The Thermal State of the North Atlantic Ocean and Hydrological Droughts in the Warta River Catchment in Poland during 1951–2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Meteorological and Climatic Data
2.2.2. North Atlantic (NA) Surface Temperature Data
2.3. Methods
2.3.1. Low Flows as a Measure of Hydrological Droughts
- -
- number of days (TLF) with flows below the threshold value (duration of low flows);
- -
- volume of the low-flow runoff (VLF)—the volume (in m3) of water flowing during the low-flow periods;
- -
- water shortage in the low-flow period (VWS)—the volume of the shortage of water in m3;
- -
- theoretical volume of runoff (VQ10)—the water volume flowing during the low-flow periods below the threshold value Q10;
- -
- coefficient of low-flow depth (CLFD [-]) determining the share of water shortage in the contractual limiting volume. The greater the value of the coefficient, the deeper the low flow (CLFD = VWS/VQ10).
2.3.2. Statistical Methods
3. Results
3.1. Duration of Low Flows
3.2. Principal Component (PC) Analysis
3.3. Variability of NA SST and Hydrological Droughts
3.3.1. Relationship between the NA SST with the Number of Days with Low Flows
+ 40.9(±18.0)·SST(y)[30° N, 80° W]
3.3.2. Variability in the NA SST and the Course of the Annual Meteorological Elements
3.3.3. Mechanism of the Influence of the NA SST Variability on the Occurrence of Hydrological Droughts
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nagavciuc, V.; Ionita, M.; Kern, Z.; McCarroll, D.; Popa, L. A ~700 years perspective on the 21st century drying in the eastern part of Europe based on δ18O in tree ring cellulose. Commun. Earth Environ. 2022, 3, 277. [Google Scholar] [CrossRef]
- Ionita, M.; Nagavciuc, V.; Scholz, P.; Dima, M. Long-term drought intensification over Europe driven by the weakening trend of the Atlantic Meridional Overturning Circulation. J. Hydrol. Reg. Stud. 2022, 42, 101176. [Google Scholar] [CrossRef]
- Conradt, T.; Engelhardt, H.; Menz, C.; Vicente-Serrano, S.M.; Farizo, B.A.; Peña-Angulo, D.; Domínguez-Castro, F.; Eklundh, L.; Jin, H.; Boincean, B.; et al. Cross-sectoral impacts of the 2018–2019 Central European drought and climate resilience in the German part of the Elbe River basin. Reg. Environ. Chang. 2023, 23, 32. [Google Scholar] [CrossRef]
- Lorenc, H. Climatological and meteorological extremes in Poland in relation to the 5th IPCC Report. In Klimat a Społeczeństwo i Gospodarka; Lorenc, H., Ustrnul, Z., Eds.; Wyd. PT Geofizyczne i IMGW-PIB: Warsaw, Poland, 2015; pp. 31–51. (In Polish) [Google Scholar]
- Łabędzki, L. Problems of droughts in Poland. Woda-Sr.-Obsz. Wiej. 2004, 4, 47–76. (In Polish) [Google Scholar]
- World Meteorological Organization (WMO); Global Water Partnership (GWP). Handbook of Drought Indicators and Indices; Svoboda, M., Fuchs, B.A., Eds.; Integrated Drought Management Tools and Guidelines Series 2; Integrated Drought Management Programme (IDMP): Geneva, Switzerland, 2016. [Google Scholar]
- Doroszewski, A.; Jóźwicki, T.; Wróblewska, E.; Kozyra, K. Agricultural Drought in Poland in the Years 1061–2010; IUNG: Puławy, Poland, 2014; pp. 1–144. (In Polish) [Google Scholar]
- Kaznowska, E. Characteristics of hydrological droughts on the example of selected rivers in the north-eastern part of Poland. Infrastrukt. I Ekol. Teren. Wiej. 2006, 4, 51–59. (In Polish) [Google Scholar]
- Tokarczyk, T. Low Water as an Indicator of Hydrological Drought; Monografie Instytutu Meteorologii i Gospodarki Wodnej: Warsaw, Poland, 2010. (In Polish) [Google Scholar]
