Tracking and Utilizing Sargassum, an Abundant Resource from the Caribbean Sea
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Heavy Metal Accumulation in Sargassum and Its Ecological Implications
3.2. Sargassum Distribution and Predictive Measures via Ocean Climate Circulation
4. Discussion
Cost-Effective Management and Opportunities for Functional Utilization of Sargassum
- Fucoxanthin is a natural pigment belonging to the class of carotenoids called fucoxanthins. It imparts a deep brown color to the genus Sargassum and possesses antioxidant and anti-inflammatory properties. Fucoxanthin has been studied as a potential anticancer and antiobesity compound;
- Fucoidan is one of the most significant bioactive compounds found in Sargassum. It is a sulfated polysaccharide with various biological activities, including anti-inflammatory, anticoagulant, antioxidant, antitumor, and immune-modulating properties. Fucoidan has been extensively researched and is considered to have potential applications in pharmaceuticals and functional foods;
- Alginates are polysaccharides composed primarily of α-l-guluronic acid and β-d-mannuronic acid. They are widely present in the cell walls of Sargassum. Alginates have gel-forming abilities, and find extensive applications in food, pharmaceutical, and cosmetic industries as thickeners, stabilizers, and emulsifiers [20,21,22].
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Orozco-González, J.G.; Amador-Castro, F.; Gordillo-Sierra, A.R.; García-Cayuela, T.; Alper, H.S.; Carrillo-Nieves, D. Opportunities Surrounding the Use of Sargassum Biomass as Precursor of Biogas, Bioethanol, and Biodiesel Production. Front. Mar. Sci. 2022, 8, 791054. [Google Scholar] [CrossRef]
- Lee, M.-C. Situations and Solutions of Sargassum Influxes—Saint Lucia, Saint Vincent and the Grenadines, Saint Kitts and Nevis, and Belize. Unpublished Work. 2022. [Google Scholar]
- Fox-Kemper, B.; Adcroft, A.; Böning, C.W.; Chassignet, E.P.; Curchitser, E.; Danabasoglu, G.; Eden, C.; England, M.H.; Gerdes, R.; Greatbatch, R.J.; et al. Challenges and Prospects in Ocean Circulation Models. Front. Mar. Sci. 2019, 6, 65. [Google Scholar] [CrossRef]
- Khatiwala, S.; Primeau, F.; Hall, T. Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature 2009, 462, 346–349. [Google Scholar] [CrossRef]
- Khatiwala, S.; Tanhua, T.; Mikaloff Fletcher, S.; Gerber, M.; Doney, S.C.; Graven, H.D.; Gruber, N.; McKinley, G.A.; Murata, A.; Ríos, A.F.; et al. Global ocean storage of anthropogenic carbon. Biogeosciences 2013, 10, 2169–2191. [Google Scholar] [CrossRef]
- Lee, M.-C.; Libatique, M.J.H.; Yeh, H.-Y.; Chloe Lung, W.Q. Increasing arsenic accumulation as an implication of climate change: A case study using red algae. Bull. Environ. Contam. Toxicol. 2022, 108, 839–847. [Google Scholar] [CrossRef]
- Wu, Q.; Qi, J.; Xia, X. Long-term variations in sediment heavy metals of a reservoir with changing trophic states: Implications for the impact of climate change. Sci. Total Environ. 2017, 609, 242–250. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, C.; Zeng, G.; Liang, J.; Guo, S.; Huang, L.; Wu, H.; Hua, S. Quantitative assessment of the contribution of climate variability and human activity to streamflow alteration in Dongting Lake, China. Hydrol. Process. 2016, 30, 1929–1939. [Google Scholar] [CrossRef]
- Davis, D.; Simister, R.; Campbell, S.; Marston, M.; Bose, S.; McQueen-Mason, S.J.; Gomez, L.D.; Gallimore, W.A.; Tonon, T. Biomass composition of the golden tide pelagic seaweeds Sargassum fluitans and S. natans (morphotypes I and VIII) to inform valorisation pathways. Sci. Total Environ. 2021, 762, 143134. [Google Scholar] [CrossRef]
