SARS-CoV-2 Surveillance in Hospital Wastewater: CLEIA vs. RT-qPCR
Abstract
:1. Introduction
2. Materials and Methods
- (1)
- Sample collection
- (2)
- Sample preparation and concentration
- (3)
- SARS-CoV-2 identification and quantification via RT-qPCR
- (4)
- Detection of SARS-CoV-2 antigen
- (5)
- Statistical analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Galani, A.; Aalizadeh, R.; Kostakis, M.; Markou, A.; Alygizakis, N.; Lytras, T.; Adamopoulos, P.G.; Peccia, J.; Thompson, D.C.; Kontou, A.; et al. SARS-CoV-2 wastewater surveillance data can predict hospitalizations and ICU admissions. Sci. Total Environ. 2022, 804, 150151. [Google Scholar] [CrossRef] [PubMed]
- D’Aoust, P.M.; Mercier, E.; Montpetit, D.; Jia, J.J.; Alexandrov, I.; Neault, N.; Baig, A.T.; Mayne, J.; Zhang, X.; Alain, T.; et al. Quantitative analysis of SARS-CoV-2 RNA from wastewater solids in communities with low COVID-19 incidence and prevalence. Water Res. 2021, 188, 116560. [Google Scholar] [CrossRef]
- Ahmed, W.; Angel, N.; Edson, J.; Bibby, K.; Bivins, A.; O’Brien, J.W.; Choi, P.M.; Kitajima, M.; Simpson, S.L.; Li, J.; et al. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Sci. Total Environ. 2020, 728, 138764. [Google Scholar] [CrossRef]
- Mecenas, P.; Bastos, R.T.d.R.M.; Vallinoto, A.C.R.; Normando, D. Effects of temperature and humidity on the spread of COVID-19: A systematic review. PLoS ONE 2020, 15, e0238339. [Google Scholar] [CrossRef]
- Nemudryi, A.; Nemudraia, A.; Wiegand, T.; Surya, K.; Buyukyoruk, M.; Cicha, C.; Vanderwood, K.K.; Wilkinson, R.; Wiedenheft, B. Temporal Detection and Phylogenetic Assessment of SARS-CoV-2 in Municipal Wastewater. Cell Rep. Med. 2020, 1, 100098. [Google Scholar] [CrossRef] [PubMed]
- Thongpradit, S.; Prasongtanakij, S.; Srisala, S.; Chanprasertyothin, S.; Pasomsub, E.; Ongphiphadhanakul, B. The Detection of SARS-CoV2 Antigen in Wastewater Using an Automated Chemiluminescence Enzyme Immunoassay. Int. J. Environ. Res. Public Health 2022, 19, 7783. [Google Scholar] [CrossRef]
- Tran, H.N.; Le, G.T.; Nguyen, D.T.; Juang, R.S.; Rinklebe, J.; Bhatnagar, A.; Lima, E.C.; Iqbal, H.M.N.; Sarmah, A.K.; Chao, H.P. SARS-CoV-2 coronavirus in water and wastewater: A critical review about presence and concern. Env. Res 2021, 193, 110265. [Google Scholar] [CrossRef]
- Holst, M.M.; Person, J.; Jennings, W.; Welsh, R.M.; Focazio, M.J.; Bradley, P.M.; Schill, W.B.; Kirby, A.E.; Marsh, Z.A. Rapid Implementation of High-Frequency Wastewater Surveillance of SARS-CoV-2. ACS EST Water 2022, 2, 2201–2210. [Google Scholar] [CrossRef]
- Shah, S.; Gwee, S.X.W.; Ng, J.Q.X.; Lau, N.; Koh, J.; Pang, J. Wastewater surveillance to infer COVID-19 transmission: A systematic review. Sci. Total Environ. 2022, 804, 150060. [Google Scholar] [CrossRef]
