Simulation of Retrospective Morphological Channel Adjustments Using High-Resolution Differential Digital Elevation Models versus Predicted Sediment Delivery and Stream Power Variations
Abstract
:1. Introduction
2. Study Area and Environmental Framework
3. Materials and Methods
3.1. Hydrometeorological Records and Field Survey Datasets Collected during the Monitoring Period
3.1.1. Obtaining HRDoDs from HRMDT Datasets in the Monitoring Phase
- -
- SfM-MVS Photogrammetry: The remote information was collected using a Phantom 4 Pro, equipped with a 20-Mp camera and 1-inch sensor, at an average flight height of 50 m in order to obtain very high-resolution aerial images (≈1–2 cm resolution) for a high-accuracy GeoWEPP model. We used the software tool DJI GS Pro© v2.0.15 to pre-program the flight track and parameters for all the surveys. The Ground Control Points (GCPs) and Check Points (CPs) were established before the flights in the field, employing coded targets (from Agisoft PhotoScan Pro 1.2.2© software; Agisoft). Of those points, approximately 66% were assigned to GCPs for georeferencing purposes, whereas the remaining 34% corresponded to CPs for the validation of the high-resolution digital terrain model (hereafter, HRDTM; [4,5,30]). The topographic survey of all coded marks was performed with a GPS-RTK Prexiso G5© station (Leica), connected via a mobile signal to the regional network of differential corrections, GPS GNSS (Network of Reference Stations in the Region of Murcia, “Meristemum”). In addition, FENO survey markers were used to establish some of those points as permanent benchmarks. All GPS data were collected in the WGS84 global reference system. Consistent overlaps of 80 to 90% in consecutive images were applied to ensure the correct definition of homologous points [31]. All the collected information—the captured images, the GCPs, and the CPs—was used in the software Agisoft PhotoScan Pro v.1.2.2© (Agisoft) to perform the structure-from-motion photogrammetry technique. Therefore, we generated the point cloud, continuous textured mesh, and HRDTM for each of the survey events (pixel size 0.02 m), as well as an orthomosaic [5,24,30]. These final products were georeferenced in the WGS84 system for further analysis.
- -
- Terrestrial Laser Scanning (TLS): A Leica ScanStation C10 model terrestrial 3D laser scanner was used to perform multiple overlapped scans. The output 3D point clouds (3DPC) were then registered, using HDS targets from the dataset of 5 September 2019 as the master 3DPC for all the TLS scans. On this date, a field survey was carried out jointly with SfM-MVS, using FENO survey marks as the common reference for both techniques, TLS and UAV-derived 3DPC. The scans performed in November 2018, January 2020, and June 2020 were registered at that benchmark, with a mean error of 2 mm, using the iterative closest point (ICP) plugin of CloudCompare software v2.12.4 and some stable nearby buildings as reference points.
3.1.2. Discarding Other, Lower Resolution DTMs
3.2. Estimation of Changes in Bed Elevation and Sediment Budgets Using HRDoDs
3.3. Using GeoWEPP to Simulate Retrospective Peak Discharges and Sediment Yield Rates
3.3.1. Input Data Entered into the Model
- (a)
- Weather data: Daily precipitation data (mm), minimum temperature (°C), and maximum temperature (°C) corresponding to a period of 18 years (2000–2018) were obtained for the meteorological stations of Mazarrón (I.O.E.), Mazarrón/Las Torres, Azohía (Cedacero), and Perín.
- (b)
- Soil data: Different physical and chemical properties of the soil were considered using data provided by the project LUCDEME (Fight against Desertification in the Mediterranean), prepared by Alias and Ortiz (1986–2004) for the Region of Murcia. These included the hydraulic conductivity, bulk density, organic matter content, and depth of each soil horizon, as well as the percentages of clay, silt, and sand.
- (c)
- Topographic features: The watershed boundaries, including those of sub-catchments, and the drainage network and slope distribution were obtained by applying TOPAZ (a topographic parameterization program developed by the United States Department of Agriculture (USDA-ARS)), using the 5 × 5 m LIDAR DTM from the National Geographic Institute (IGN).
- (d)
- Land uses. The land uses introduced in the WEPP application were obtained from Land Occupation Maps in Spain at a scale of 1:100,000 within the framework of the European project CORINE Land Cover, using the updates of 2000, 2006, 2012, and 2018 (IGN web page).
3.3.2. Simulation Analysis of Runoff and Sediment: The Sensitivity of the Model’s Parameters, Calibration, and Validation
3.4. A Retrospective Approach to Map and Detect Previous Morphological Channel Changes and Sediment Budgets
3.5. Establishment of Spatial Patterns in Stream Power Based on Monitored and Simulated Peak Discharges
4. Results and Discussion
4.1. Retrospective Simulation of Peak Flows and Potential Sediment Inputs Using GeoWEPP
4.2. Retrospective Changes in Bed Elevation and Sediment Budgets Derived from SfM-MVS Generated HRDTMs and the Resulting DoDs
4.3. Retrospective Changes in Bed Elevation and Sediment Budgets Derived from TLS-Generated HRDEMs and the Resulting DoDs
4.4. Spatio-Temporal Patterns in Stream Power Derived from Monitored and Simulated Peak Discharges
4.5. Relationships between Morphological Bed Adjustments and Temporal Changes in Potential Sediment Inputs and Stream Power
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Notations
∂ω/∂s | Mean stream power gradient [Wm−3] |
ε | Excess energy per unit bed area (Wm−2) |
εc | Accumulated excess energy (MJ) |
γ | Specific weight of water (Nm−3), |
Ω | Cross-sectional stream power [W m−1] |