- Kordjazi, M.; Etemadian, Y.; Shabanpour, B.; Pourashouri, P. Chemical composition antioxidant and antimicrobial activities of fucoidan extracted from two species of brown seaweeds(Sargassum ilicifolium and S. angustifolium) around Qeshm Island. Iran. J. Fish. Sci. 2018, 18, 457–475. [Google Scholar] [CrossRef]
- Yaich, H.; Garna, H.; Besbes, S.; Paquot, M.; Blecker, C.; Attia, H. Chemical composition and functional properties of Ulva lactuca seaweed collected in Tunisia. Food Chem. 2011, 128, 895–901. [Google Scholar] [CrossRef]
- Al-Homaidan, A.A.; Al-Ghanayem, A.A.; Al-Qahtani, H.S.; Al-Abbad, A.F.; Alabdullatif, J.A.; Alwakeel, S.S.; Ameen, F. Effect of sampling time on the heavy metal concentrations of brown algae: A bioindicator study on the Arabian Gulf coast. Chemosphere 2021, 263, 127998. [Google Scholar] [CrossRef]
- López Miranda, J.L.; Celis, L.B.; Estévez, M.; Chávez, V.; van Tussenbroek, B.I.; Uribe-Martínez, A.; Cuevas, E.; Rosillo Pantoja, I.; Masia, L.; Cauich-Kantun, C.; et al. Commercial Potential of Pelagic Sargassum spp. in Mexico. Front. Mar. Sci. 2021, 8, 768470. [Google Scholar] [CrossRef]
- Polat, A.; Polat, S.; Simsek, A.; Kurt, T.T.; Ozyurt, G. Pesticide residues in muscles of some marine fish species and seaweeds of Iskenderun Bay (Northeastern Mediterranean), Turkey. Environ. Sci. Pollut. Res. 2018, 25, 3756–3764. [Google Scholar] [CrossRef]
- Sanjeewa, K.K.A.; Kang, N.; Ahn, G.; Jee, Y.; Kim, Y.-T.; Jeon, Y.-J. Bioactive potentials of sulfated polysaccharides isolated from brown seaweed Sargassum spp in related to human health applications: A review. Food Hydrocoll. 2018, 81, 200–208. [Google Scholar] [CrossRef]
- Leandro, A.; Pacheco, D.; Cotas, J.; Marques, J.C.; Pereira, L.; Gonçalves, A.M.M. Seaweed’s Bioactive Candidate Compounds to Food Industry and Global Food Security. Life 2020, 10, 140. [Google Scholar] [CrossRef]
- Hwang, J.; Yadav, D.; Lee, P.C.; Jin, J.-O. Immunomodulatory effects of polysaccharides from marine algae for treating cancer, infectious disease, and inflammation. Phytother. Res. 2022, 36, 761–777. [Google Scholar] [CrossRef]
- Zhao, Y.; Bourgougnon, N.; Lanoisellé, J.-L.; Lendormi, T. Biofuel Production from Seaweeds: A Comprehensive Review. Energies 2022, 15, 9395. [Google Scholar] [CrossRef]
- Milledge, J.J.; Maneein, S.; Arribas López, E.; Bartlett, D. Sargassum Inundations in Turks and Caicos: Methane Potential and Proximate, Ultimate, Lipid, Amino Acid, Metal and Metalloid Analyses. Energies 2020, 13, 1523. [Google Scholar] [CrossRef]
- Holdt, S.L.; Kraan, S. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Plaza, M.; Cifuentes, A.; Ibáñez, E. In the search of new functional food ingredients from algae. Trends Food Sci. Technol. 2008, 19, 31–39. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, X.; Tang, Y.; Mao, J. Composition, isolation, purification and biological activities of Sargassum fusiforme polysaccharides: A review. Carbohydr. Polym. 2020, 228, 115381. [Google Scholar] [CrossRef]
- Publication, F. Report of the Expert Meeting on Food Safety for Seaweed—Current Status and Future Perspectives; FAO: Rome, Italy, 2022. [Google Scholar]
- Publication, E. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006, 364, 5–24. [Google Scholar]
- Libatique, M.J.H.; Lee, M.-C.; Yeh, H.-Y.; Jhang, F.-J. Total and inorganic arsenic biosorption by Sarcodia suiae (Rhodophyta), as affected by controlled environmental conditions. Chemosphere 2020, 248, 126084. [Google Scholar] [CrossRef]