- Wade, M.J.; Lo Jacomo, A.; Armenise, E.; Brown, M.R.; Bunce, J.T.; Cameron, G.J.; Fang, Z.; Farkas, K.; Gilpin, D.F.; Graham, D.W.; et al. Understanding and managing uncertainty and variability for wastewater monitoring beyond the pandemic: Lessons learned from the United Kingdom national COVID-19 surveillance programmes. J. Hazard. Mater. 2022, 424, 127456. [Google Scholar] [CrossRef]
- Abdeldayem, O.M.; Dabbish, A.M.; Habashy, M.M.; Mostafa, M.K.; Elhefnawy, M.; Amin, L.; Al-Sakkari, E.G.; Ragab, A.; Rene, E.R. Viral outbreaks detection and surveillance using wastewater-based epidemiology, viral air sampling, and machine learning techniques: A comprehensive review and outlook. Sci. Total Environ. 2022, 803, 149834. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Bertsch, P.M.; Angel, N.; Bibby, K.; Bivins, A.; Dierens, L.; Edson, J.; Ehret, J.; Gyawali, P.; Hamilton, K.A.; et al. Detection of SARS-CoV-2 RNA in commercial passenger aircraft and cruise ship wastewater: A surveillance tool for assessing the presence of COVID-19 infected travellers. J. Travel Med. 2020, 27, taaa116. [Google Scholar] [CrossRef] [PubMed]
- Assoum, M.; Lau, C.L.; Thai, P.K.; Ahmed, W.; Mueller, J.F.; Thomas, K.V.; Choi, P.M.; Jackson, G.; Selvey, L.A. Wastewater Surveillance Can Function as an Early Warning System for COVID-19 in Low-Incidence Settings. Trop. Med. Infect. Dis. 2023, 8, 211. [Google Scholar] [CrossRef] [PubMed]
- Maryam, S.; Ul Haq, I.; Yahya, G.; Ul Haq, M.; Algammal, A.M.; Saber, S.; Cavalu, S. COVID-19 surveillance in wastewater: An epidemiological tool for the monitoring of SARS-CoV-2. Front. Cell. Infect. Microbiol. 2022, 12, 978643. [Google Scholar] [CrossRef]
- Thompson, J.R.; Nancharaiah, Y.V.; Gu, X.; Lee, W.L.; Rajal, V.B.; Haines, M.B.; Girones, R.; Ng, L.C.; Alm, E.J.; Wuertz, S. Making waves: Wastewater surveillance of SARS-CoV-2 for population-based health management. Water Res. 2020, 184, 116181. [Google Scholar] [CrossRef]
- Center for Disease Control and Prevention. National Wastewater Surveillance System (NWSS). Available online: https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/wastewater-surveillance.html (accessed on 7 February 2022).
- Achak, M.; Alaoui Bakri, S.; Chhiti, Y.; M’Hamdi Alaoui, F.E.; Barka, N.; Boumya, W. SARS-CoV-2 in hospital wastewater during outbreak of COVID-19: A review on detection, survival and disinfection technologies. Sci. Total Environ. 2021, 761, 143192. [Google Scholar] [CrossRef]
- Debnath, B.; Birawat, R.K.; Birawat, K.K.; Modak, A. Occurrence of COVID-19 virus in hospital wastewater: Treatment pathways and sustainability aspects. In Hospital Wastewater Treatment: Global Scenario and Case Studies; Khan, N.A., Vambol, V., Vambol, S., Mozaffari, N., Mozaffari, N., Eds.; IWA Publishing: London, UK, 2022. [Google Scholar]