ω | Mean stream power [Wm−2] |
ωc | Critical mean stream power [W m−2] |
qp | Peak unit flow (m3 s−1) |
r2 | Determination coefficient |
Sw | Water surface slope [m m−1] |
w | Water surface width (m) |
AEP | Annual exceedance probability (per unit) |
ANTD | Average net thickness difference (m) for the area of interest |
ASYP | Average sediment yield per sub-period (t) |
AVP | Average values for each PCEP sub-period |
CNTD | Cumulative net thickness difference (m) |
CNVD | Cumulative net volume difference per 100 m2 (m3) |
CSYP | Accumulated sediment yield per sub-period (t) |
CUV | Cumulative unit volume (m3) |
DEM | Digital Elevation Model |
DoD | DEM of Difference |
DSL | Dissimilarity level between QpS(i) and QpOB(i) |
3DPC | 3D point cloud |
EC | Event class |
ECP | Event class pattern |
EGBS | Ephemeral gravel-bed stream |
GCPs | Ground Control Points |
CF | Change factor |
GNSS | Global Navigation Satellite System |
HRDEM | High-resolution Digital Elevation Model |
HRDoD | High-resolution DEM of Difference |
HRDTM | High-resolution digital terrain model |
MDR | Middle reach |
MVS | Multi-View Stereo |
NPAO | National Plan of Aerial Orthophotography |
NVD* | Net volume difference per 100 m2 (m3) |
PBSA | Pilot bed survey area |
PECP | Sub-period defined according to the ECP |
PI | Percent imbalance (departure from equilibrium) |
QpOB(i) | Observed peak discharge (m3 s−1) for event i |
QpS(i) | Predicted peak discharge (m3 s−1) for event i |
RCR | Reference channel reach |
RP | Return period (years) |
SD* | Standard deviation of the net thickness differences (m) |
SfM | Structure from Motion |
SL | Surface lowering (m2) |
SR | Surface raising (m2) |
TAI | Total area of interest (m2) |
TASL | Total area of surface lowering (m2) |
TASR | Total area of surface raising (m2) |
TLS | Terrestrial Laser Scanner |
TNVD | Total net volume difference (m3) |
UAV | Unmanned aerial vehicles |
UCROB(i) | Observed unit change rate (m3 m−2) for event i |
UCRS(i) | Simulated unit change rate (m3 m−2) for event i |
UPR | Upper reach |
UVSC | Average unit volume of total morphological change (m3 m−2) |
UVSC(ECP) | Unit volume of cumulative changing surface for a given ECP (m3 m−2) |
UVSL | Average unit volume of surface lowering (m3 m−2) |
UVSR | Average unit volume of surface raising (m3 m−2) |
VSL | Total volume of lowered surfaces (m3) |
VSR | Total volume of raised surfaces (m3) |
References
- Hooke, J.M. Human impacts on fluvial systems in the Mediterranean region. Geomorphology 2006, 79, 311–335. [Google Scholar] [CrossRef]
- Segura-Beltrán, F.; Sanchis-Ibor, C. Assessment of channel changes in a Mediterranean ephemeral stream since the early twentieth century. The Rambla de Cervera, eastern Spain. Geomorphology 2013, 201, 199–214. [Google Scholar] [CrossRef]
- Ortega, J.A.; Razola, L.; Garzón, G. Recent human impacts and change in dynamics and morphology of ephemeral rivers. Nat. Hazards Earth Syst. Sci. 2014, 14, 713–730. [Google Scholar] [CrossRef] [Green Version]
- Conesa-García, C.; Conesa-García, C.; Puig-Mengual, C.; Puig-Mengual, C.; Riquelme, A.; Riquelme, A.; Tomás, R.; Tomás, R.; Martínez-Capel, F.; Martínez-Capel, F.; et al. Combining sfm photogrammetry and terrestrial laser scanning to assess event-scale sediment budgets along a gravel-bed ephemeral stream. Remote Sens. 2020, 12, 3624. [Google Scholar] [CrossRef]
- Conesa-García, C.; Puig-Mengual, C.; Riquelme, A.; Tomás, R.; Martínez-Capel, F.; García-Lorenzo, R.; Pastor, J.L.; Pérez-Cutillas, P.; Martínez-Salvador, A.; Cano-Gonzalez, M. Changes in stream power and morphological adjustments at the event-scale and high spatial resolution along an ephemeral gravel-bed channel. Geomorphology 2021, 398, 108053. [Google Scholar] [CrossRef]
- Conesa Garcia, C. Torrential flow frequency and morphological adjustments of ephemeral channels in south-east Spain. River Geomorphol. 1995, 1995, 169–192. [Google Scholar]
- Benito, G.; Thorndycraft, V.; Rico, M.; Sánchez-Moya, Y.; Sopeña, A.; Botero, B.; Machado, M.; Davis, M.; Pérez-González, A. Hydrological response of a dryland ephemeral river to southern African climatic variability during the last millennium. Quat. Res. 2011, 75, 471–482. [Google Scholar] [CrossRef] [Green Version]
- Pryor, B.S.; Lisle, T.; Montoya, D.S.; Hilton, S. Transport and storage of bed material in a gravel-bed channel during episodes of aggradation and degradation: A field and flume study. Earth Surf. Process. Landf. 2011, 36, 2028–2041. [Google Scholar] [CrossRef]
- Norman, L.M.; Sankey, J.B.; Dean, D.; Caster, J.; DeLong, S.; DeLong, W.; Pelletier, J.D. Quantifying geomorphic change at ephemeral stream restoration sites using a coupled-model approach. Geomorphology 2017, 283, 1–16. [Google Scholar] [CrossRef]
- Lotsari, E.S.; Calle, M.; Benito, G.; Kukko, A.; Kaartinen, H.; Hyyppä, J.; Hyyppä, H.; Alho, P. Topographical change caused by moderate and small floods in a gravel bed ephemeral river—A depth-averaged morphodynamic simulation approach. Earth Surf. Dyn. 2018, 6, 163–185. [Google Scholar] [CrossRef] [Green Version]
- Moses, C.; Robinson, D.; Barlow, J. Methods for measuring rock surface weathering and erosion: A critical review. Earth Sci. Rev. 2014, 135, 141–161. [Google Scholar] [CrossRef]
- Danielle Cullen, N.; Kumar Verma, A.; Clare Bourke, M. A comparison of structure from motion photogrammetry and the traversing micro-erosion meter for measuring erosion on shore platforms. Earth Surf. Dyn. 2018, 6, 1023–1039. [Google Scholar] [CrossRef] [Green Version]
- Snavely, N. Bundler: SfM for Unordered Image Collections. Available online: https://www.cs.cornell.edu/~snavely/bundler/(150910)2006 (accessed on 18 February 2023).