- Hurd, C.L.; Harrison, P.J.; Bischof, K.; Lobban, C.S. Seaweed Ecology and Physiology, 2nd ed.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Clark, R.B. Marine Pollution and Sea Life: (ed. M. Ruivo). Fishing News (Books) Ltd., London, by arrangement with the Food and Agriculture Organization of the UN (1972). xxiv + 624 pp. £17.75. Mar. Pollut. Bull. 1973, 4, 112. [Google Scholar] [CrossRef]
- Nischwitz, V.; Pergantis, S.A. First report on the detection and quantification of arsenobetaine in extracts of marine algae using HPLC-ES-MS/MS. Analyst 2005, 130, 1348–1350. [Google Scholar] [CrossRef]
- Robalds, A.; Naja, G.M.; Klavins, M. Highlighting inconsistencies regarding metal biosorption. J. Hazard. Mater. 2016, 304, 553–556. [Google Scholar] [CrossRef]
- Baumann, H.A.; Morrison, L.; Stengel, D.B. Metal accumulation and toxicity measured by PAM—Chlorophyll fluorescence in seven species of marine macroalgae. Ecotoxicol. Environ. Saf. 2009, 72, 1063–1075. [Google Scholar] [CrossRef]
- Chávez, V.; Uribe-Martínez, A.; Cuevas, E.; Rodríguez-Martínez, R.E.; van Tussenbroek, B.I.; Francisco, V.; Estévez, M.; Celis, L.B.; Monroy-Velázquez, L.V.; Leal-Bautista, R.; et al. Massive Influx of Pelagic Sargassum spp. on the Coasts of the Mexican Caribbean 2014–2020: Challenges and Opportunities. Water 2020, 12, 2908. [Google Scholar] [CrossRef]
- Ramelow, G.; Fralick, D.; Zhao, Y.-f. Factors affecting the uptake of aqueous metal ions by dried seaweed biomass. Microbios 1992, 72, 81–93. [Google Scholar]
- Maulvault, A.L.; Camacho, C.; Barbosa, V.; Alves, R.; Anacleto, P.; Fogaça, F.; Kwadijk, C.; Kotterman, M.; Cunha, S.C.; Fernandes, J.O.; et al. Assessing the effects of seawater temperature and pH on the bioaccumulation of emerging chemical contaminants in marine bivalves. Environ. Res. 2018, 161, 236–247. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. FDA Total Diet Study TDS; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2022.
- Libatique, M.J.H.; Yeh, H.-Y.; Nan, F.-H.; Lee, M.-C. Phosphate affects susceptivity of Sarcodia suae to arsenate. Eur. J. Phycol. 2023, 58, 45–57. [Google Scholar] [CrossRef]
- Resiere, D.; Mehdaoui, H.; Névière, R.; Mégarbane, B. Sargassum invasion in the Caribbean: The role of medical and scientific cooperation. Rev. Panam. Salud Pública 2019, 43, e52. [Google Scholar] [CrossRef]
- Sulaymon, A.H.; Mohammed, A.A.; Al-Musawi, T.J. Competitive biosorption of lead, cadmium, copper, and arsenic ions using algae. Environ. Sci. Pollut. Res. 2013, 20, 3011–3023. [Google Scholar] [CrossRef]
- Freitas, R.; Salamanca, L.; Velez, C.; Wrona, F.J.; Soares, A.M.V.M.; Figueira, E. Multiple stressors in estuarine waters: Effects of arsenic and salinity on Ruditapes philippinarum. Sci. Total Environ. 2016, 541, 1106–1114. [Google Scholar] [CrossRef]
- Jouanno, J.; Benshila, R.; Berline, L.; Soulié, A.; Radenac, M.H.; Morvan, G.; Diaz, F.; Sheinbaum, J.; Chevalier, C.; Thibaut, T.; et al. A NEMO-based model of Sargassum distribution in the tropical Atlantic: Description of the model and sensitivity analysis (NEMO-Sarg1.0). Geosci. Model Dev. 2021, 14, 4069–4086. [Google Scholar] [CrossRef]
- Marsh, R.; Oxenford, H.A.; Cox, S.-A.L.; Johnson, D.R.; Bellamy, J. Forecasting seasonal Sargassum events across the tropical Atlantic: Overview and challenges. Front. Mar. Sci. 2022, 9, 914501. [Google Scholar] [CrossRef]
- NOAA. What is Eutrophication; NOAA: Washington, DC, USA, 2023.