- Medema, G.; Heijnen, L.; Elsinga, G.; Italiaander, R.; Brouwer, A. Presence of SARS-Coronavirus-2 RNA in Sewage and Correlation with Reported COVID-19 Prevalence in the Early Stage of the Epidemic in The Netherlands. Environ. Sci. Technol. Lett. 2020, 7, 511–516. [Google Scholar] [CrossRef]
- Randazzo, W.; Truchado, P.; Cuevas-Ferrando, E.; Simón, P.; Allende, A.; Sánchez, G. SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Res. 2020, 181, 115942. [Google Scholar] [CrossRef]
- Wang, W.; Xu, Y.; Gao, R.; Lu, R.; Han, K.; Wu, G.; Tan, W. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA 2020, 323, 1843–1844. [Google Scholar] [CrossRef] [Green Version]
- Thongpradit, S.; Prasongtanakij, S.; Srisala, S.; Kumsang, Y.; Chanprasertyothin, S.; Boonkongchuen, P.; Pitidhammabhorn, D.; Manomaipiboon, P.; Somchaiyanon, P.; Chandanachulaka, S.; et al. A Simple Method to Detect SARS-CoV-2 in Wastewater at Low Virus Concentration. J. Environ. Public Health 2022, 2022, 4867626. [Google Scholar] [CrossRef]
- Menchinelli, G.; Bordi, L.; Liotti, F.M.; Palucci, I.; Capobianchi, M.R.; Sberna, G.; Lalle, E.; Romano, L.; De Angelis, G.; Marchetti, S.; et al. Lumipulse G SARS-CoV-2 Ag assay evaluation using clinical samples from different testing groups. Clin. Chem. Lab. Med. 2021, 59, 1468–1476. [Google Scholar] [CrossRef]
- Murakami, K.; Iwasaki, S.; Oguri, S.; Tanaka, K.; Suzuki, R.; Hayasaka, K.; Fujisawa, S.; Watanabe, C.; Konno, S.; Yokota, I.; et al. SARS-CoV-2 Omicron detection by antigen tests using saliva. J. Clin. Virol. Plus 2022, 2, 100109. [Google Scholar] [CrossRef] [PubMed]
- Aoki, K.; Nagasawa, T.; Ishii, Y.; Yagi, S.; Okuma, S.; Kashiwagi, K.; Maeda, T.; Miyazaki, T.; Yoshizawa, S.; Tateda, K. Clinical validation of quantitative SARS-CoV-2 antigen assays to estimate SARS-CoV-2 viral loads in nasopharyngeal swabs. J. Infect. Chemother. Off. J. Jpn. Soc. Chemother. 2021, 27, 613–616. [Google Scholar] [CrossRef]
- Kobayashi, R.; Murai, R.; Moriai, M.; Nirasawa, S.; Yonezawa, H.; Kondoh, T.; Saeki, M.; Yakuwa, Y.; Sato, Y.; Katayama, Y.; et al. Evaluation of false positives in the SARS-CoV-2 quantitative antigen test. J. Infect. Chemother. Off. J. Jpn. Soc. Chemother. 2021, 27, 1477–1481. [Google Scholar] [CrossRef]
- Gili, A.; Paggi, R.; Russo, C.; Cenci, E.; Pietrella, D.; Graziani, A.; Stracci, F.; Mencacci, A. Evaluation of Lumipulse® G SARS-CoV-2 antigen assay automated test for detecting SARS-CoV-2 nucleocapsid protein (NP) in nasopharyngeal swabs for community and population screening. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2021, 105, 391–396. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Laboratory Biosafety Guidance Related to Coronavirus Disease (COVID-19): Interim Guidance. Available online: https://www.who.int/publications/i/item/WHO-WPE-GIH-2021.1 (accessed on 28 June 2021).
- Available online: https://www.thaiembassy.com/travel-to-thailand/thailand-travel-restrictions (accessed on 21 February 2023).