- Węglarczyk, S. The definition criteria of the low flow and their influence on the characteristics of the low flow. 1. Stationarity of low flows. Infrastrukt. i Ekol. Teren. Wiej. 2014, II/1, 251–263. (In Polish) [Google Scholar] [CrossRef]
- Kushnir, Y. Interdecadal Variations in North Atlantic Sea Surface Temperature and Associated Atmospheric Conditions. J. Clim. 1994, 7, 141–157. [Google Scholar] [CrossRef]
- Enfield, D.B.; Mestas-Nuñez, A.M.; Trimble, P.J. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys. Res. Lett. 2001, 28, 2077–2080. [Google Scholar] [CrossRef] [Green Version]
- Park, W.; Latif, M. Ocean Dynamics and Nature if Air-Sea Interactions over the North Atlantic at Decadal Time Scales. J. Clim. 2005, 18, 982–995. [Google Scholar] [CrossRef] [Green Version]
- Sutton, R.T.; Hodson, D.L.R. Atlantic Ocean forcing of North American and European summer climate. Science 2005, 309, 115–118. [Google Scholar] [CrossRef] [Green Version]
- Pohlmann, H.; Sienz, F.; Latif, M. Influence of the Multidecadal Atlantic Meridional Overturning Circulation Variability on European Climate. J. Clim. 2006, 19, 6062–6967. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.; Oglesby, R.J.; Rowe, C.M.; Loope, D.B.; Hu, Q. Atlantic and Pacific SST influences on Medieval drought in North America simulated by the Community Atmospheric Model. J. Geophys. Res. 2008, 113, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.; Hu, Q.; Oglesby, R.J. Influence of Atlantic sea surface temperatures on persistent drought in North America. Clim. Dyn. 2011, 37, 569–586. [Google Scholar] [CrossRef] [Green Version]
- Sutton, R.T.; Dong, B. Atlantic Ocean influence on a shift in European climate in the 1990s. Nat. Geosci. 2012, 5, 788–792. [Google Scholar] [CrossRef] [Green Version]
- Kushnir, Y.; Seager, R.; Ting, M.; Naik, N.; Nakamura, J. Mechanism of Tropical Atlantic SST Influence of North American Precipitation Index Variability. J. Clim. 2010, 23, 5610–5628. [Google Scholar] [CrossRef]
- Delworth, T.L.; Zeng, F.; Vecchi, G.A.; Yang, X.; Zhang, L.; Zhang, R. The North Atlantic Oscillation as a driver climate change in the Northern Hemisphere. Nat. Geosci. 2016, 9, 509–513. [Google Scholar] [CrossRef]
- Årthun, M.; Edelvik, T.; Viste, E.; Drange, H.; Fuervik, T.; Johnson, H.L.; Keenlyside, N.S. Skillful prediction of northern climate provided by the ocean. Nat. Commun. 2017, 8, 15875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vigaud, N.; Ting, M.; Lee, D.-E.; Barnston, A.G.; Kushnir, Y. Multiscale Variability in North American Summer Maximum Temperatures and Modulations from the North Atlantic Simulated by an AGCM. J. Clim. 2018, 31, 2549–2562. [Google Scholar] [CrossRef]
- Vincente-Serano, S.M.; Garcia-Herrera, R.; Barriopedro, D.; Azorin-Molina, C.; Lopez-Morena, J.I.; Martin-Hernandez, N.; Tomas-Burgera, M.; Gimeno, L.; Nieto, R. The Westerly Index as complementary indicator of the North Atlantic oscillation in explaining drought variability across Europe. Clim. Dyn. 2016, 47, 845–863. [Google Scholar] [CrossRef] [Green Version]
- Ossó, A.; Sutton, R.; Shaffrey, L.; Dong, B. Observational evidence of European summer weather patterns predictable from spring. Proc. Natl. Acad. Sci. USA 2018, 115, 59–63. [Google Scholar] [CrossRef] [Green Version]
- Svensson, C.; Hannaford, J. Oceanic conditions associated with Euro-Atlantic high pressure and UK drought. Environ. Res. Commun. 2019, 1, 101001. [Google Scholar] [CrossRef]