- Berline, L.; Ody, A.; Jouanno, J.; Chevalier, C.; André, J.-M.; Thibaut, T.; Ménard, F. Hindcasting the 2017 dispersal of Sargassum algae in the Tropical North Atlantic. Mar. Pollut. Bull. 2020, 158, 111431. [Google Scholar] [CrossRef]
- Gavio, B.; Rincón-Díaz, M.N.; Santos-Martínez, A. Massive quantities of pelagic Sargassum on the shores of san andres island, southwestern caribbean. Acta Biológica Colomb. 2015, 20, 239–241. [Google Scholar] [CrossRef]
- Louime, C.; Fortune, J.; Gervais, G. Sargassum Invasion of Coastal Environments: A Growing Concern. Am. J. Environ. Sci. 2017, 13, 58–64. [Google Scholar] [CrossRef]
- Lin, S.-M.; Huang, R.; Ogawa, H.; Liu, L.-C.; Wang, Y.-C.; Chiou, Y. Assessment of germling ability of the introduced marine brown alga, Sargassum horneri, in Northern Taiwan. J. Appl. Phycol. 2017, 29, 2641–2649. [Google Scholar] [CrossRef]
- Fine, M.L. Faunal variation on pelagic Sargassum. Mar. Biol. 1970, 7, 112–122. [Google Scholar] [CrossRef]
- Amador-Castro, F.; García-Cayuela, T.; Alper, H.S.; Rodriguez-Martinez, V.; Carrillo-Nieves, D. Valorization of pelagic Sargassum biomass into sustainable applications: Current trends and challenges. J. Environ. Manag. 2021, 283, 112013. [Google Scholar] [CrossRef]
- Fidai, Y.A.; Dash, J.; Tompkins, E.L.; Tonon, T. A systematic review of floating and beach landing records of Sargassum beyond the Sargasso Sea. Environ. Res. Commun. 2020, 2, 122001. [Google Scholar] [CrossRef]
- García-Sánchez, M.; Graham, C.; Vera, E.; Escalante-Mancera, E.; Álvarez-Filip, L.; van Tussenbroek, B.I. Temporal changes in the composition and biomass of beached pelagic Sargassum species in the Mexican Caribbean. Aquat. Bot. 2020, 167, 103275. [Google Scholar] [CrossRef]
- Hojas-Gascon, L.; Eva, H. Field Guide for Forest Mapping with High Resolution Satellite Data; Monitoring Deforestation and Forest Degradation in the Context of the UN-REDD Programme. The Tanzania REDD+ Initiative; Joint Research Center, Publications Office of the European Union: Luxembourg, 2014. [Google Scholar]
- Yin, Q.; Hu, Q.; Liu, H.; Zhang, F.; Wang, Y.; Lin, Z.; An, W.; Guo, Y. Detecting and Tracking Small and Dense Moving Objects in Satellite Videos: A Benchmark. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5612518. [Google Scholar] [CrossRef]
- Hsu, M.C.; Shyur, J.C.; Watanabe, H. Pseudo Ground Truth Segmentation Mask to Improve Video Prediction Quality. In Proceedings of the 2020 IEEE 9th Global Conference on Consumer Electronics (GCCE), Kobe, Japan, 13–16 October 2020; pp. 831–832. [Google Scholar]
- Fleurence, J. Chapter 5—Seaweeds as Food. In Seaweed in Health and Disease Prevention; Fleurence, J., Levine, I., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 149–167. [Google Scholar]
