Genotoxicity and Health Risk of Seawater Desalination Based on Reverse Osmosis: A Case Study of Two Seawater Desalination Plants in Zhoushan, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Water Sample Collection
2.2. Water Quality Analysis
2.3. Genotoxicity Analysis
2.3.1. Extraction of Organic Compounds
2.3.2. Single-Cell Gel Electrophoresis (SCGE)
2.3.3. Calculation of DNA Damage
2.4. Assessment of Genotoxicity in Seawater Desalination and between the Water Treatment Plants
2.5. Health Risks of Drinking Desalinated Seawater
3. Results and Discussion
3.1. Water Quality Parameters in the Seawater Desalination Process
3.2. Genotoxicity Change in Desalination
3.3. Comparison of Desalination with Other Water Treatments in Terms of Genotoxicity
3.4. Health Risk Assessment of Drinking Desalinated Water
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kaldellis, J.; Kondili, E. The water shortage problem in the Aegean archipelago islands: Cost-effective desalination prospects. Desalination 2007, 216, 123–138. [Google Scholar] [CrossRef]
- Feng, H.; Xie, C. Status and prospect of Chinese seawater desalination technology. Chem. Ind. Eng. 2010, 27, 103–109. [Google Scholar]
- Dawoud, M.A. The role of desalination in augmentation of water supply in GCC countries. Desalination 2007, 216, 123–138. [Google Scholar] [CrossRef]
- Chen, T.; Wang, Q.; Qin, Y.; Chen, X.; Yang, X.; Lou, W.; Zhou, M.; He, G.; Lu, K. Knowledge, attitudes and practice of desalinated water among professionals in health and water departments in Shengsi, China: A qualitative study. PLoS ONE 2015, 10, e0118360. [Google Scholar] [CrossRef] [PubMed]
- Agus, E.; Voutchkov, N.; Sedlak, D.L. Disinfection by-products and their potential impact on the quality of water produced by desalination systems: A literature review. Desalination 2009, 237, 214–237. [Google Scholar] [CrossRef]
- Yang, Y.; Komaki, Y.; Kimura, S.; Hu, H.; Wagner, E.; Mariñas, B.; Plewa, M. Toxic impact of bromide and iodide on drinking water disinfected with chlorine or chloramines. Environ. Sci. Technol. 2014, 48, 12362–12369. [Google Scholar] [CrossRef]
- Moawad, H.; El–Rahim, W.M.A.; Khalafallah, W.M.A. Evaluation of biotoxicity of textile dyes using two bioassays. J. Basic Microbiol. Int. J. Biochem. Physiol. Genet. Morphol. Ecol. Microorg. 2003, 43, 218–229. [Google Scholar] [CrossRef]
- Ohe, T.; Watanabe, T.; Wakabayashi, K. Mutagens in surface waters: A review. Mutat. Res./Rev. Mutat. Res. 2004, 567, 109–149. [Google Scholar]
- Zeng, Q.; Zhang, S.; Liao, J.; Miao, D.; Wang, X.; Yang, P.; Yun, L.; Liu, A.; Lu, W. Evaluation of genotoxic effects caused by extracts of chlorinated drinking water using a combination of three different bioassays. J. Hazard. Mater. 2015, 296, 23–29. [Google Scholar] [CrossRef]
- Collins, A.R. The comet assay for DNA damage and repair. Mol. Biotechnol. 2004, 26, 249–261. [Google Scholar] [CrossRef]
- Hartmann, A.; Agurell, E.; Beevers, C.; Brendler-Schwaab, S.; Burlinson, B.; Clay, P.; Collins, A.; Smith, A.; Speit, G.; Thybaud, V.; et al. Recommendations for conducting the in vivo alkaline Comet assay. Mutagenesis 2003, 18, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Collins, A.; Agurell, E.; Beevers, C.; Brendler-Schwaab, S.; Burlinson, B.; Clay, P.; Collins, A.; Smith, A.; Speit, G.; Thybaud, V. Comet assay in human biomonitoring studies: Reliability, validation, and applications. Environ. Mol. Mutagen. 1997, 30, 139–146. [Google Scholar] [CrossRef]