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. “Structure-from-Motion” photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Gutiérrez, Á.; Schnabel, S.; Berenguer-Sempere, F.; Lavado-Contador, F.; Rubio-Delgado, J. Using 3D photo-reconstruction methods to estimate gully headcut erosion. Catena 2014, 120, 91–101. [Google Scholar] [CrossRef]
- Kaiser, A.; Neugirg, F.; Rock, G.; Müller, C.; Haas, F.; Ries, J.; Schmidt, J. Small-scale surface reconstruction and volume calculation of soil erosion in complex moroccan Gully morphology using structure from motion. Remote Sens. 2014, 6, 7050–7080. [Google Scholar] [CrossRef] [Green Version]
- Kasprak, A.; Wheaton, J.M.; Ashmore, P.E.; Hensleigh, J.W.; Peirce, S. The relationship between particle travel distance and channel morphology: Results fromphysicalmodels of braided rivers. J. Geophys. Res. Earth Surf. 2015, 120, 55–74. [Google Scholar] [CrossRef]
- Smith, M.W.; Carrivick, J.L.; Quincey, D.J. Structure from motion photogrammetry in physical geography. Prog. Phys. Geogr. 2016, 40, 247–275. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; He, W.; Zhang, T.; Zhang, Y.; Cao, L. Adapting the WEPP Hillslope Model and the TLS Technology to Predict Unpaved Road Soil Erosion. Int. J. Environ. Res. Public Health 2022, 19, 9213. [Google Scholar] [CrossRef]
- Singer, M.B.; Michaelides, K. How is topographic simplicity maintained in ephemeral dryland channels? Geology 2014, 42, 1091–1094. [Google Scholar] [CrossRef]
- Flatley, A.; Rutherfurd, I. Using structure from motion (SfM) to capture high resolution geomorphic units within small ephemeral channels. In Proceedings of the 20th EGU General Assembly, Vienna, Austria, 8–13 April 2018; p. 10896. [Google Scholar]
- Calle, M.; Alho, P.; Benito, G. Monitoring ephemeral river changes during floods with SfM photogrammetry. J. Iber. Geol. 2018, 44, 355–373. [Google Scholar] [CrossRef]
- Borg Galea, A.; Sadler, J.P.; Hannah, D.M.; Datry, T.; Dugdale, S.J. Mediterranean intermittent rivers and ephemeral streams: Challenges in monitoring complexity. Ecohydrology 2019, 12, e2149. [Google Scholar] [CrossRef]
- Conesa-García, C.; Pérez-Cutillas, P.; García-Lorenzo, R.; Eekhout, J.; Gómez-Gutiérrez, Á.; Millares-Valenzuela, A.; Martínez-Salvador, A. Dimensionless morphological ratios versus stream power variations at bankfull stage in an ephemeral channel. Geomorphology 2020, 361, 107199. [Google Scholar] [CrossRef]
- Notebaert, B.; Verstraeten, G.; Govers, G.; Poesen, J. Qualitative and quantitative applications of LiDAR imagery in fluvial geomorphology. Earth Surf. Process. Landf. 2008, 34, 217–231. [Google Scholar] [CrossRef]
- Sutfin, N.A.; Shaw, J.; Wohl, E.E.; Cooper, D. A geomorphic classification of ephemeral channels in a mountainous, arid region, southwestern Arizona, USA. Geomorphology 2014, 221, 164–175. [Google Scholar] [CrossRef]
- Estrella, T.R. Geología de la Región de Murcia. El Medio Físico de la Región de Murcia; EDITUM: Murcia, Spain, 2006; pp. 11–46. [Google Scholar]
- Castillo, R.A. El patrimonio Geológico de la Región de Murcia. Interlibro; Academia de Ciencias de la Región de Murcia: Murcia, Spain, 2006. [Google Scholar]
- Ali, K.F.; De Boer, D.H. Construction of sediment budgets in large-scale drainage basins: The case of the upper Indus River. Erosion prediction in ungauged basins: Integrating methods and techniques. In Proceedings of the International Symposium, Sapporo, Japan, 8–9 July 2003; pp. 206–215. [Google Scholar]
- Puig-Mengual, C.A.; Woodget, A.S.; Muñoz-Mas, R.; Martínez-Capel, F. Spatial validation of submerged fluvial topographic models by mesohabitat units. Int. J. Remote Sens. 2020, 42, 2391–2416. [Google Scholar] [CrossRef]
- Seifert, E.; Seifert, S.; Vogt, H.; Drew, D.; van Aardt, J.; Kunneke, A.; Seifert, T. Influence of drone altitude, image overlap, and optical sensor resolution on multi-view reconstruction of forest images. Remote Sens. 2019, 11, 1252. [Google Scholar] [CrossRef] [Green Version]
- Wheaton, J.M.; Brasington, J.; Darby, S.E.; Sear, D.A. Accounting for uncertainty in DEMs from repeat topographic surveys: Improved sediment budgets. Earth Surf. Process. Landf. 2010, 35, 136–156. [Google Scholar] [CrossRef]
- Brasington, J.; Langham, J.; Rumsby, B. Methodological sensitivity of morphometric estimates of coarse fluvial sediment transport. Geomorphology 2003, 53, 299–316. [Google Scholar] [CrossRef]
- Flanagan, D.C.; Trotochaud, J.; Wallace, C.W.; Engel, B.A. Tool for obtaining projected future climate inputs for the WEPP and SWAT models. In Proceedings of the 21st Century Watershed Technology Conference and Workshop Improving Water Quality and the Environment Conference Proceedings, Hamilton, New Zealand, 3–6 November 2014; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA; pp. 1–9. [Google Scholar]
- Flanagan, D.C.; Ascough, J.C.; Nicks, A.D.; Nearing, M.A.; Laflen, J.M. Chapter 01. Overview of the WEPP erosion prediction model. In USDA-Water Erosion Prediction Project. Hillslope Profile and Watershed Model Documentation; Flanagan, D.C., Nearing, M.A., Eds.; vol NSERL Report 10; USDA: Indianapolis, IN, USA, 1995; pp. 1.1–1.12. [Google Scholar]
- Wu, J.Q.; Xu, A.C.; Elliot, W.J. Adapting WEPP (Water Erosion Prediction Project) for Forest Watershed Erosion Modeling. In Proceedings of the 2000 ASAE Annual International Meeting, Singapore, 9–12 July 2000; Technical Papers: Engineering Solutions for a New Century. Volume 2. [Google Scholar]
- Maalim, F.K.; Melesse, A.M.; Belmont, P.; Gran, K.B. Modeling the impact of land use changes on runoff and sediment yield in the le sueur watershed, minnesota using GeoWEPP. Catena 2013, 107, 35–45. [Google Scholar] [CrossRef]
- García-Lorenzo, R.; Conesa-García, C. Erosion and sediment yield estimated by GeoWEPP for check dam watersheds in ephemeral gullies (South-East Spain). In Geomorphology and Plate Tectonics; Ferrari, D.M., Guiseppi, A.R., Eds.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2009; ISBN 978-1-60741-003-4. [Google Scholar]
- Martínez Salvador, A.; Conesa García, C.; García Lorenzo, R.; Pérez Cutillas, P. Estimación de aportes sedimentarios a embalses de pequeñas cuencas mediterráneas mediante GeoWEPP. Ensayo en la cuenca vertiente del río Mula al embalse de la Cierva (cuenca del río Segura). Limnetica 2015, 34, 41–56. [Google Scholar] [CrossRef]
- Ascough, J.C.; Baffaut, C.; Nearing, M.A.; Liu, B.Y. The WEPP watershed model: I. Hydrology and erosion. Trans. Am. Soc. Agric. Eng. 1997, 40, 921–933. [Google Scholar] [CrossRef]
- Flanagan, D.C.; Ascough, J.C.; Nearing, M.A.; Laflen, J.M. The water erosion prediction project (WEPP) model. In Landscape Erosion and Evolution Modeling; Springer: Boston, MA, USA, 2001; pp. 145–199. [Google Scholar]
- Leopold, L.B.; Wolman, M.G.; Miller, J.P. Fluvial Processes in Geomorphology; Dover Publication: New York, NY, USA, 1964. [Google Scholar]
- Wyżga, B.; Radecki-Pawlik, A.; Galia, T.; Plesiński, K.; Škarpich, V.; Dušek, R. Use of high-water marks and effective discharge calculation to optimize the height of bank revetments in an incised river channel. Geomorphology 2020, 356, 107098. [Google Scholar] [CrossRef]
- USACE. HEC-RAS 5.0 Hydraulic Reference Manual. User’s Manual, Version 41. 2016. Available online: https://www.hec.usace.army.mil/software/hec-ras/download.aspx (accessed on 21 September 2022).