- Levine, I. Chapter 1—Algae: A Way of Life and Health. In Seaweed in Health and Disease Prevention; Fleurence, J., Levine, I., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 1–5. [Google Scholar]
- Bocanegra, A.; Bastida, S.; Benedi, J.; Rodenas, S.; Sanchez-Muniz, F.J. Characteristics and Nutritional and Cardiovascular-Health Properties of Seaweeds. J. Med. Food 2009, 12, 236–258. [Google Scholar] [CrossRef] [PubMed]
- Barbot, Y.N.; Al-Ghaili, H.; Benz, R. A Review on the Valorization of Macroalgal Wastes for Biomethane Production. Mar. Drugs 2016, 14, 120. [Google Scholar] [CrossRef] [PubMed]
- Balina, K.; Romagnoli, F.; Blumberga, D. Seaweed biorefinery concept for sustainable use of marine resources. Energy Procedia 2017, 128, 504–511. [Google Scholar] [CrossRef]
- Baghel, R.S.; Suthar, P.; Gajaria, T.K.; Bhattacharya, S.; Anil, A.; Reddy, C.R.K. Seaweed biorefinery: A sustainable process for valorising the biomass of brown seaweed. J. Clean. Prod. 2020, 263, 121359. [Google Scholar] [CrossRef]
- Domínguez, H. 1—Algae as a source of biologically active ingredients for the formulation of functional foods and nutraceuticals. In Functional Ingredients from Algae for Foods and Nutraceuticals; Domínguez, H., Ed.; Woodhead Publishing: Sawston, UK, 2013; pp. 1–19. [Google Scholar]
- Amanjyoti; Nehra, M.; Khan, M. Algae as a Nutritional and Functional Food Source. Madridge J. Food Technol. 2022, 7, 189–199. [Google Scholar] [CrossRef]
- Konda, N.V.S.N.M.; Singh, S.; Simmons, B.A.; Klein-Marcuschamer, D. An Investigation on the Economic Feasibility of Macroalgae as a Potential Feedstock for Biorefineries. BioEnergy Res. 2015, 8, 1046–1056. [Google Scholar] [CrossRef]
- Widera, B. Possible Application of Seaweed as Building Material in the Modern Seaweed House on Laesø. In Proceedings of the 30th International Plea Conference, Ahmedabad, India, 16–18 December 2014. [Google Scholar]
- Park, K.Y.; Jo, Y.H.; Ghassemi Nejad, J.; Lee, J.C.; Lee, H.G. Evaluation of nutritional value of Ulva sp. and Sargassum horneri as potential eco-friendly ruminants feed. Algal Res. 2022, 65, 102706. [Google Scholar] [CrossRef]
- Alzate-Gaviria, L.; Domínguez-Maldonado, J.; Chablé-Villacís, R.; Olguin-Maciel, E.; Leal-Bautista, R.M.; Canché-Escamilla, G.; Caballero-Vázquez, A.; Hernández-Zepeda, C.; Barredo-Pool, F.A.; Tapia-Tussell, R. Presence of Polyphenols Complex Aromatic “Lignin” in Sargassum spp. from Mexican Caribbean. J. Mar. Sci. Eng. 2021, 9, 6. [Google Scholar] [CrossRef]
- Chinnadurai, K.; Venkatesalu, V. Utilization of seaweed Sargassum myriocystum extracts as a stimulant of seedlings of Vigna mungo (L.) Hepper. Span. J. Agric. Res. 2012, 10, 466. [Google Scholar] [CrossRef]