- García, O.; Romero, I.; González, J.E.; Moreno, D.L.; Cuétara, E.; Rivero, Y.; Gutiérrez, A.; Pérez, C.L.; Álvarez, A.; Carnesolta, D. Visual estimation of the percentage of DNA in the tail in the comet assay: Evaluation of different approaches in an intercomparison exercise. Mutat. Res. Toxicol. Environ. Mutagen. 2011, 720, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 1988, 175, 184–191. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Qin, T.; Liu, Z.; Caceres, M.A.; Ronchi, C.F.; Chen, C.O.; Yeum, K.; Taylor, A.; Blumberg, J.B.; Liu, Y. Lutein and zeaxanthin supplementation reduces H2O2-induced oxidative damage in human lens epithelial cells. Mol. Vis. 2011, 17, 3180–3190. [Google Scholar] [PubMed]
- Potts, D.; Ahlert, R.C.; Wang, S.S. A critical review of fouling of reverse osmosis membranes. Desalination 1981, 36, 235–264. [Google Scholar] [CrossRef]
- Pandey, S.R.; Jegatheesan, V.; Baskaran, K.; Shu, L. Fouling in reverse osmosis (RO) membrane in water recovery from secondary effluent: A review. Rev. Environ. Sci. Bio/Technol. 2012, 11, 125–145. [Google Scholar] [CrossRef]
- Yermiyahu, U.; Tal, A.; Ben-Gal, A.; Bar-Tal, A.; Tarchitzky, J.; Lahav, O. Rethinking desalinated water quality and agriculture. Science 2007, 318, 920–921. [Google Scholar] [CrossRef]
- Wang, X.N.; Liu, Y.; Pan, X.H.; Han, J.X.; Hao, J. Parameters for seawater reverse osmosis product water: A review. Expo. Health 2017, 9, 157–168. [Google Scholar] [CrossRef]
- Hilal, N.; Kim, G.; Somerfield, C. Boron removal from saline water: A comprehensive review. Desalination 2011, 273, 23–35. [Google Scholar] [CrossRef]
- Kim, D.; Amy, G.L.; Karanfil, T. Disinfection by-product formation during seawater desalination: A review. Water Res. 2015, 81, 343–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, P.; Drewes, J.E.; Bellona, C.; Amy, G.; Kim, T.U.; Adam, M.; Heberer, T. Rejection of emerging organic micropollutants in nanofiltration–reverse osmosis membrane applications. Water Environ. Res. 2005, 77, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Chalatip, R.; Chawalit, R.; Nopawan, R. Removal of haloacetic acids by nanofiltration. J. Environ. Sci. 2009, 21, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Kimura, K.; Amy, G.; Drewes, J.E.; Heberer, T.; Kim, T.U.; Watanabe, Y. Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes. J. Membr. Sci. 2003, 227, 113–121. [Google Scholar] [CrossRef]
- Van der Bruggen, B.; Vandecasteele, C. Removal of pollutants from surface water and groundwater by nanofiltration: Overview of possible applications in the drinking water industry. Environ. Pollut. 2003, 122, 435–445. [Google Scholar] [CrossRef]
- Waniek, A.; Bodzek, M.; Konieczny, K. Trihalomethane removal from water using membrane processes. Pol. J. Environ. Stud. 2002, 11, 171–178. [Google Scholar]
- Agus, E.; Sedlak, D.L. Formation and fate of chlorination by-products in reverse osmosis desalination systems. Water Res. 2010, 44, 1616–1626. [Google Scholar] [CrossRef]
- Fujioka, T.; Khan, S.J.; McDonald, J.A.; Roux, A.; Poussade, Y.; Drewes, J.E.; Nghiem, L.D. N-nitrosamine rejection by nanofiltration and reverse osmosis membranes: The importance of membrane characteristics. Desalination 2013, 316, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Farré, M.; Keller, J.; Holling, N.; Poussade, Y.; Gernjak, W. Occurrence of N-nitrosodimethylamine precursors in wastewater treatment plant effluent and their fate during ultrafiltration-reverse osmosis membrane treatment. Water Sci. Technol. 2011, 63, 605–612. [Google Scholar] [CrossRef] [Green Version]