- Ionita, M.; Dima, M.; Nagavciuc, V.; Scholz, P.; Lohmann, G. Past megadroughts in central Europe were longer, more severe and less warm than modern droughts. Commun. Earth Environ. 2021, 2, 61. [Google Scholar] [CrossRef]
- Marsz, A.A.; Styszyńska, A.; Krawczyk, E.W. The log-term fluctuations in annual flows rivers in Poland and their relationship with the North Atlantic Thermohaline Circulation. Przegląd Geogr. 2016, 88, 295–316. [Google Scholar] [CrossRef]
- Wrzesiński, D.; Marsz, A.A.; Styszyńska, A.; Sobkowiak, L. Effect of the North Atlantic Thermohaline Circulation on Changes in Climatic Conditions and River Flow in Poland. Water 2019, 11, 1622. [Google Scholar] [CrossRef] [Green Version]
- Marsz, A.A.; Styszyńska, A. Intensity of thermohaline circulation in the North Atlantic and droughts in Poland. Pr. I Stud. Geogr. 2021, 66, 63–80. (In Polish) [Google Scholar] [CrossRef]
- Knight, J.R.; Allan, R.J.; Folland, C.K.; Vellinga, M.; Mann, M.E. A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett. 2005, 32, L20708. [Google Scholar] [CrossRef] [Green Version]
- Semenov, V.A.; Latif, M.; Dommenget, D.; Keenlyside, N.S.; Strehtz, A.; Martin, T.; Park, W. The impact of North Atlantic—Arctic Multidecadal Variability on Northern Hemisphere Surface Air Temperature. J. Clim. 2010, 23, 5668–5677. [Google Scholar] [CrossRef] [Green Version]
- Farat, R.; Kępińska-Kasprzak, M.; Magier, P. Droughts in Poland in 1951–1990. In Materiały Badawcze IMGW; Gospodarka Wodna i Ochrona Wód: Warsaw, Poland, 1995; Volume 16, pp. 1–140. (In Polish) [Google Scholar]
- Szyga-Pluta, K. Variability of the occurrence of droughts during the growing season in Poland in the years 1966–2015. Przegląd Geofiz. 2018, 63, 51–67. (In Polish) [Google Scholar]
- Ilnicki, P.; Farat, R.; Górecki, K.; Lewandowski, P. Impact of climatic change on river discharge in the driest region of Poland. Hydrol. Sci. J. 2014, 59, 1117–1134. [Google Scholar] [CrossRef] [Green Version]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Woś, A. Climate of Poland in the Second Half of the 20th Century; Wydawnictwo Naukowe UAM: Poznań, Poland, 2010. (In Polish) [Google Scholar]
- Pasławski, Z.; Koczorowska, J.; Olejnik, K. Average Runoff in the Warta River Catchment. Gospod. Wodna 1972, 6, 214–218. (In Polish) [Google Scholar]
- Perz, A.; Sobkowiak, L.; Wrzesiński, D. Spatial Differentiation of the Maximum River Runoff Synchronicity in the Warta River Catchment, Poland. Water 2020, 12, 1782. [Google Scholar] [CrossRef]
- Dynowska, I. Regime of River Flow Sheet: 32.3. In Atlas of the Republic of Poland; IG PZ PAN: Warsaw, Poland, 1994. (In Polish) [Google Scholar]
- Rotnicka, J. Typology of Hydrological Periods for Use in River Regime Studies. Quaest. Geogr. 1993, 15/16, 77–95. [Google Scholar]
- Kalnay, E.; Kanamsitu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef]
- Vangengeim, G.Y. Fundamentals of Macrocirculation Method for Long-Range Weather Forecasting for the Arctic; Trudy AANII: Moscow, Russia, 1952; pp. 1–34. (In Russian) [Google Scholar]
- Girs, A.A. On the creation of a single classification of the Northern Hemisphere. Meteorol. I Gidrol. 1964, 4, 43–47. (In Russian) [Google Scholar]
- Dimitriev, A.A.; Dubravin, V.F.; Belyazo, V.A. Atmospheric Processes of the Northern Hemisphere (1891–2018) and Their Use; Super Izdatelstvo: Sankt-Petersburg, Russia, 2018. (In Russian) [Google Scholar]