- Lea, D.M.; Legleiter, C.J. Mapping spatial patterns of stream power and channel change along a gravel-bed river in northern Yellowstone. Geomorphology 2016, 252, 66–79. [Google Scholar] [CrossRef]
- Parker, C.; Clifford, N.J.; Thorne, C.R. Understanding the influence of slope on the threshold of coarse grain motion: Revisiting critical stream power. Geomorphology 2011, 126, 51–65. [Google Scholar] [CrossRef]
- Vázquez-Tarrío, D.; Borgniet, L.; Liébault, F.; Recking, A. Using UAS optical imagery and SfM photogrammetry to characterize the surface grain size of gravel bars in a braided river (Vénéon River, French Alps). Geomorphology 2017, 285, 94–105. [Google Scholar] [CrossRef]
- Emmett, W.W.; Wolman, M.G. Effective discharge and gravel-bed rivers. Earth Surf. Process. Landf. 2001, 26, 1369–1380. [Google Scholar] [CrossRef]
- Doeschl-Wilson, A.B.; Ashmore, P.E. Assessing a numerical cellular braided-stream model with a physical model. Earth Surf. Process. Landf. 2005, 30, 519–540. [Google Scholar] [CrossRef]
- Nicholas, A.P.; Quine, T.A. Crossing the divide: Representation of channels and processes in reduced-complexity river models at reach and landscape scales. Geomorphology 2007, 90, 318–339. [Google Scholar] [CrossRef]
- Nicholas, A.P.; Ashworth, P.J.; Sambrook Smith, G.H.; Sandbach, S.D. Numerical simulation of bar and island morphodynamics in anabranching megarivers. J. Geophys. Res. Earth Surf. 2013, 118, 2019–2044. [Google Scholar] [CrossRef] [Green Version]
- Schuurman, F.; Kleinhans, M.G. Self-formed braided bar pattern in a numerical model. In Proceedings of the 7th IAHR Conference on River, Estuarine and Coastal Morphodynamics, Beijing, China, 6–8 September 2011. [Google Scholar]
- Sloff, K.; Mosselman, E. Bifurcation modelling in a meandering gravel-sand bed river. Earth Surf. Process. Landf. 2012, 37, 1556–1566. [Google Scholar] [CrossRef]
- Wohl, E. Mountain Rivers Revisited; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Robert, A. River Processes: An Introduction to Fluvial Dynamics; Routledge: London, UK, 2014. [Google Scholar] [CrossRef]
- Thompson, D.M. Pool–Riffle Sequences. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Dade, W.B.; Friend, P.F. Grain-size, sediment-transport regime, and channel slope in alluvial rivers. J. Geol. 1998, 106, 661–676. [Google Scholar] [CrossRef]
- Gartner, J.D.; Dade, W.B.; Renshaw, C.E.; Magilligan, F.J.; Buraas, E.M. Gradients in stream power influence lateral and downstream sediment flux in floods. Geology 2015, 43, 983–986. [Google Scholar] [CrossRef]
- Wilcock, P.R.; Crowe, J.C. Surface-based Transport Model for Mixed-Size Sediment. J. Hydraul. Eng. 2003, 129, 120–128. [Google Scholar] [CrossRef]
- Török, G.T.; Baranya, S.; Rüther, N. 3D CFD modeling of local scouring, bed armoring and sediment deposition. Water 2017, 9, 56. [Google Scholar] [CrossRef] [Green Version]
- Zapico, I.; Laronne, J.; Lucía, A.; Martín-Duque, J. Morpho-textural implications to bedload flux and texture in the sand-gravel ephemeral Poveda Gully. Geomorphology 2018, 322, 53–65. [Google Scholar] [CrossRef] [Green Version]
Event/ Field Survey | Date | P (mm) | Rainfall Duration (h) | I1h (mm h−1) | I30’ (mm h−1) | Qp (m3 s−1) | ||
---|---|---|---|---|---|---|---|---|
UPR | MDR | LWR | ||||||
UAV-SfM | 18 September 2018 | |||||||
Peak flow | 18 November 2018 | 35.6 | 9.3 | 17.6 | 32.4 | 0.1 | 0.1 | 0.2 |
TLS | 29 November 2018 | |||||||
Peak flow | 19–20 April 2019 | 123.2 | 21.2 | 37.3 | 46.0 | 21.9 | 31.3 | 46.1 |
UAV-SfM/TLS | 5 September 2019 | |||||||
Peak flow | 12 September 2019 | 93.9 | 16.9 | 20.2 | 26.4 | 8.4 | 10.9 | 15.1 |
Peak flow | 2 December 2019 | 59.3 | 20.3 | 9.8 | 17.8 | 1.2 | 1.7 | 2.9 |
TLS | 16 January 2020 | |||||||
Peak Flow | 20 January 2020 | 66.3 | 20.8 | 10.6 | 12.8 | 2.7 | 3.6 | 5 |
Peak flow | 23–24 March 2020 | 119.3 | 34.2 | 22.9 | 28.8 | 11.6 | 15.4 | 20.8 |
UAV-SfM/TLS | 26 July 2020 | |||||||
Peak flow | 9 January 2021 | 41.0 | 34.0 | 2.7 | - | 0.3 | 0.4 | 0.8 |
Peak flow | 7 March 2021 | 35.4 | 22.1 | 5.6 | 10.6 | 0.1 | 0.2 | 0.3 |
Peak flow | 23 May 2021 | 36.7 | 14.5 | 7.7 | 14.4 | 0.1 | 0.1 | 0.2 |
Peak flow | 16–17 March 2022 | 92.0 | 28.2 | 29.6 | 34.2 | 12.9 | 16.3 | 22.8 |
Peak flow | 4–5 April 2022 | 55.1 | 39.2 | 5.4 | 5.6 | 0.6 | 0.9 | 1.3 |