- Steinle-Darling, E.; Zedda, M.; Plumlee, M.H.; Ridgway, H.F.; Reinhard, M. Evaluating the impacts of membrane type, coating, fouling, chemical properties and water chemistry on reverse osmosis rejection of seven nitrosoalklyamines, including NDMA. Water Res. 2007, 41, 3959–3967. [Google Scholar] [CrossRef]
- Verliefde, A.R.; Cornelissen, E.R.; Heijman, S.G.J.; Verberk, J.Q.J.C.; Amy, G.L.; Van der Bruggen, B.; Van Dijk, J.C. The role of electrostatic interactions on the rejection of organic solutes in aqueous solutions with nanofiltration. J. Membr. Sci. 2008, 322, 52–66. [Google Scholar] [CrossRef]
- Duranceau, S. Determination of the total iodide content in desalinated seawater permeate. Desalination 2010, 261, 251–254. [Google Scholar] [CrossRef]
- Magara, Y.; Aizawa, T.; Kunikane, S.; Itoh, M.; Kohki, M.; Kawasaki, M.; Takeuti, H. The behavior of inorganic constituents and disinfection by products in reverse osmosis water desalination process. Water Sci. Technol. 1996, 34, 141–148. [Google Scholar] [CrossRef]
- Richardson, S.D.; Fasano, F.; Ellington, J.J.; Crumley, F.G.; Buettner, K.M.; Evans, J.J.; Blount, B.C.; Silva, L.K.; Waite, T.J.; Luther, G.W. Occurrence and mammalian cell toxicity of iodinated disinfection byproducts in drinking water. Environ. Sci. Technol. 2008, 42, 8330–8338. [Google Scholar] [CrossRef]
- Plewa, M.J.; Kargalioglu, Y.; Vankerk, D.; Minear, R.A.; Wagner, E.D. Mammalian cell cytotoxicity and genotoxicity analysis of drinking water disinfection by-products. Environ. Mol. Mutagen. 2002, 40, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Z.; Tian, H.J.; Heng, Z.C.; Li, N.; La, B.Z.M. The Study on the Effects of Organic Extracts From Source Water and Drinking Water on DNA Damage in V79 Cells. J. Environ. Health 1999, 16, 10–12. [Google Scholar]
- Qiu, Z.; Shu, W.; Tian, H. An analysis of the organic extracts from source water and drinking water in city C and the effects on DNA damage in primary hepatocytes in rats. J. Third Mil. Med. Univ. 2003, 5, 423–426. [Google Scholar]
- Zhang, Q.; Heng, Z.; Chen, Z. Study on Effects of Organic Extracts from Drinking Water on DNA Damage in Primary Hepatocytes. Ind. Health Occup. Dis.-Beijing 2004, 30, 216–218. [Google Scholar]
- Zheng, N.X.; Wang, C.L.; You-Qiong, X.U. Genetic toxicity of organic extractions from drinking water in Fuzhou city. Chin. J. Public Health 2011, 27, 129–130. [Google Scholar]
- Wu, N.; Li, X.; Tao, H. Removal of Organic Mutagen in Tap Water. J. Environ. Health 1992, 12, wpr-545978. [Google Scholar]
- Tang, G.; Jie, W.; Yin, J.; Yan, Q.; Gong, Y.; Jiao, Z.; Cao, M.E.; Huang, S.; Zhu, G.; Ran, L. Establishment and application of evaluation method for genotoxicity of drinking water. J. Southeast Univ. 2018, 48, 170–173. [Google Scholar]
- Zhang, L.; Zhai, H. DNA damage in L-02 cells exposed to organic extracts of chlorinated drinking water. J. Environ. Health 2010, 27, 14–16. [Google Scholar]
- Zhang, Q.; Chen, Z.; Gan, Z.; Heng, Z.; Li, X. Mutagenicity of Organic Extract From Drinking Water in a Certain City. J. Environ. Health 2005, 4, 289–291. [Google Scholar]
