Experimental Research on Backward Erosion Piping Progression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rationale
2.2. Experimental Device
2.3. Experimental Research
3. Results and Discussion
3.1. Critical Hydraulic Gradient
3.2. Soil Erosion
3.2.1. Backward Erosion Piping
- -
- increases exponentially with increasing Jc,mean (Figure 9);
- -
- decreases with increasing n for most of the measured data (Figure 10);
- -
- decreases with increasing d50, according to Figure 11, and according to the theory that with increasing grain size, larger forces must be in action to cause erosion.
3.2.2. Lateral Erosion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saxena, K.R.; Sharma, V.M. Dams: Incidents and Accidents; A. A. Balkema Publishers: New Delhi, India, 2005; 228p. [Google Scholar]
- Bulletin 164: Internal Erosion of Existing Dams, Levees and Dikes, and Their Foundations; Internal Erosion Processes and Engineering Assessment; ICIL Bulletin: Paris, France, 2015; Volume 1, 342p.
- EWGIE. European Working Group on Internal Erosion in Embankment Dams, Dikes and Levees & Their Foundations. 2023. Available online: https://www6.inrae.fr/eucold-ewgie-ewgooe/History/EWGIE (accessed on 12 July 2023).
- Fell, R.; Fry, J.J. Internal Erosion of Dams and Their Foundations; Taylor & Francis: New York, NY, USA, 2005; 245p. [Google Scholar]
- Bonelli, S. (Ed.) Erosion in Geomechanics Applied to Dams and Levees; ISTE Ltd.: London, UK; John Wiley & Sons, Inc.: Hoboken, NJ, USA,, 2013; 388p. [Google Scholar]
- Fell, R.; Wan, C.F.; Cyganiewicz, J.; Foster, M. Time for Development of Internal Erosion and Piping in Embankment Dams. J. Geotech. Geoenvironmental Eng. 2003, 129, 307–314. [Google Scholar] [CrossRef]
- Wan, C.F.; Fell, R. Laboratory Tests on the Rate of Piping Erosion of Soils in Embankment Dams. Geotech. Test. J. 2004, 27, 295–303. [Google Scholar]
- Benahmed, N.; Bonelli, S. Investigating concentrated leak erosion behaviour of cohesive soils by performing hole erosion tests. Eur. J. Environ. Civ. Eng. 2012, 16, 43–58. [Google Scholar] [CrossRef]
- Bligh, W.G. Dams Barrages and Weirs on Porous Foundations. Eng. News 1910, 64, 708–710. [Google Scholar]
- Lane, E.W. Security from Under-Seepage Masonry Dams on Earth Foundations. Trans. Am. Soc. Civ. Eng. 1935, 100, 1235–1272. [Google Scholar] [CrossRef]
- Chugayev, R.R. The Subsurface Shape of Hydraulic Structures; ENERGIA: Leningrad, Russia, 1974; 237p. (In Russian) [Google Scholar]
- Chugayev, R.R. Hydraulic Structures; AGROPROMIZDAT: Moscow, Russia, 1985; 237p. (In Russian) [Google Scholar]
- Sellmeijer, H.; De La Cruz, J.L.; Van Beek, V.; Knoeff, H. Fine-tuning of the backward erosion piping model through small-scale, medium-scale and IJkdijk experiments. Eur. J. Environ. Civ. Eng. 2011, 15, 1139–1154. [Google Scholar] [CrossRef]
- De WIT, G.N.; Sellmeijer, J.B.; Penning, A. Laboratory tests on piping. In Proceedings of the 10th International Conference Soil Mechanics and Foundation Engineering, Stockholm, Sweden, 15–19 June 1981; Balkema: Rotterdam, The Netherlands, 1981; pp. 517–520. [Google Scholar]
- Silvis, F. Verificatie Piping Model; Proeven in de Deltagoot. Eval. Rapp. Grondmechanica Delft CO 317710/7 1991. [Google Scholar]