UAV-SfM | 10 February 2023 |
Upper RCR | Middle RCR | Lower RCR | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EC | Qobs | Qsim | dif. % | PBIAS % | NS | Qobs | Qsim | dif. % | PBIAS % | NS | Qobs | Qsim | dif. % | PBIAS % | NS |
2 | 11.6 | 9.84 | −17.93 | −10.495 | 0.724 | 15.4 | 13.95 | −10.37 | −5.536 | 0.944 | 20.8 | 19.75 | −5.32 | 0.030 | 0.997 |
1 | 21.9 | 26.63 | 17.75 | 31.3 | 33.45 | 6.44 | 45.1 | 45.54 | 0.97 | ||||||
3 | 8.4 | 9.83 | 14.59 | 10.9 | 13.38 | 18.55 | 15.1 | 15.68 | 3.71 |
EC | Flow Stage | Peak Discharge (m3 s−1) | Morphological Channel Adjustments | Occurrence | Return Period (years) | AEP (p.u.) | |
---|---|---|---|---|---|---|---|
No. of Events | Times/Year | ||||||
1 | Overflow | >30 | Fluvial system changes | 4 | 0.15 | 6.75 | 0.12 |
2 | Bankfull | 15–30 | Changes in channel form | 10 | 0.37 | 2.70 | 0.39 |
3 | Sub-bankfull | 7.5–15 | Moderate channel changes | 13 | 0.48 | 2.08 | 0.64 |
4 | Sub-half-bankfull | <7.5 | Minor bedform adjustments | 39 | 1.44 | 0.69 | 0.84 |
Monitoring Period | ECP | Event Sequence | UPR | MDR | ||||
---|---|---|---|---|---|---|---|---|
UVSL | UVSR | UVSC | UVSL | UVSR | UVSC | |||
September 2018 to September 2019 | A | 1 | 0.128 | 0.231 | 0.359 | 0.086 | 0.218 | 0.304 |
September 2019 to July 2020 | B | 3-4-2 | 0.229 | 0.237 | 0.466 | 0.235 | 0.317 | 0.552 |
September 2018 to July 2020 | C | 1-3-4-2 | 0.087 | 0.110 | 0.197 | 0.124 | 0.186 | 0.310 |
July 2020 to February 2023 | D | 2 | 0.120 | 0.153 | 0.273 | 0.294 | 0.150 | 0.444 |
September 2019 to February 2023 | E | 3-4-2-2 | 0.126 | 0.073 | 0.199 | 0.130 | 0.100 | 0.230 |
September 2018 to February 2023 | F | 1-3-4-2-2 | 0.067 | 0.153 | 0.220 | 0.085 | 0.144 | 0.229 |
Date | EC | ECP | UPR | MDR | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
QpOB | QpS | DSL | UCROB | UCRS | CF | QpOB | QpS | DSL | UCROB | UCRS | CF | |||
18/12/2016 | 4 | B | 2.7 | 2.16 | −0.20 | 0.05 | 0.04 | 1.128 | 3.6 | 4.16 | 0.16 | 0.06 | 0.07 | 1.053 |
01/11/2015 | 4 | 2.7 | 4.17 | 0.54 | 0.05 | 0.08 | 3.6 | 4.69 | 0.30 | 0.06 | 0.08 | |||
29/09/2014 | 3 | 8.4 | 7.34 | −0.13 | 0.15 | 0.13 | 10.9 | 8.44 | −0.23 | 0.18 | 0.14 | |||
06/10/2013 | 2 | 11.6 | 14.97 | 0.29 | 0.21 | 0.27 | 15.4 | 17.97 | 0.17 | 0.25 | 0.30 | |||
28/09/2012 | 2 | D | 12.9 | 15.59 | 0.21 | 0.27 | 0.33 | 1.209 | 16.3 | 18.74 | 0.15 | 0.44 | 0.51 | 1.149 |
30/08/2012 | 2 | D | 12.9 | 13.89 | 0.08 | 0.27 | 0.29 | 1.077 | 16.3 | 16.60 | 0.02 | 0.44 | 0.45 | 1.018 |
15/06/2010 | 2 | D | 12.9 | 12.54 | −0.03 | 0.27 | 0.27 | 0.972 | 16.3 | 15.08 | −0.08 | 0.44 | 0.41 | 0.925 |
14/12/2009 | 4 | C | 2.7 | 6.36 | 1.35 | 0.01 | 0.03 | 1.644 | 3.6 | 7.32 | 1.00 | 0.02 | 0.04 | 1.569 |
28/09/2009 | 1 | 21.9 | 34.93 | 0.59 | 0.10 | 0.15 | 31.3 | 50.07 | 0.60 | 0.16 | 0.25 | |||
27/09/2009 | 2 | 11.6 | 20.32 | 0.75 | 0.05 | 0.09 | 15.4 | 24.67 | 0.60 | 0.08 | 0.12 | |||
29/03/2009 | 3 | 8.4 | 11.73 | 0.40 | 0.04 | 0.05 | 10.9 | 14.07 | 0.29 | 0.06 | 0.07 | |||
24/11/2007 | 2 | B | 11.6 | 13.52 | 0.17 | 0.27 | 0.32 | 1.256 | 15.4 | 16.24 | 0.05 | 0.32 | 0.34 | 1.151 |
19/10/2007 | 3 | 8.4 | 11.59 | 0.38 | 0.20 | 0.27 | 10.9 | 14.04 | 0.29 | 0.23 | 0.29 | |||
27/04/2007 | 2 | C | 11.6 | 13.63 | 0.18 | 0.05 | 0.06 | 1.344 | 15.4 | 16.30 | 0.06 | 0.08 | 0.08 | 1.186 |
03/11/2006 | 1 | 21.9 | 34.03 | 0.55 | 0.10 | 0.15 | 31.3 | 42.22 | 0.35 | 0.16 | 0.21 | |||
14/09/2006 | 3 | 8.4 | 7.87 | −0.06 | 0.04 | 0.03 | 10.9 | 9.07 | −0.17 | 0.06 | 0.05 | |||
22/11/2005 | 4 | 2.7 | 4.42 | 0.64 | 0.01 | 0.02 | 3.6 | 4.97 | 0.38 | 0.02 | 0.03 | |||
15/11/2005 | 3 | B | 8.4 | 10.27 | 0.22 | 0.17 | 0.21 | 1.334 | 10.9 | 12.28 | 0.13 | 0.20 | 0.23 | 1.266 |
29/03/2004 | 4 | 2.7 | 1.93 | −0.29 | 0.06 | 0.04 | 3.6 | 2.02 | −0.44 | 0.07 | 0.04 | |||
19/11/2003 | 2 | 11.6 | 18.09 | 0.56 | 0.24 | 0.37 | 15.4 | 23.57 | 0.53 | 0.28 | 0.44 | |||
18/11/2003 | 3 | B | 8.4 | 7.56 | −0.10 | 0.17 | 0.16 | 1.408 | 10.9 | 8.71 | −0.20 | 0.20 | 0.16 | 1.271 |
06/05/2002 | 2 | 11.6 | 18.52 | 0.60 | 0.24 | 0.38 | 15.4 | 22.53 | 0.46 | 0.28 | 0.42 | |||
04/03/2002 | 4 | 2.7 | 5.89 | 1.18 | 0.06 | 0.12 | 3.6 | 6.75 | 0.87 | 0.07 | 0.12 | |||
10/10/2001 | 4 | E | 2.7 | 5.79 | 1.14 | 0.01 | 0.03 | 2.067 | 3.6 | 6.57 | 0.82 | 0.01 | 0.03 | 1.597 |
25/10/2000 | 4 | 2.7 | 5.65 | 1.09 | 0.01 | 0.03 | 3.6 | 7.02 | 0.95 | 0.01 | 0.03 | |||