- Sun, L.; Qu, M.; Li, Z.; Chen, H.; Li, Y.; Kong, Z. Toxicity evaluation of drinking water in human peripheral blood lymphocytes using the comet assay. ACTA Sci. Circumstantiae 2005, 25, 324–328. [Google Scholar]
- Zhang, Q.B.; Gan, Z.L.; Chen, Z.Q. Study of Organic Extracts from Water Samples on DNA Damage of Primary Hepatocytes Cells with Comet Assay. J. Prev. Med. Inf. 2003, 2, 116–117. [Google Scholar]
- Zhang, R.; Hairong, D.U.; Cao, X. Screening DNA damage of organic extract in water sample of environment by eukaryotic cell screening system. Hebei Med. J. 2008, 5, 581–583. [Google Scholar]
- Nriagu, J.; Darroudi, F.; Shomar, B. Health effects of desalinated water: Role of electrolyte disturbance in cancer development. Environ. Res. 2016, 150, 191–204. [Google Scholar] [CrossRef]
- Yang, C.Y.; Chiu, H.F.; Cheng, M.F.; Tsai, S.S.; Hung, C.F.; Lin, M.C. Esophageal cancer mortality and total hardness levels in Taiwan’s drinking water. Environ. Res. 1999, 81, 302–308. [Google Scholar] [CrossRef]
- Hua, G.; Reckhow, D.A.; Kim, J. Effect of bromide and iodide ions on the formation and speciation of disinfection byproducts during chlorination. Environ. Sci. Technol. 2006, 40, 3050–3056. [Google Scholar] [CrossRef]
- Kitis, M.; Karanfil, T.; Wigton, A.; Kilduff, J.E. Probing reactivity of dissolved organic matter for disinfection by-product formation using XAD-8 resin adsorption and ultrafiltration fractionation. Water Res. 2002, 36, 3834–3848. [Google Scholar] [CrossRef]
- Liang, L.; Singer, P.C. Factors influencing the formation and relative distribution of haloacetic acids and trihalomethanes in drinking water. Environ. Sci. Technol. 2003, 37, 2920–2928. [Google Scholar] [CrossRef] [PubMed]
Raw Seawater | Filtered Water | RO Effluent | Finished Water | GB5749-2006 | GJB1335-92 | |||||
---|---|---|---|---|---|---|---|---|---|---|
pH | 7.8 | 7.5 | 7.9 | 7.4 | 7.6 | 7.2 | 7.4 | 7.3 | 6.5–8.5 | - |
Turbidity (NTU) | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1 | - |
COD (mg/L) | 1.48 | 1.42 | 1.34 | 1.32 | 0.94 | 0.83 | 0.90 | 0.89 | 3 | - |
TDS (mg/L) | 51,200 | 50,400 | 50,800 | 45,600 | 350 | 390 | 321 | 491 | 1000 | 200–500 |
Total hardness (mg/L) | 1389 | 1123 | 1354 | 1013 | 34 | 32 | 33 | 30 | 450 | 100–200 |
Ammonia nitrogen (mg/L) | 0.06 | 0.06 | 0.05 | 0.03 | <0.02 | <0.02 | <0.02 | <0.02 | 0.5 | - |
Chloride (mg/L) | 16,718 | 14,574 | 5196 | 3559 | 42 | 135 | 112 | 159 | 250 | 50–100 |
Sulphate (mg/L) | 2438 | 21,062 | 416 | 2184 | 6 | 5 | 3 | 6 | 250 | 30–100 |
B (mg/L) | 3.4 | 2.4 | 3.3 | 2.9 | 1.0 | 0.7 | 0.8 | 0.6 | 0.5 | - |
Ca (mg/L) | 313 | 258 | 304 | 285 | - | 1 | - | 1 | - | 20–50 |
HPC (CFU/mL) | 170 | 150 | - | 12 | - | 100 | - | - | 100 | - |
Total coliforms (MPV/100 mL) | - | 1600 | - | - | - | - | - | - | - | - |
E. coli (MPN/100 mL) | - | - | - | - | - | - | - | - | - | - |
Reference | Calculated m Value | FC | Comet Tail Parameter | Cell for Experiment | |
---|---|---|---|---|---|
Source Water | Treated Water | ||||
Zhang et al., 1999 [36] | 103.490 | 166.040 | 1.600 | Tail length | Human V79 cell |
78.840 | 138.370 | 1.760 | |||
62.670 | 91.330 | 1.460 | |||
Qiu et al., 2003 [37] | 70.520 | 54.320 | 0.770 | Tail length | Mouse liver cell |
70.710 | 108.220 | 1.530 | |||
43.530 | 43.590 | 1.000 | |||
85.190 | 97.070 | 1.140 | |||
42.010 | 80.560 | 1.920 | |||
Zhang et al., 2004 [38] | 99.410 | 166.370 | 1.670 | Tail length | Mouse liver cell |