- Weijers, J.B.A.; Sellmeijer, J.B. A new model to deal with the piping mechanism. In Filters in Geotechnical and Hydraulic Engineering; Brauns, J., Heibaum, M., Schuler, U., Eds.; Balkema: Rotterdam, The Netherlands, 1993. [Google Scholar]
- Schmertmann, J.H. The non-filter factor of safety against piping through sands. In Judgment and Innovation; Silva, F., Kavazanjian, E., Eds.; ASCE Geotechnical Special Publication: Reston, VA, USA, 2000; Volume 111, pp. 65–132. [Google Scholar]
- Van Beek, V.M.; Koelewijn, A.; Kruse, G.; Sellmeijer, H.; Barends, F. Piping phenomena in heterogeneous sands—Experiments and simulations. In Proceedings of the 4th International Conference on Scour and Erosion, Tokyo, Japan, 5–7 November 2008; pp. 453–459. [Google Scholar]
- Van Beek, V.; Sellmeijer, J.B.; Barends, F.B.J.; Bezuijen, A. Initiation of backward erosion piping in uniform sands. Géotechnique 2014, 64, 927–941. [Google Scholar] [CrossRef] [Green Version]
- Van Beek, V. Backward Erosion Piping: Initiation and Progression. Ph.D. Thesis, Technical University of Delft, Delft, The Netherlands, 2015; 263p. [Google Scholar]
- Robbins, B.A.; Van Beek, V.M. Backward Erosion Piping: A Historical Review and Discussion of Influential Factors. In Proceedings of the ASDO Dam Safety Conference, New Orleans, LA, USA, 13–17 September 2015; 20p. [Google Scholar]
- Rice, J.; Van Beek, V.; Bezuijen, A. History and Future of Backward Erosion Research. In Proceedings of the 10th International Conference on Scour and Erosion, Online, 18–20 October 2021; 23p. [Google Scholar]
- Robbins, B.A.; Sharp, M.K.; Corcoran, M.K. Laboratory Tests for Backwards Piping Erosion. In Geotechnical Safety and Risk V; Schweckendiek, T., van Tol, A.F., Staveren, D.P., van Cools, M.T.P.M.C.B.M., Eds.; IOS Press: Amsterdam, The Netherland, 2015. [Google Scholar] [CrossRef]
- Robbins, B.A.; Montalvo Bartolomei, A.M.; López-Soto, J.; Stephens, I.J. Laboratory Measurements of Critical Gradients of Cohesionless Soils. In Celebrating the Value of Dams and Levees—Yesterday, Today and Tomorrow; Unites States Society on Dams (USSD): Denver, CO, USA, 2016; pp. 927–937. [Google Scholar]
- Robbins, B.A.; Stephens, I.J.; Leavell, D.A.; López-Soto, J.F.; Montalvo-Bartolomei, A.M. Laboratory Piping Tests on Fine Gravel. Can. Geotech. J. 2018, 55, 1552–1563. [Google Scholar] [CrossRef]
- Robbins, B.A.; Van Beek, V.M.; López Soto, J.F.; Montalvo Bartolomei, A.M.; Murphy, J. A novel laboratory test for backward erosion piping. Int. J. Phys. Model. Geotech. 2018, 18, 266–279. [Google Scholar] [CrossRef]
- Robbins, B.A.; Griffiths, D.V.; Montalvo Bartolomei, A.M. Analyses of Backward Erosion Progression Rates from Small-Scale Flume Experiments. J. Geotech. Geoenviron. Eng. 2020, 146, 04020093. [Google Scholar] [CrossRef]
- Pol, J.C.; Kanning, W.; Van Beek, V.M.; Robbins, B.A.; Jonkman, S.N. Temporal evolution of backward erosion piping in small-scale experiments. Acta Geotech. 2022, 17, 4555–4576. [Google Scholar] [CrossRef]
- Sellmeijer, J.B. On the Mechanism of Piping under Impervious Structures. Ph.D. Thesis, Technical University of Delft, Delft, The Netherland, 1988. [Google Scholar]