- Sherchan, S.; Thakali, O.; Ikner, L.A.; Gerba, C.P. Survival of SARS-CoV-2 in wastewater. Sci. Total Environ. 2023, 882, 163049. [Google Scholar] [CrossRef] [PubMed]
- Armas, F.; Chandra, F.; Lee, W.L.; Gu, X.; Chen, H.; Xiao, A.; Leifels, M.; Wuertz, S.; Alm, E.J.; Thompson, J. Contextualizing Wastewater-Based surveillance in the COVID-19 vaccination era. Env. Int 2023, 171, 107718. [Google Scholar] [CrossRef] [PubMed]
- Curtis, K.; Keeling, D.; Yetka, K.; Larson, A.; Gonzalez, R. Wastewater SARS-CoV-2 Concentration and Loading Variability from Grab and 24 Hour Composite Samples. MedRxiv 2021. [Google Scholar] [CrossRef]
- Kmush, B.L.; Monk, D.; Green, H.; Sachs, D.A.; Zeng, T.; Larsen, D.A. Comparability of 24-hour composite and grab samples for detection of SARS-2-CoV RNA in wastewater. FEMS Microbes 2022, 3, xtac017. [Google Scholar] [CrossRef]
- Augusto, M.R.; Claro, I.C.M.; Siqueira, A.K.; Sousa, G.S.; Caldereiro, C.R.; Duran, A.F.A.; de Miranda, T.B.; Bomediano Camillo, L.M.; Cabral, A.D.; de Freitas Bueno, R. Sampling strategies for wastewater surveillance: Evaluating the variability of SARS-CoV-2 RNA concentration in composite and grab samples. J. Environ. Chem. Eng. 2022, 10, 107478. [Google Scholar] [CrossRef]
- Karthikeyan, S.; Ronquillo, N.; Belda-Ferre, P.; Alvarado, D.; Javidi, T.; Longhurst, C.A.; Knight, R. High-Throughput Wastewater SARS-CoV-2 Detection Enables Forecasting of Community Infection Dynamics in San Diego County. mSystems 2021, 6, 10–1128. [Google Scholar] [CrossRef]
- Karthikeyan, S.; Levy, J.I.; De Hoff, P.; Humphrey, G.; Birmingham, A.; Jepsen, K.; Farmer, S.; Tubb, H.M.; Valles, T.; Tribelhorn, C.E.; et al. Wastewater sequencing reveals early cryptic SARS-CoV-2 variant transmission. Nature 2022, 609, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Le, C. Sensitivity of wastewater surveillance: What is the minimum COVID-19 cases required in population for SARS-CoV-2 RNA to be detected in wastewater? J. Environ. Sci. 2023, 125, 851–853. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Ling, H.; Huang, X.; Li, J.; Li, W.; Yi, C.; Zhang, T.; Jiang, Y.; He, Y.; Deng, S.; et al. Potential spreading risks and disinfection challenges of medical wastewater by the presence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) viral RNA in septic tanks of Fangcang Hospital. Sci. Total Environ. 2020, 741, 140445. [Google Scholar] [CrossRef] [PubMed]
- Tiacharoen, V.; Denpetkul, T.; Kosoltanapiwat, N.; Maneekan, P.; Thippornchai, N.; Saeoueng, A.; Jittmittraphap, A.; Sattabongkot, J.; Leaungwutiwong, P. Detection of SARS-CoV-2 and Variants in Hospital Wastewater in a Developing Country. Water 2022, 14, 3798. [Google Scholar] [CrossRef]
- Peng, K.K.; Renouf, E.M.; Dean, C.B.; Hu, X.J.; Delatolla, R.; Manuel, D.G. An exploration of the relationship between wastewater viral signals and COVID-19 hospitalizations in Ottawa, Canada. Infect. Dis. Model. 2023, 8, 617–631. [Google Scholar] [CrossRef]