- Huang, B.; Thome, P.W.; Banzon, V.F.; Boyer, T.; Cherupin, G.; Lawrimore, J.H.; Menne, M.J.; Smith, T.M.; Vose, R.S.; Zhang, H.-M. Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validation and intercomparisons. J. Clim. 2017, 30, 8179–8205. [Google Scholar] [CrossRef]
- Tokarczyk, T. Drought assessment indicators used in Poland and in the world. Infrastrukt. I Ekol. Teren. Wiej. 2008, 7, 167–182. (In Polish) [Google Scholar]
- Hill, T.; Lewicki, P. Statistics: Methods and Applications; StatSoft: Tulsa, OK, USA, 2007. [Google Scholar]
- StatSoft, Inc. Electronic Statistics Textbook; Electronic Version; StatSoft: Tulsa, OK, USA, 1981–2011. [Google Scholar]
- de Martonne, E. L’indice d’aridité. Bull. De L’association De Géographes Français 1926, 9, 3–5. (In French) [Google Scholar] [CrossRef]
- Okołowicz, W. General Climatology; PWN—Polish Scientific Publishers: Warsaw, Poland, 1976. [Google Scholar]
- Fortak, H. Meteorology; Deutsche Buch-Gemainschaft: Berlin, Germany, 1971; pp. 1–287. (In German) [Google Scholar]
- Harman, J.R.; Oliver, J.E. Rossby Wave/Rossby Number. In Encyclopedia of World Climatology; Encyclopedia of Earth Sciences Series; Oliver, J.E., Ed.; Springer: Dordrecht, The Netherlands, 2005. [Google Scholar] [CrossRef]
- Marsz, A.A. Frequency of macro-types of mid-tropospheric circulation according to the Vangengeim-Girs classification in winter and the atmospheric pressure field over Europe and Northern Asia. Przegląd Geofiz. 2013, 58, 3–24. (In Polish) [Google Scholar]
- Degirmendžić, J.; Kożuchowski, K. Macro-circulation as a conditioning factor for long-lasting thermal waves in Poland. Przegląd Geofiz. 2017, 62, 3–28. (In Polish) [Google Scholar]
- Marsz, A.A.; Sobkowiak, L.; Styszyńska, A.; Wrzesiński, D. Causes and course of climate change and its hydrological consequences in the Greater Poland region in 1951–2020. Quaest. Geogr. 2022, 41, 183–206. [Google Scholar] [CrossRef]
- Wrzesiński, D.; Marsz, A.A.; Sobkowiak, L.; Styszyńska, A. Response of Low Flows of Polish Rivers to Climate Change in 1987–1989. Water 2022, 14, 2780. [Google Scholar] [CrossRef]
- Degirmendžić, J.; Kożuchowski, K. Variability of mid-tropospheric circulation forms according to Vangengeim-Girs classification and their relations to sea-level pressure patterns. Przegląd Geofiz. 2018, 63, 89–122. (In Polish) [Google Scholar]
- Degirmendžić, J.; Kożuchowski, K. Variation of macro-circulation forms over the Atlantic-Eurasian temperate zone according to the Vangengeim-Girs classification. Int. J. Climatol. 2019, 39, 4938–4952. [Google Scholar] [CrossRef]
- Savichev, A.I.; Mironicheva, N.P.; Cepelev, V.Y. Characteristics of atmospheric circulation fluctuations in the Atlantic-European sector of the hemisphere in recent decades. Uchenye Zap. Ross. Gos. Gidrometeorol. Univ. 2015, 39, 120–131. (In Russian) [Google Scholar]
No. | River | Gauge | Coordinates | Catchment Area [km2] | Total Flow [mm] | Type of River Regime * | |
---|---|---|---|---|---|---|---|
° N | ° E | ||||||
1 | Warta | Działoszyn | 51.1 | 18.9 | 4088 | 185.8 | 1 |
2 | Warta | Sieradz | 51.6 | 18.7 | 8140 | 171.3 | 1 |
3 | Warta | Poznań | 52.4 | 16.9 | 25,126 | 124.5 | 1 |
4 | Warta | Gorzów Wlkp. | 52.7 | 15.2 | 52,186 | 124.4 | 1 |
5 | Prosna | Piwonice | 51.7 | 18.1 | 2938 | 119.2 | 1 |
6 | Prosna | Bogusław | 51.9 | 18.0 | 4304 | 114.3 | 1 |
7 | Ołobok | Ołobok | 51.6 | 18.1 | 447 | 110.7 | 2 |
8 | Mogilnica | Konojad | 52.2 | 16.5 | 663 | 77.3 | 2 |
9 | Wełna | Pruśce | 52.8 | 17.1 | 1130 | 92.5 | 2 |
10 | Flinta | Ryczywół | 52.8 | 16.8 | 276 | 74.2 | 2 |
11 | Sama | Szamotuły | 52.6 | 16.6 | 395 | 83.4 | 2 |