23/10/2000 | 1 | 21.9 | 62.44 | 1.85 | 0.10 | 0.28 | 31.3 | 81.52 | 1.00 | 0.12 | 0.24 | |||
27/02/1999 | 3 | 8.4 | 8.51 | 0.01 | 0.04 | 0.04 | 10.9 | 9.87 | −0.09 | 0.04 | 0.04 | |||
02/12/1998 | 3 | 8.4 | 8.78 | 0.04 | 0.04 | 0.04 | 10.9 | 10.21 | −0.06 | 0.04 | 0.04 | |||
24/05/1998 | 2 | B | 11.6 | 16.98 | 0.46 | 0.24 | 0.35 | 1.255 | 15.4 | 20.69 | 0.34 | 0.28 | 0.38 | 1.132 |
14/05/1998 | 4 | 2.7 | 4.18 | 0.55 | 0.06 | 0.09 | 3.6 | 4.71 | 0.31 | 0.07 | 0.09 | |||
07/10/1997 | 3 | 8.4 | 7.32 | −0.13 | 0.17 | 0.15 | 10.9 | 8.45 | −0.22 | 0.20 | 0.16 | |||
14/10/1996 | 2 | D | 12.9 | 14.87 | 0.15 | 0.27 | 0.31 | 1.153 | 16.3 | 17.79 | 0.09 | 0.44 | 0.48 | 1.091 |
PECP | EC | ECP | UPR | MDR | ||
---|---|---|---|---|---|---|
ASIP (t) | CSIP (t) | ASIP (t) | CSIP (t) | |||
July 2020–February 2023 | 2 | D | 2208.1 | 2208.1 | 4222.0 | 4222.0 |
September 2019–July 2020 | 3-4-2 | B | 1907.6 | 3815.1 | 2708.2 | 9694.8 |
September 2018–September 2019 | 1 | A | 4712.4 | 4712.4 | 9694.8 | 9694.8 |
October 2013–September 2018 | 4-4-3-2 | B | 1181.2 | 4724.7 | 2112.8 | 2112.8 |
September 2012–October 2013 | 2 | D | 2760.7 | 2760.7 | 5000.6 | 5000.6 |
August 2012–September 2012 | 2 | D | 2200.1 | 2200.1 | 4364.0 | 4364.0 |
June 2010–August 2012 | 2 | D | 1977.0 | 1977.0 | 3889.2 | 3889.2 |
March 2009–June 2010 | 4-1-2-3 | C | 3343.8 | 13,375.4 | 7144.4 | 28,577.6 |
October 2007–March 2009 | 2-3 | B | 2159.9 | 4319.8 | 3963.9 | 7927.9 |
November 2005–October 2007 | 2-1-3-4 | C | 3411.1 | 10,233.3 | 6082.3 | 18,246.8 |
November 2003–November 2005 | 3-4-2 | B | 1670.5 | 5011.6 | 3349.8 | 10,049.5 |
March 2002–November 2003 | 3-2-4 | B | 1706.8 | 5120.5 | 3243.5 | 9730.5 |
December 1998–March 2002 | 4-4-1-3-3 | E | 3262.1 | 16,310.5 | 6990.3 | 34,951.6 |
October 1997–December 1998 | 2-4-3 | B | 1500.7 | 4502.1 | 2826.0 | 8478.0 |
October 1996–October 1997 | 2 | D | 2612.0 | 2612.0 | 4711.0 | 4711.0 |
TAI | TNVD | ANTD | PI | TASL | TASR | UVSL | UVSR | SD * | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Period | RCR | m2 | m3 | Error (p.u.) | m | Error (p.u.) | (p.u) | m2 | m2 | m3 m−2 | Error (p.u.) | m3 m−2 | Error (p.u.) | m |
2016–2022 (1) | UPR | 2407 | 440.1 | 0.112 | 0.183 | 0.112 | 0.442 | 155.3 | 2251.4 | 0.185 | 0.169 | 0.208 | 0.192 | 0.188 |
MDR | 3956 | 692.3 | 0.175 | 0.175 | 0.175 | 0.459 | 364.0 | 3591.9 | 0.085 | 0.115 | 0.201 | 0.189 | 0.106 | |
2009–2016 (2) | UPR | 2435 | −366.7 | −0.089 | −0.151 | −0.089 | −0.448 | 2261.2 | 173.7 | 0.172 | 0.196 | 0.122 | 0.174 | 0.156 |
MDR | 4040 | −501.4 | −0.106 | −0.124 | −0.106 | −0.463 | 3743.6 | 296.8 | 0.139 | 0.206 | 0.067 | 0.156 | 0.116 |
Period | RCR | TAI | TNVD | ANTD | PI | TASL | TASR | UVSL | UVSR | SD * |
---|---|---|---|---|---|---|---|---|---|---|
2016–2022 (1) | UPR | 0.09 | −0.23 | −0.30 | 0.01 | 0.47 | 0.04 | −0.64 | −0.26 | −0.43 |
MDR | 0.15 | −0.33 | −0.43 | −0.18 | 0.60 | 0.04 | 0.00 | −0.28 | 0.17 | |
2009–2016 (2) | UPR | 0.04 | −0.16 | −0.22 | 0.09 | −0.64 | 0.69 | −0.12 | 0.16 | −0.37 |
MDR | 0.04 | −0.88 | −0.32 | −0.51 | −0.53 | 0.79 | 0.11 | 0.66 | 0.34 |
TAI | TNVD | ANTD | PI | TASL | TASR | UVSL | UVSR | SD * | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PECP | RCR | m2 | m3 | Error (u.p.) | m | Error (u.p.) | p.u. | m2 | m2 | m3 m−2 | Error (p.u.) | m3 m−2 | Error (p.u.) | m |
JUL20- FEB23 | UPR | 2730 | 395.2 | 0.063 | 0.145 | 0.063 | 0.477 | 81.2 | 2649.3 | 0.120 | 0.057 | 0.153 | 0.079 | 0.136 |
MDR | 4532 | 118.7 | 0.054 | 0.026 | 0.054 | 0.069 | 1266.0 | 3266.2 | 0.294 | 0.086 | 0.150 | 0.113 | 0.146 | |
SEP19- JUL20 | UPR | 2976 | −575.3 | −0.048 | −0.193 | −0.048 | −0.420 | 2744.1 | 232.2 | 0.229 | 0.043 | 0.237 | 0.040 | 0.162 |
MDR | 4707 | −742.2 | −0.055 | −0.158 | −0.055 | −0.319 | 4043.8 | 663.4 | 0.235 | 0.042 | 0.317 | 0.030 | 0.243 | |
SEP18- SEP19 | UPR | 2763 | 613.2 | 0.044 | 0.222 | 0.044 | 0.486 | 67.3 | 2695.1 | 0.128 | 0.070 | 0.231 | 0.043 | 0.118 |
MDR | 4885 | 1013.1 | 0.046 | 0.207 | 0.046 | 0.486 | 168.1 | 4717.0 | 0.086 | 0.102 | 0.218 | 0.046 | 0.106 | |
OCT13- SEP18 | UPR | 2551 | −680.5 | −0.112 | −0.267 | −0.112 | −0.494 | 2516.7 | 34.7 | 0.272 | 0.198 | 0.127 | 0.109 | 0.105 |
MDR | 4490 | −716.1 | −0.106 | −0.159 | −0.106 | −0.306 | 3873.6 | 616.9 | 0.243 | 0.206 | 0.368 | 0.185 | 0.186 | |