- Li, X.; Zhang, S.; Sherchan, S.; Orive, G.; Lertxundi, U.; Haramoto, E.; Honda, R.; Kumar, M.; Arora, S.; Kitajima, M.; et al. Correlation between SARS-CoV-2 RNA concentration in wastewater and COVID-19 cases in community: A systematic review and meta-analysis. J. Hazard. Mater. 2023, 441, 129848. [Google Scholar] [CrossRef]
- Roy, U. Comparative structural analyses of selected spike protein-RBD mutations in SARS-CoV-2 lineages. Immunol. Res. 2022, 70, 143–151. [Google Scholar] [CrossRef]
- Osterman, A.; Iglhaut, M.; Lehner, A.; Späth, P.; Stern, M.; Autenrieth, H.; Muenchhoff, M.; Graf, A.; Krebs, S.; Blum, H.; et al. Comparison of four commercial, automated antigen tests to detect SARS-CoV-2 variants of concern. Med. Microbiol. Immunol. 2021, 210, 263–275. [Google Scholar] [CrossRef]
- Gandolfo, C.; Morecchiato, F.; Pistello, M.; Rossolini, G.M.; Cusi, M.G. Detection of SARS-CoV-2 N protein allelic variants by rapid high-throughput CLEIA antigen assay. J. Clin. Virol. 2021, 142, 104942. [Google Scholar] [CrossRef]
- King, K.L.; Wilson, S.; Napolitano, J.M.; Sell, K.J.; Rennert, L.; Parkinson, C.L.; Dean, D. SARS-CoV-2 variants of concern Alpha and Delta show increased viral load in saliva. PLoS ONE 2022, 17, e0267750. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Murai, R.; Kobayashi, R.; Togashi, A.; Fujiya, Y.; Kuronuma, K.; Takahashi, S. Factors affecting the sensitivity of quantitative severe acute respiratory syndrome coronavirus 2 antigen test. J. Infect. Chemother. Off. J. Jpn. Soc. Chemother. 2023, 29, 754–758. [Google Scholar] [CrossRef] [PubMed]
- Yin, N.; Debuysschere, C.; Daubie, V.; Hildebrand, M.; Martin, C.; Curac, S.; Ponthieux, F.; Payen, M.-C.; Vandenberg, O.; Hallin, M. Evaluation and Modelling of the Performance of an Automated SARS-CoV-2 Antigen Assay According to Sample Type, Target Population and Epidemic Trends. Diagnostics 2022, 12, 447. [Google Scholar] [CrossRef] [PubMed]
- Andreasson, U.; Perret-Liaudet, A.; van Waalwijk van Doorn, L.J.; Blennow, K.; Chiasserini, D.; Engelborghs, S.; Fladby, T.; Genc, S.; Kruse, N.; Kuiperij, H.B.; et al. A Practical Guide to Immunoassay Method Validation. Front. Neurol. 2015, 6, 179. [Google Scholar] [CrossRef]
- Matheri, A.N.; Belaid, M.; Njenga, C.K.; Ngila, J.C. Water and wastewater digital surveillance for monitoring and early detection of the COVID-19 hotspot: Industry 4.0. Int. J. Environ. Sci. Technol. 2023, 20, 1095–1112. [Google Scholar] [CrossRef]
- Zhao, L.; Zou, Y.; David, R.E.; Withington, S.; McFarlane, S.; Faust, R.A.; Norton, J.; Xagoraraki, I. Simple methods for early warnings of COVID-19 surges: Lessons learned from 21 months of wastewater and clinical data collection in Detroit, Michigan, United States. Sci. Total Environ. 2023, 864, 161152. [Google Scholar] [CrossRef]