12 | Noteć | Pakość 2 | 52.8 | 18.1 | 1620 | 105.5 | 1 |
13 | Noteć Zach. | Gębice | 52.6 | 18.0 | 182 | 101.8 | 1 |
14 | Gąsawka | Żnin | 52.9 | 17.7 | 148 | 108.5 | 2 |
No. | N | TLF | TLF Trend (Pearson’s r) [-] | CLFD [-] | ||||||
---|---|---|---|---|---|---|---|---|---|---|
1951–2020 | 1951–1988 | 1988–2020 | 1951–2020 | 1951–1988 | 1988–2020 | 1951–2020 | 1951–1988 | 1988–2020 | ||
1 | 39 | 64.6 | 34.1 | 86.8 | 0.216 | −0.607 *** | 0.216 | 0.127 | 0.104 | 0.141 |
2 | 38 | 65.2 | 53.1 | 78.7 | 0.285 * | −0.648 *** | 0.285 | 0.112 | 0.114 | 0.110 |
3 | 37 | 68.3 | 66.3 | 71.2 | 0.329 ** | −0.611 *** | 0.329 | 0.131 | 0.156 | 0.094 |
4 | 42 | 59.9 | 47.4 | 73.6 | 0.266 * | −0.451 ** | 0.266 | 0.106 | 0.086 | 0.129 |
5 | 46 | 55.4 | 44.3 | 66.5 | 0.228 | −0.546 *** | 0.228 | 0.154 | 0.145 | 0.164 |
6 | 52 | 48.2 | 39.2 | 57.3 | 0.390 *** | −0.497 ** | 0.390 * | 0.153 | 0.139 | 0.168 |
7 | 41 | 60.0 | 53.5 | 65.6 | 0.310 ** | −0.566 *** | 0.310 | 0.265 | 0.316 | 0.220 |
8 | 46 | 52.8 | 55.7 | 50.3 | 0.400 *** | −0.112 | 0.400 * | 0.263 | 0.247 | 0.277 |
9 | 39 | 65.2 | 48.2 | 81.4 | 0.163 | −0.341 * | 0.163 | 0.256 | 0.212 | 0.298 |
10 | 40 | 53.4 | 45.6 | 58.5 | 0.326 ** | −0.435 ** | 0.326 | 0.316 | 0.256 | 0.356 |
11 | 40 | 58.0 | 43.6 | 71.0 | 0.450 *** | −0.357 * | 0.450 ** | 0.272 | 0.241 | 0.300 |
12 | 32 | 78.8 | 72.3 | 82.8 | −0.363 ** | −0.059 | −0.363 * | 0.202 | 0.175 | 0.219 |
13 | 39 | 59.9 | 31.3 | 71.1 | 0.539 *** | −0.077 | 0.539 *** | 0.304 | 0.248 | 0.326 |
14 | 34 | 73.6 | 43.1 | 94.9 | 0.595 *** | −0.171 | 0.595 *** | 0.386 | 0.273 | 0.448 |
Grid | T | P | ||
---|---|---|---|---|
r | p | r | p | |
[30° N, 60° W] (a) | 0.53 | 0.000 | −0.04 | 0.736 |
[30° N, 60° W] (s) | 0.67 | 0.000 | −0.14 | 0.243 |
[40° N, 60° W] (a) | 0.46 | 0.000 | −0.10 | 0.395 |
[40° N, 60° W] (s) | 0.61 | 0.000 | −0.10 | 0.409 |
Grids | N (70 Years) | F (70 Years) | SD (62 Years) |
---|---|---|---|
[30° N, 60° W] (a) | 0.14 p = 0.258 | −0.45 p = 0.000 | 0.47 p = 0.000 |
[30° N, 60° W] (s) | 0.04 p = 0.732 | −0.48 p = 0.000 | 0.57 p = 0.000 |
[40° N, 60° W] (a) | 0.17 p = 0.155 | −0.32 p = 0.006 | 0.51 p = 0.000 |
[40° N, 60° W] (a) | 0.06 p = 0.649 | −0.40 p = 0.001 | 0.61 p = 0.000 |
SLP | T | P | N | F | SD |
---|---|---|---|---|---|
0.72 p = 0.000 | 0.78 p = 0.000 | −0.30 p = 0.011 | −0.48 p = 0.000 | −0.70 p = 0.000 | 0.77 p = 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marsz, A.A.; Sobkowiak, L.; Styszyńska, A.; Wrzesiński, D.; Perz, A. The Thermal State of the North Atlantic Ocean and Hydrological Droughts in the Warta River Catchment in Poland during 1951–2020. Water 2023, 15, 2547. https://doi.org/10.3390/w15142547
Marsz AA, Sobkowiak L, Styszyńska A, Wrzesiński D, Perz A. The Thermal State of the North Atlantic Ocean and Hydrological Droughts in the Warta River Catchment in Poland during 1951–2020. Water. 2023; 15(14):2547. https://doi.org/10.3390/w15142547
Chicago/Turabian StyleMarsz, Andrzej A., Leszek Sobkowiak, Anna Styszyńska, Dariusz Wrzesiński, and Adam Perz. 2023. "The Thermal State of the North Atlantic Ocean and Hydrological Droughts in the Warta River Catchment in Poland during 1951–2020" Water 15, no. 14: 2547. https://doi.org/10.3390/w15142547
APA StyleMarsz, A. A., Sobkowiak, L., Styszyńska, A., Wrzesiński, D., & Perz, A. (2023). The Thermal State of the North Atlantic Ocean and Hydrological Droughts in the Warta River Catchment in Poland during 1951–2020. Water, 15(14), 2547. https://doi.org/10.3390/w15142547