SEP12- OCT13 | UPR | 2543 | 443.8 | 0.089 | 0.174 | 0.089 | 0.485 | 51.9 | 2491.4 | 0.129 | 0.095 | 0.181 | 0.099 | 0.077 |
MDR | 4155 | 336.3 | 0.093 | 0.081 | 0.093 | 0.272 | 1032.9 | 3122.0 | 0.136 | 0.112 | 0.153 | 0.123 | 0.164 | |
AUG12- SEP12 | UPR | 2543 | 395.3 | 0.146 | 0.155 | 0.146 | 0.485 | 51.9 | 2491.4 | 0.115 | 0.122 | 0.161 | 0.148 | 0.069 |
MDR | 4155 | 298.0 | 0.157 | 0.072 | 0.157 | 0.272 | 1032.9 | 3122.0 | 0.121 | 0.158 | 0.135 | 0.141 | 0.146 | |
JUN10 – AUG12 | UPR | 2543 | 356.8 | 0.167 | 0.140 | 0.167 | 0.485 | 51.9 | 2491.4 | 0.104 | 0.186 | 0.145 | 0.109 | 0.062 |
MDR | 4155 | 270.7 | 0.189 | 0.065 | 0.189 | 0.272 | 1032.9 | 3122.0 | 0.110 | 0.199 | 0.123 | 0.098 | 0.132 | |
MAR09 JUN10 | UPR | 2542 | −755.9 | −0.129 | −0.297 | −0.129 | −0.494 | 2508.5 | 33.9 | 0.303 | 0.202 | 0.146 | 0.133 | 0.118 |
MDR | 4155 | −894.3 | −0.187 | −0.215 | −0.187 | −0.434 | 3746.1 | 408.5 | 0.257 | 0.274 | 0.166 | 0.145 | 0.176 | |
OCT07- MAR09 | UPR | 2542 | −78.5 | −0.196 | −0.031 | −0.196 | −0.120 | 1438.2 | 1104.2 | 0.141 | 0.143 | 0.112 | 0.089 | 0.177 |
MDR | 4155 | 112.4 | −0.213 | 0.027 | −0.213 | 0.074 | 1900.3 | 2254.4 | 0.169 | 0.153 | 0.193 | 0.149 | 0.252 | |
NOV05- OCT07 | UPR | 2542 | −802.9 | −0.229 | −0.316 | −0.229 | −0.494 | 2508.5 | 33.9 | 0.322 | 0.224 | 0.156 | 0.144 | 0.125 |
MDR | 4155 | −983.7 | −0.258 | −0.237 | −0.258 | −0.434 | 3746.1 | 408.5 | 0.282 | 0.239 | 0.182 | 0.175 | 0.194 | |
NOV03- NOV05 | UPR | 2542 | −64.2 | −0.216 | −0.025 | −0.216 | −0.120 | 1438.2 | 1104.2 | 0.115 | 0.106 | 0.092 | 0.107 | 0.145 |
MDR | 4155 | 85.0 | −0.224 | 0.020 | −0.224 | 0.074 | 1900.3 | 2254.4 | 0.128 | 0.125 | 0.146 | 0.127 | 0.191 | |
MAR02- NOV03 | UPR | 2533 | −496.9 | −0.285 | −0.196 | −0.285 | −0.407 | 2128.1 | 405.0 | 0.260 | 0.259 | 0.140 | 0.121 | 0.219 |
MDR | 4153 | −771.8 | −0.297 | −0.186 | −0.297 | −0.455 | 3845.1 | 308.1 | 0.211 | 0.189 | 0.125 | 0.095 | 0.160 | |
DEC98- MAR02 | UPR | 2542 | −847.4 | −0.219 | −0.333 | −0.219 | −0.494 | 2508.5 | 33.9 | 0.340 | 0.287 | 0.164 | 0.133 | 0.132 |
MDR | 4155 | −987.5 | −0.246 | −0.238 | −0.246 | −0.434 | 3746.1 | 408.5 | 0.284 | 0.256 | 0.183 | 0.148 | 0.194 | |
OCT97- DEC98 | UPR | 2533 | −754.6 | −0.253 | −0.298 | −0.253 | −0.494 | 2502.2 | 30.9 | 0.303 | 0.288 | 0.142 | 0.185 | 0.116 |
MDR | 4153 | −879.2 | −0.267 | −0.212 | −0.267 | −0.434 | 3745.1 | 408.0 | 0.253 | 0.249 | 0.163 | 0.149 | 0.173 | |
OCT96- OCT97 | UPR | 2533 | 421.5 | 0.267 | 0.166 | 0.267 | 0.486 | 50.0 | 2483.1 | 0.121 | 0.166 | 0.172 | 0.179 | 0.073 |
MDR | 4153 | 319.2 | 0.288 | 0.077 | 0.288 | 0.272 | 1032.4 | 3120.7 | 0.129 | 0.172 | 0.145 | 0.195 | 0.156 |
UPR | MDR | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PECP | TAI | TNVD | NVD* | CNVD | ANTD | CNTD | TAI | TNVD | NVD* | CNV | ANTD | CNTD |
July 2020–February 2023 | 2730 | 395.2 | 14.5 | 14.5 | 0.15 | 0.15 | 4532 | 118.7 | 2.6 | 2.6 | 0.03 | 0.03 |
September 2019–July 2020 | 2976 | −575.3 | −19.3 | −4.8 | −0.19 | −0.04 | 4707 | −742.2 | −15.8 | −13.1 | −0.16 | −0.13 |
September 2018–September 2019 | 2763 | 613.2 | 22.2 | 17.4 | 0.22 | 0.18 | 4885 | 1013.1 | 20.7 | 7.6 | 0.21 | 0.08 |
October 2013–September 2018 | 2551 | −680.5 | −26.7 | −9.3 | −0.27 | −0.09 | 4490 | −716.1 | −15.9 | −8.3 | −0.16 | −0.08 |
September 2012–October 2013 | 2543 | 443.8 | 17.5 | 8.2 | 0.17 | 0.08 | 4155 | 336.3 | 8.0 | −0.3 | 0.08 | 0.00 |
August 2012–September 2012 | 2543 | 395.3 | 15.5 | 23.7 | 0.16 | 0.24 | 4155 | 298.0 | 7.2 | 6.9 | 0.07 | 0.07 |
June 2010–August 2012 | 2543 | 356.8 | 14.0 | 37.7 | 0.14 | 0.38 | 4155 | 270.7 | 6.5 | 13.4 | 0.07 | 0.14 |
March 2009–June 2010 | 2542 | −755.9 | −29.7 | 8.0 | −0.30 | 0.08 | 4155 | −894.3 | −21.5 | −8.1 | −0.22 | −0.08 |
October 2007–March 2009 | 2542 | −78.5 | −3.1 | 4.9 | −0.03 | 0.05 | 4155 | 112.4 | 2.7 | −5.4 | 0.03 | −0.05 |
November 2005–October 2007 | 2542 | −802.9 | −31.6 | −26.7 | −0.32 | −0.27 | 4155 | −983.7 | −23.7 | −29.1 | −0.24 | −0.29 |
November 2003–November 2005 | 2542 | −64.2 | −2.5 | −29.2 | −0.03 | −0.30 | 4155 | 85.0 | 2.1 | −27.0 | 0.02 | −0.27 |
March 2002–November 2003 | 2533 | −496.9 | −19.6 | −48.8 | −0.20 | −0.50 | 4153 | −771.8 | −18.6 | −45.6 | −0.19 | −0.46 |
December 1998–March 2002 | 2542 | −847.4 | −33.3 | −82.1 | −0.33 | −0.83 | 4155 | −987.5 | −23.8 | −69.4 | −0.24 | −0.70 |
