, Y. Effects of successive rotation regimes on carbon stocks in eucalyptus plantations in subtropical China measured over a full rotation. PLoS ONE 2015, 10, e0132858. [Google Scholar] [CrossRef] [Green Version]
- Asensio, V.; Domec, J.C.; Nouvellon, Y.; Laclau, J.P.; Bouillet, J.P.; Jordan-Meille, L.; Lavres, J.; Rojas, J.D.; Guillemot, J.; Abreu-Junior, C.H. Potassium fertilization increases hydraulic redistribution and water use efficiency for stemwood production in Eucalyptus grandis plantations. Environ. Exp. Bot. 2020, 176, 104085. [Google Scholar] [CrossRef]
- Albaugh, J.M.; Dye, P.J.; King, J.S. Eucalyptus and Water Use in South Africa. Int. J. For. Res. 2013, 2013, 852540. [Google Scholar] [CrossRef] [Green Version]
- Hubbard, R.M.; Stape, J.; Ryan, M.G.; Almeida, A.C.; Rojas, J. Effects of irrigation on water use and water use efficiency in two fast growing Eucalyptus plantations. For. Ecol. Manag. 2010, 259, 1714–1721. [Google Scholar] [CrossRef]
- Hua, F.; Bruijnzeel, L.A.; Meli, P.; Martin, P.A.; Zhang, J.; Nakagawa, S.; Miao, X.; Wang, W.; McEvoy, C.; Peña-Arancibia, J.L.; et al. The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science 2022, 376, 839–844. [Google Scholar] [CrossRef]
No. | Images ID | Cloud Cover (%) | Date |
---|---|---|---|
1 | 4950409_2011-10-16_RE3_3A_Analytic | 0.16 | 16 October 2011 |
2 | 4950410_2011-10-16_RE3_3A_Analytic | 0 | |
3 | 4950509_2011-10-16_RE3_3A_Analytic | 0.05 | |
4 | 4950510_2011-10-16_RE3_3A_Analytic | 0 | |
5 | 4950409_2013-10-05_RE3_3A_Analytic | 0 | 5 October 2013 |
6 | 4950410_2013-10-05_RE3_3A_Analytic | 0 | |
7 | 4950509_2013-10-05_RE3_3A_Analytic | 0 | |
8 | 4950510_2013-10-05_RE3_3A_Analytic | 0 | |
9 | 4950409_2015-10-17_RE3_3A_Analytic | 0 | 17 October 2015 |
10 | 4950410_2015-10-17_RE3_3A_Analytic | 0 | |
11 | 4950509_2015-10-17_RE3_3A_Analytic | 0 | |
12 | 4950510_2015-10-17_RE3_3A_Analytic | 0 | |
13 | 4950409_2017-09-16_RE4_3A_Analytic | 0 | 16 September 2017 |
14 | 4950410_2017-09-16_RE4_3A_Analytic | 0 | |
15 | 4950509_2017-09-16_RE4_3A_Analytic | 0 | |
16 | 4950510_2017-09-16_RE4_3A_Analytic | 0 | |
17 | 4950409_2019-08-24_RE3_3A_Analytic | 0 | 24 August 2019 |
18 | 4950410_2019-08-24_RE3_3A_Analytic | 0 | |
19 | 4950509_2019-08-24_RE3_3A_Analytic | 0 | |
20 | 4950510_2019-08-24_RE3_3A_Analytic | 3.2 |
Year | Eucalyptus plantation (km2) | Kappa Accuracy Coefficient (%) |
---|---|---|
2011 | 152.79 | 70.93 |
2013 | 189.49 | 75.97 |
2015 | 184.87 | 74.46 |
2017 | 181.65 | 69.81 |
2019 | 191.67 | 72.03 |
16 October 2011 | 5 October 2013 | 17 October 2015 | 16 September 2017 | 24 August 2019 | |
---|---|---|---|---|---|
0.81 ± 0.04 | 0.83 ± 0.05 | 0.85 ± 0.03 | 0.83 ± 0.07 | 0.89 ± 0.05 | |
0.84 ± 0.05 | 0.87 ± 0.06 | 0.89 ± 0.03 | 0.87 ± 0.08 | 0.93 ± 0.05 | |
3.68 ± 0.52 | 2.80 ± 0.41 | 3.99 ± 0.34 | 5.10 ± 0.78 | 3.77 ± 0.41 |
Date | (mm) | (mm) | (%) | |
---|---|---|---|---|
16 October 2011 | 2.40 ± 0.27 | 2.90 ± 0.21 | 82.76 | 22.31 ± 0.03 |
5 October 2013 | 2.36 ± 0.32 | 3.01 ± 0.22 | 78.41 | 23.64 ± 0.05 |
17 October 2015 | 2.32 ± 0.15 | 3.52 ± 0.10 | 66.91 | 22.73 ± 0.08 |
16 September 2017 | 3.04 ± 0.44 | 4.59 ± 0.25 | 66.23 | 28.18 ± 0.05 |
24 August 2019 | 3.93 ± 0.46 | 5.82 ± 0.28 | 67.53 | 30.32 ± 0.12 |
16 October 2011 | 5 October 2013 | 17 October 2015 | 16 September 2017 | 24 August 2019 | |
---|---|---|---|---|---|
3.68 ± 0.52 | 2.80 ± 0.41 | 3.99 ± 0.34 | 5.10 ± 0.78 | 3.77 ± 0.41 | |
2.90 ± 0.21 | 3.01 ± 0.22 | 3.52 ± 0.10 | 4.59 ± 0.25 | 5.82 ± 0.28 | |
1.26 ± 0.09 | 0.92 ± 0.07 | 1.13 ± 0.07 | 1.10 ± 0.13 | 0.65 ± 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Y.; Huang, J.; He, W.; Zhu, J.; Li, Y. Changes in Water-Use Efficiency of Eucalyptus Plantations and Its Driving Factors in a Small County in South China. Water 2023, 15, 2754. https://doi.org/10.3390/w15152754
Yao Y, Huang J, He W, Zhu J, Li Y. Changes in Water-Use Efficiency of Eucalyptus Plantations and Its Driving Factors in a Small County in South China. Water. 2023; 15(15):2754. https://doi.org/10.3390/w15152754
Chicago/Turabian StyleYao, Yuefeng, Jinjun Huang, Wen He, Jiafu Zhu, and Yanyu Li. 2023. "Changes in Water-Use Efficiency of Eucalyptus Plantations and Its Driving Factors in a Small County in South China" Water 15, no. 15: 2754. https://doi.org/10.3390/w15152754
APA StyleYao, Y., Huang, J., He, W., Zhu, J., & Li, Y. (2023). Changes in Water-Use Efficiency of Eucalyptus Plantations and Its Driving Factors in a Small County in South China. Water, 15(15), 2754. https://doi.org/10.3390/w15152754