- Amin, N.; Haque, R.; Rahman, M.Z.; Rahman, M.Z.; Mahmud, Z.H.; Hasan, R.; Islam, M.T.; Sarker, P.; Sarker, S.; Adnan, S.D.; et al. Dependency of sanitation infrastructure on the discharge of faecal coliform and SARS-CoV-2 viral RNA in wastewater from COVID and non-COVID hospitals in Dhaka, Bangladesh. Sci. Total Environ. 2023, 867, 161424. [Google Scholar] [CrossRef]
- Núñez-Delgado, A.; Bontempi, E.; Coccia, M.; Kumar, M.; Farkas, K.; Domingo, J.L. SARS-CoV-2 and other pathogenic microorganisms in the environment. Environ Res 2021, 201, 111606. [Google Scholar] [CrossRef]
Date Collected | Administration Building | Research and Welfare Building | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RT-qPCR (Ct Value) | CLEIA | RT-qPCR (Ct Value) | CLEIA | |||||||||
N | ORF1ab | S | Interpretation | Antigen Concentration (pg/mL) | Interpretation | N | ORF1ab | S | Interpretation | Antigen Concentration (pg/mL) | Interpretation | |
15-Feb-2022 | UD | UD | UD | neg | 11.73 | pos | UD | UD | UD | neg | 0.65 | neg |
22-Feb-2022 | 31.77 | 33.4 | 33.34 | pos | 0.42 | neg | UD | UD | UD | neg | 1.53 | pos |
1-Mar-2022 | 33.73 | 35.01 | 37.11 | pos | 0.42 | neg | 37.25 | UD | UD | neg | 0.56 | neg |
8-Mar-2022 | UD | 36.5 | 37.99 | neg | 0.39 | neg | UD | UD | UD | neg | 0.41 | neg |
15-Mar-2022 | UD | 36.54 | 34.86 | pos | 0.48 | neg | UD | UD | UD | neg | 0.06 | neg |
22-Mar-2022 | UD | 35.59 | UD | neg | 0.35 | neg | UD | 38 | UD | neg | 0.57 | neg |
29-Mar-2022 | 34.09 | 33.6 | 32.96 | pos | 3.2 | pos | 29.12 | 30.31 | 28.89 | pos | 2.14 | pos |
5-Apr-2022 | 38.36 | 38 | 33.96 | neg | 0.38 | neg | 31.08 | 32.49 | 31.49 | pos | 0.58 | neg |
11-Apr-2022 | UD | UD | 34.4 | neg | 2.38 | pos | 33.76 | 33.69 | 27.22 | pos | 5.79 | pos |
19-Apr-2022 | UD | 34.28 | 29.33 | pos | 2.34 | pos | UD | 35.32 | UD | neg | 0.22 | neg |
26-Apr-2022 | 30.34 | 32.99 | 32.05 | pos | 32.86 | pos | UD | UD | UD | neg | 15.09 | pos |
3-May-2022 | UD | 38 | UD | neg | 0.17 | neg | UD | UD | 37.69 | neg | 1.13 | neg |
10-May-2022 | UD | UD | UD | neg | 1.15 | neg | UD | UD | UD | neg | 0.86 | neg |
17-May-2022 | UD | 34.69 | 34.27 | pos | 0.69 | neg | UD | 38 | UD | neg | 0.53 | neg |
24-May-2022 | 31.42 | 33.28 | 33.24 | pos | 0.61 | neg | UD | UD | UD | neg | 1.28 | neg |
31-May-2022 | 34.22 | 38 | 35.89 | pos | 0.94 | neg | UD | UD | UD | neg | 1.1 | neg |
7-Jun-2022 | 37.63 | 33.452 | UD | neg | 1.05 | neg | UD | UD | UD | neg | 1.55 | pos |
14-Jun-2022 | UD | 37.96 | UD | neg | 0.7 | neg | UD | UD | UD | neg | 1.09 | neg |
21-Jun-2022 | UD | 35.93 | UD | neg | 1.93 | pos | UD | UD | UD | neg | 1.11 | neg |
28-Jun-2022 | 34.34 | 32.85 | 32.79 | pos | 0.46 | neg | UD | UD | 33.97 | neg | 2.21 | pos |
5-Jul-2022 | 34.11 | 34.38 | 28.73 | pos | 1.04 | neg | UD | UD | UD | neg | 2.99 | pos |
12-Jul-2022 | UD | 34.99 | UD | neg | 2.7 | pos | UD | UD | UD | neg | 2.73 | pos |
19-Jul-2022 | 32.19 | 35.16 | UD | pos | 2.66 | pos | 34.72 | UD | UD | neg | 1.13 | neg |
26-Jul-2022 | UD | UD | UD | neg | 1.21 | neg | UD | 36.28 | UD | neg | 0.65 | neg |
2-Aug-2022 | 35.23 | 35.48 | UD | pos | 0.42 | neg | 36.86 | UD | UD | neg | 0.82 | neg |