- Wang, D.; Fu, X.; Jie, Y.; Dong, W. Hu, D. Simulation of pipe progression in a levee foundation with coupled seepage and pipe flow domains. Soils Found. 2014, 54, 974–984. [Google Scholar] [CrossRef]
- Robbins, B.A.; Griffiths, D.V. Modelling of Backward Erosion Piping in Two- and Three- Dimensional Domains. In Internal Erosion in Earthdams, Dikes and Levees: Proceedings of EWG-IE 26th Annual Meeting 2018; Springer Nature: Cham, Switzerland, 2019; pp. 149–158. [Google Scholar]
- Petrula, L.; Říha, J. A new small-scale experimental device for testing backward erosion piping. J. Hydrol. Hydromech. 2022, 70, 376–384. [Google Scholar] [CrossRef]
- Hanses, U. Zur Mechanik der Entwicklung von Erosionskanälen in geschichtetem Untergrund unter Stauanlagen. Ph.D. Thesis, Grundbauinstitut der Technischen Universität Berlin, Berlin, Germany, 1985. [Google Scholar]
- Wan, C.F.; Fell, R. Investigation of Internal Erosion and Piping of Soils in Embankment Dams by the Slot Erosion Test and the Hole Erosion Test—Interpretative Report; The University of South Wales: Cardiff, Wales, 2002; 177p. [Google Scholar]
Material Grain Size | Number of Tests | Uniformity Coefficient Cu | Grain Density ρd | Porosity n | |
---|---|---|---|---|---|
[-] | [-] | [kg/m3] | [-] | ||
Min. | Max. | ||||
0/2 mm | 26 | 2.98 | 2638 | 0.286 | 0.381 |
0.25/2 mm | 8 | 2.08 | 2638 | 0.319 | 0.341 |
0.25/1 mm | 8 | 1.84 | 2638 | 0.331 | 0.346 |
Variable | Measured (M)/ Calculated (C) | Absolute Deviation [-] | Relative Deviation [%] |
---|---|---|---|
Cross-sectional dimensions of testing box | M | 0.01 mm | 0.008 |
Sample length | M | 1 mm | 0.5 |
Sample weight | M | 0.1 g | 0.004 |
Grain density | C | 10 kg/m3 | 0.38 |
Sample porosity | C | 0.0065 | 1.85 |
Distance of piezometers | M | 0.5 mm | 2.5 |
Piezometric head | M | 0.5 mm | 3.13 |
Seepage discharge | C | 2.16 × 10−8 m3/s | 1.44 |
Hydraulic conductivity | C | 9.6 × 10−6 m/s | 7.5 |
Critical local hydraulic gradient | C | 0.05 | 5 |
Width of the pipe | M | 0.5 mm | 3.3 |
Depth of the pipe | M/C | 0.5 mm | 10 |
Bulk density of eroded material | C | 10 kg/m3 | 0.55 |
Rate of erosion | C | 0.016 kg/s/m2 | 12.5 |
Mean hydraulic gradient during backward erosion | C | 0.17 | 4.4 |
Mean hydraulic gradient during lateral erosion | C | 0.015 | 1 |
Cross-sectional area of the pipe | C | 6.97 mm2 | 11.8 |
Cross-sectional wetted length of the pipe | C | 1.12 mm | 5.7 |
Shear stress | C | 8.6 Pa | 19.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riha, J.; Petrula, L. Experimental Research on Backward Erosion Piping Progression. Water 2023, 15, 2749. https://doi.org/10.3390/w15152749
Riha J, Petrula L. Experimental Research on Backward Erosion Piping Progression. Water. 2023; 15(15):2749. https://doi.org/10.3390/w15152749
Chicago/Turabian StyleRiha, Jaromir, and Lubomir Petrula. 2023. "Experimental Research on Backward Erosion Piping Progression" Water 15, no. 15: 2749. https://doi.org/10.3390/w15152749
APA StyleRiha, J., & Petrula, L. (2023). Experimental Research on Backward Erosion Piping Progression. Water, 15(15), 2749. https://doi.org/10.3390/w15152749