Zheng et al., 2011 [39] | 0.055 | 0.071 | 1.283 | Olive tail moment | Human liver cell HL7702 |
0.097 | 0.091 | 0.933 | |||
0.010 | 0.095 | 9.184 | |||
0.089 | 0.057 | 0.643 | |||
0.089 | 0.053 | 0.592 | |||
Wu et al., 1992 [40] | 1.416 | 1.021 | 0.721 | Tail length | Salmonella TA98 and TA100 |
Tang et al., 2018 [41] | 25.893 | 24.043 | 0.929 | Tail DNA % | Human peripheral blood lymphocytes |
18.262 | 19.006 | 1.041 | Tail length | ||
8.428 | 8.924 | 1.059 | Olive tail moment | ||
0.756 | 1.967 | 2.604 | |||
Zhang et al., 2010 [42] | 21.600 | 32.978 | 1.527 | Tail DNA % | Human liver cell L02 |
28.990 | 35.176 | 1.213 | |||
36.303 | 48.077 | 1.324 | Tail length | ||
54.291 | 50.857 | 0.937 | |||
4.886 | 9.298 | 1.903 | Olive tail moment | ||
6.049 | 7.887 | 1.304 | |||
Zhang et al., 2005 [43] | 99.408 | 166.370 | 1.674 | Tail length | Mouse liver cell |
Sun et al., 2005 [44] | 38.601 | 27.141 | 0.703 | Tail DNA% | Human peripheral blood lymphocytes |
40.377 | 19.091 | 0.473 | |||
16.012 | 42.143 | 2.632 | |||
10.772 | 17.833 | 1.655 | |||
47.532 | 30.746 | 0.647 | Tail length | ||
25.796 | 12.865 | 0.499 | |||
13.575 | 38.575 | 2.842 | |||
23.605 | 37.294 | 1.580 | |||
13.988 | 8.468 | 0.605 | Olive tail moment | ||
8.313 | 3.478 | 0.418 | |||
3.331 | 10.296 | 3.091 | |||
5.409 | 6.026 | 1.114 | |||
Zhang et al., 2003 [45] | 103.490 | 166.370 | 1.608 | Tail length | Mouse liver cell |
Zhang et al., 2008 [46] | 9.760 | 40.210 | 4.120 | Olive tail moment | Human liver tumor cell HepG2 |
Desalinated Seawater Group | Blending Water Group | Freshwater Group | One-Way ANOVA | |
---|---|---|---|---|
Total hardness (mg/L) | 17.65 ± 6.23 | 44.68 ± 13.61 | 44.71 ± 19.46 | p < 0.001 |
TDS (mg/L) | 285.50 ± 60.07 | 262.13 ± 105.27 | 238.74 ± 81.98 | p = 0.521 |
Chloride (mg/L) | 123.13 ± 15.87 | 88.47 ± 22.38 | 35.44 ± 7.43 | p < 0.001 |
Fluoride (mg/L) | 0.33 ± 0.14 | 0.35 ± 0.17 | 0.36 ± 0.10 | p = 0.936 |
Sulphate (mg/L) | 8.23 ± 9.10 | 13.61 ± 7.84 | 18.33 ± 4.11 | p = 0.011 |
pH | 7.23 ± 0.22 | 7.36 ± 0.18 | 7.38 ± 0.27 | p = 0.306 |
B (mg/L) | 0.79 ± 0.10 | 0.36 ± 0.09 | 0.02 ± 0.01 | p < 0.001 |
Fe (mg/L) | 0.14 ± 0.05 | 0.13 ± 0.04 | 0.17 ± 0.17 | p = 0.593 |
Nitrate (mg/L) | 0.50 ± 0.00 | 0.80 ± 0.32 | 0.83 ± 0.35 | p = 0.042 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Xiao, Y.; Xian, X.; Wan, K.; Yu, X.; Ye, C. Genotoxicity and Health Risk of Seawater Desalination Based on Reverse Osmosis: A Case Study of Two Seawater Desalination Plants in Zhoushan, China. Water 2023, 15, 2470. https://doi.org/10.3390/w15132470
Zhang Y, Xiao Y, Xian X, Wan K, Yu X, Ye C. Genotoxicity and Health Risk of Seawater Desalination Based on Reverse Osmosis: A Case Study of Two Seawater Desalination Plants in Zhoushan, China. Water. 2023; 15(13):2470. https://doi.org/10.3390/w15132470
Chicago/Turabian StyleZhang, Yongli, Yuhan Xiao, Xuanxuan Xian, Kun Wan, Xin Yu, and Chengsong Ye. 2023. "Genotoxicity and Health Risk of Seawater Desalination Based on Reverse Osmosis: A Case Study of Two Seawater Desalination Plants in Zhoushan, China" Water 15, no. 13: 2470. https://doi.org/10.3390/w15132470
APA StyleZhang, Y., Xiao, Y., Xian, X., Wan, K., Yu, X., & Ye, C. (2023). Genotoxicity and Health Risk of Seawater Desalination Based on Reverse Osmosis: A Case Study of Two Seawater Desalination Plants in Zhoushan, China. Water, 15(13), 2470. https://doi.org/10.3390/w15132470