9-Aug-2022 | UD | UD | UD | neg | 0.88 | neg | UD | UD | UD | neg | 1 | neg |
16-Aug-2022 | UD | UD | UD | neg | 0.82 | neg | UD | UD | UD | neg | 1.45 | pos |
23-Aug-2022 | UD | 37.98 | UD | neg | 0.7 | neg | UD | UD | UD | neg | 0.71 | neg |
30-Aug-2022 | UD | UD | UD | neg | 0.3 | neg | UD | UD | 34.18 | neg | 0.39 | neg |
6-Sep-2022 | UD | UD | UD | neg | 0.07 | neg | UD | UD | UD | neg | 6.01 | pos |
13-Sep-2022 | UD | 35.73 | 38.11 | neg | 1.10 | neg | UD | UD | UD | neg | 4.82 | pos |
19-Sep-2022 | 39.94 | 39.85 | UD | neg | 1.15 | neg | UD | UD | UD | neg | 4.05 | pos |
26-Sep-2022 | UD | 37.97 | UD | neg | 2.8 | pos | UD | UD | UD | neg | 1.48 | pos |
3-Oct-2022 | 39.63 | 39.38 | UD | neg | 1.41 | pos | UD | UD | UD | neg | 2 | pos |
11-Oct-2022 | 33.31 | UD | UD | neg | 0.75 | neg | 34.29 | UD | UD | neg | 4.46 | pos |
18-Oct-2022 | 31.99 | 34.7 | UD | pos | 4.82 | pos | UD | UD | UD | neg | 3.9 | pos |
25-Oct-2022 | 31.98 | 34.96 | 32.89 | pos | 3.85 | pos | 33.99 | UD | UD | neg | 3.94 | pos |
1-Nov-2022 | 32.9 | UD | 33.82 | pos | 1.99 | pos | UD | UD | UD | neg | 1.22 | neg |
8-Nov-2022 | 36.52 | 39.35 | UD | neg | 1.58 | pos | 24.78 | 24.22 | UD | pos | 3.02 | pos |
15-Nov-2022 | 33.14 | 35.32 | UD | pos | 1.15 | neg | UD | UD | UD | neg | 2.52 | pos |
22-Nov-2022 | UD | UD | UD | neg | 3.29 | pos | 34.79 | 35.01 | UD | pos | 2.14 | pos |
29-Nov-2022 | 37.1 | 35.25 | 36.76 | pos | 2.65 | pos | UD | UD | UD | neg | 1.29 | neg |
6-Dec-2022 | UD | 35.19 | UD | neg | 2.21 | pos | UD | UD | UD | neg | 1.3 | neg |
13-Dec-2022 | 36.83 | 35.65 | UD | pos | 2.33 | pos | UD | UD | UD | neg | 0.38 | neg |
20-Dec-2022 | UD | UD | UD | neg | 1.15 | neg | UD | UD | UD | neg | 0.89 | neg |
27-Dec-2022 | UD | UD | UD | neg | 0.96 | neg | UD | UD | UD | neg | 1.67 | pos |
RT-qPCR+ | RT-qPCR- | Total | |
---|---|---|---|
CLEIA + (≥1.34 pg/mL) | 13 | 26 | 39 |
CLEIA − (<1.34 pg/mL) | 11 | 42 | 53 |
Total | 24 | 68 | 92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thongpradit, S.; Chanprasertyothin, S.; Pasomsub, E.; Ongphiphadhanakul, B.; Prasongtanakij, S. SARS-CoV-2 Surveillance in Hospital Wastewater: CLEIA vs. RT-qPCR. Water 2023, 15, 2495. https://doi.org/10.3390/w15132495
Thongpradit S, Chanprasertyothin S, Pasomsub E, Ongphiphadhanakul B, Prasongtanakij S. SARS-CoV-2 Surveillance in Hospital Wastewater: CLEIA vs. RT-qPCR. Water. 2023; 15(13):2495. https://doi.org/10.3390/w15132495
Chicago/Turabian StyleThongpradit, Supranee, Suwannee Chanprasertyothin, Ekawat Pasomsub, Boonsong Ongphiphadhanakul, and Somsak Prasongtanakij. 2023. "SARS-CoV-2 Surveillance in Hospital Wastewater: CLEIA vs. RT-qPCR" Water 15, no. 13: 2495. https://doi.org/10.3390/w15132495
APA StyleThongpradit, S., Chanprasertyothin, S., Pasomsub, E., Ongphiphadhanakul, B., & Prasongtanakij, S. (2023). SARS-CoV-2 Surveillance in Hospital Wastewater: CLEIA vs. RT-qPCR. Water, 15(13), 2495. https://doi.org/10.3390/w15132495