- Fernandes, D.R.P.; de Oliveira, V.P.; Yoneshigue Valentin, Y. Seaweed biotechnology in Brazil: Six decades of studies on natural products and their antibiotic and other biological activities. J. Appl. Phycol. 2014, 26, 1923–1937. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Liu, Y.; Wang, Q.; Gao, X.; Gong, Q. Effects of temperature and salinity on the growth and biochemical composition of the brown alga Sargassum fusiforme (Fucales, Phaeophyceae). J. Appl. Phycol. 2019, 31, 3061–3068. [Google Scholar] [CrossRef]
- Hwang, E.K.; Park, C.S.; Baek, J.M. Artificial seed production and cultivation of the edible brown alga, Sargassum fulvellum (Turner) C. In Agardh: Developing a new species for seaweed cultivation in Korea. In Proceedings of the Eighteenth International Seaweed Symposium, Bergen, Norway, 20–25 June 2004; pp. 25–31. [Google Scholar]
(a) | ||||||
Items | Heavy Metal (mg kg−1, Dry Weight) | |||||
Country | Species | Pb (Lead) | Cd (Cadmium) | Hg (Mercury) | Total Arsenic | Inorganic Arsenic |
St. Lucia | Sargassum sp. | 0.03 | 0.38 | N.D. | 109.18 | 6.26 |
St. Vincent | Sargassum sp. | 0.08 | 0.35 | N.D. | 111.29 | 8.79 |
St. Kitts | Sargassum sp. | N.D. | 0.29 | N.D. | 106.11 | 6.15 |
Belize | Sargassum sp. | 0.05 | 0.39 | N.D. | 84.09 | 5.13 |
St. Kitts | Eucheuma sp. | 0.07 | 0.18 | N.D. | 3.67 | N.D. |
Method detection limit | 0.01 | 0.01 | 0.001 | 0.02 | 0.05 | |
(b) | ||||||
Categories | Heavy Metal (mg kg−1, Dry Weight) | |||||
Pb (Lead) | Cd (Cadmium) | Hg (Mercury) | Total Arsenic | Inorganic Arsenic | ||
EU food rule | 3 | 3 | 0.1 | N.D. | N.D. | |
USA food rule | 0.01 | 3 | 1 | - | 3 | |
Taiwan food rule | 1 | 1 | 0.5 | - | 1.0 | |
Taiwan cosmetic Products rule | 10 | 5 | 1 | 3 | - | |
Taiwan animal Feed rule | 5 | 1 (cows, goats, excluding young animals); 0.5 others | 0.1 | 2 | - | |
Taiwan aquafeed rule | 5 | 3 (marine fish and shrimps); 1 other | 0 | 10 | - | |
Taiwan soil rule | 500 | 5 | 5 | 60 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.-C.; Yeh, H.-Y.; Chang, C.-M.; Liou, Y.-F.; Nan, F.-H.; Wungen-Sani, J. Tracking and Utilizing Sargassum, an Abundant Resource from the Caribbean Sea. Water 2023, 15, 2694. https://doi.org/10.3390/w15152694
Lee M-C, Yeh H-Y, Chang C-M, Liou Y-F, Nan F-H, Wungen-Sani J. Tracking and Utilizing Sargassum, an Abundant Resource from the Caribbean Sea. Water. 2023; 15(15):2694. https://doi.org/10.3390/w15152694
Chicago/Turabian StyleLee, Meng-Chou, Han-Yang Yeh, Chun-Ming Chang, Yu-Fu Liou, Fan-Hua Nan, and Jane Wungen-Sani. 2023. "Tracking and Utilizing Sargassum, an Abundant Resource from the Caribbean Sea" Water 15, no. 15: 2694. https://doi.org/10.3390/w15152694
APA StyleLee, M.-C., Yeh, H.-Y., Chang, C.-M., Liou, Y.-F., Nan, F.-H., & Wungen-Sani, J. (2023). Tracking and Utilizing Sargassum, an Abundant Resource from the Caribbean Sea. Water, 15(15), 2694. https://doi.org/10.3390/w15152694