October 1997–December 1998 | 2533 | −754.6 | −29.9 | −112.0 | −0.30 | −1.13 | 4153 | −879.2 | −21.2 | −90.6 | −0.21 | −0.91 |
October 1996–October 1997 | 2533 | 421.5 | 16.6 | −95.4 | 0.17 | −0.96 | 4153 | 319.2 | 7.7 | −82.9 | 0.08 | −0.83 |
RCR | Upper RCR | Middle RCR | ||||
---|---|---|---|---|---|---|
Period | ANTD | CNTD | St. Dev. | ANTD | CNTD | St. Dev. |
2016–2020 | 0.06 | 0.06 | 0.04 | 0.04 | 0.04 | 0.06 |
2012–2016 | −0.04 | 0.02 | 0.12 | −0.01 | 0.03 | 0.09 |
2007–2012 | −0.28 | −0.26 | 0.33 | −0.13 | −0.10 | 0.21 |
2002–2007 | −0.22 | −0.48 | 0.58 | −0.12 | −0.22 | 0.37 |
1996–2002 | −0.25 | −0.73 | 0.82 | −0.29 | −0.51 | 0.63 |
PECP | ω | δω/δs | ε | εc | ||||
---|---|---|---|---|---|---|---|---|
UPR | MDR | UPR | MDR | UPR | MDR | UPR | MDR | |
JUL20-FEB23 | 204.9 | 122.2 | 1.01 | −0.76 | 89.40 | 73.45 | 1.34 | 0.73 |
SEP19-JUL20 | 156.6 | 256.1 | 0.38 | −0.79 | 72.35 | 59.42 | 0.84 | 1.19 |
SEP18-SEP19 | 214.1 | 154.2 | 0.82 | −1.06 | 108.15 | 50.22 | 1.25 | 0.79 |
OCT13-SEP18 | 212.1 | 129.8 | 1.22 | −1.35 | 98.92 | 39.15 | 1.44 | 0.69 |
SEP12-OCT13 | 117.1 | 270.4 | 0.64 | −1.01 | 47.91 | 85.33 | 1.05 | 1.37 |
AUG12-SEP12 | 210.2 | 104.1 | 1.08 | −1.42 | 92.50 | 31.02 | 1.57 | 0.62 |
JUN10-AUG12 | 184.4 | 113.1 | 0.60 | −0.51 | 91.01 | 33.63 | 1.05 | 0.66 |
MAR09-JUN10 | 218.4 | 148.3 | 0.78 | −1.62 | 104.01 | 49.31 | 1.20 | 0.76 |
OCT07-MAR09 | 230.8 | 183.8 | 1.24 | −1.21 | 133.17 | 53.96 | 1.59 | 0.86 |
NOV05-OCT07 | 265.5 | 240.2 | 1.06 | −1.21 | 126.97 | 82.78 | 1.47 | 1.09 |
NOV03-NOV05 | 153.6 | 112.9 | 0.38 | −0.37 | 73.31 | 77.56 | 0.85 | 1.03 |
MAR02-NOV03 | 143.6 | 102.8 | 0.34 | −0.20 | 66.12 | 69.44 | 0.76 | 0.92 |
DEC98-MAR02 | 270.7 | 240.4 | 1.34 | −1.52 | 157.30 | 120.86 | 1.82 | 1.12 |
OCT97-DEC98 | 261.7 | 234.2 | 0.82 | −0.95 | 117.06 | 70.75 | 1.15 | 0.95 |
OCT96-OCT97 | 144.5 | 97.1 | 0.26 | −0.15 | 64.46 | 48.38 | 0.75 | 0.74 |
RCR | Relationship | Regression Equation | Function | r2 |
---|---|---|---|---|
UPR | UVSL vs. ∂ω/∂s | UVSL = 0.093 ∂ω/∂s2 − 0.363 ∂ω/∂s + 0.419 | Polynomial | 0.73 |
ANTD vs. ∂ω/∂s | ANTD = 0.485 ∂ω/∂s − 0.450 | Linear | 0.64 | |
ANTD vs. εc | ANTD = 0.524 εc − 0.698 | Linear | 0.65 | |
UVSC vs. ∂ω/∂s | UVSC = 0.192 ∂ω/∂s2 − 0.533 ∂ω/∂s + 0.638 | Polynomial | 0.75 | |
UVSL vs. εc | UVSL = 0.178 εc2 − 0.670 εc + 0.732 | Polynomial | 0.75 | |
UVSC vs. εc | UVSC = 0.319 εc2 − 1.027 εc + 1.10 | Polynomial | 0.78 | |
MDR | ANTD vs. ∂ω/∂s | ANTD = −0.269 ∂ω/∂s − 0.309 | Linear | 0.72 |
ANTD vs. ASY | ANTD = −5 × 10−9 ASY2 + 0.0001 ASY − 0.48 | Polynomial | 0.67 | |
UVSL vs. ∂ω/∂s | UVSL = −0.076 ∂ω/∂s2 + 0.003 ∂ω/∂s + 0.282 | Polynomial | 0.81 | |
UVSR vs. εc | UVSR = 0.608 εc2 − 0.905 εc + 0.479 | Polynomial | 0.89 | |
UVSL vs. ASY | UVSL = 121.01 ASY−0.78 | Power | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conesa-García, C.; Martínez-Salvador, A.; Puig-Mengual, C.; Martínez-Capel, F.; Pérez-Cutillas, P. Simulation of Retrospective Morphological Channel Adjustments Using High-Resolution Differential Digital Elevation Models versus Predicted Sediment Delivery and Stream Power Variations. Water 2023, 15, 2697. https://doi.org/10.3390/w15152697
Conesa-García C, Martínez-Salvador A, Puig-Mengual C, Martínez-Capel F, Pérez-Cutillas P. Simulation of Retrospective Morphological Channel Adjustments Using High-Resolution Differential Digital Elevation Models versus Predicted Sediment Delivery and Stream Power Variations. Water. 2023; 15(15):2697. https://doi.org/10.3390/w15152697
Chicago/Turabian StyleConesa-García, Carmelo, Alberto Martínez-Salvador, Carlos Puig-Mengual, Francisco Martínez-Capel, and Pedro Pérez-Cutillas. 2023. "Simulation of Retrospective Morphological Channel Adjustments Using High-Resolution Differential Digital Elevation Models versus Predicted Sediment Delivery and Stream Power Variations" Water 15, no. 15: 2697. https://doi.org/10.3390/w15152697
APA StyleConesa-García, C., Martínez-Salvador, A., Puig-Mengual, C., Martínez-Capel, F., & Pérez-Cutillas, P. (2023). Simulation of Retrospective Morphological Channel Adjustments Using High-Resolution Differential Digital Elevation Models versus Predicted Sediment Delivery and Stream Power Variations. Water, 15(15), 2697. https://doi.org/10.3390/w15152697