The Influence of Meteorological Variables on Reference Evapotranspiration Based on the FAO P-M Model—A Case Study of the Taohe River Basin, NW China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Methods
2.3.1. Calculation of Reference Evapotranspiration (ET0)
2.3.2. Calculation of the Elasticity Coefficient and Contribution Rate
2.3.3. Trend and Change Point Analysis
2.3.4. Correlation Analysis
3. Results and Discussion
3.1. Temporal and Spatial Variation Characteristics of ET0
3.1.1. Interannual Variation in ET0
3.1.2. Spatial Distribution of Average Annual Value and Annual Change Rate of ET0
3.1.3. Spatial Distribution of ET0 over Four Seasons
3.2. Variation Characteristics of Meteorological Factors Related to ET0
3.3. Qualitative Correlation Analysis between ET0 and Meteorological Variables
3.3.1. Correlation Coefficient and Grey Correlation Degree between ET0 and Meteorological Variables
3.3.2. Regression Analysis between ET0 and Meteorological Variables
3.3.3. Path Analysis of ET0 by Meteorological Variables
3.4. Quantitative Correlation Analysis between ET0 and Meteorological Variables
3.4.1. Sensitivity of ET0 to Variations in Meteorological Variables
3.4.2. Contribution Rate of Meteorological Variables to ET0 Variation
4. Discussion
5. Conclusions
- (1)
- ET0 in the Taohe basin showed a significant increase, with a linear change rate of 0.93 mm/a. The spatial distribution of ET0 ranged from 779.8 to 927.6 mm, increasing from upstream to downstream. The ET0 at 14 stations (73.68%) was significantly increased (p < 0.05), and that at 5 stations (26.32%) was not significantly increased (p > 0.05).
- (2)
- RH, Rn, and u2 did not change significantly, while Tmax and Tmin showed a significant increase. The annual average values of RH, Rn, u2, Tmax, and Tmin were 65.19%, 3068.66 MJ⋅m−2⋅d−1, 1.27 m/s, 12.34 °C, and −1.33 °C, while the annual average change was ﹣1.33%, + 4.27 MJ⋅m−2⋅d−1, −0.03 m/s, +1.21 °C, and +1.12 °C.
- (3)
- ET0 is closely correlated with Rn, Tmax, and Tmin, but has poor consistency with the time series for RH and u2. ET0 was the most sensitive to variations in Rn, followed by Tmax and u2, and ET0 is the least sensitive to the variation in Tmin and RH.
- (4)
- Compared with the base period (1960–1993), the order for the contribution of meteorological variables to ET0 increase during the change period (1994–2019) was Tmax (30.98%), followed by Tmin (29.11%), u2 (6.57%), and Rn (2.22%), and RH (0.05%), and the total contribution from these five variables was 68.93%.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moran, M.S.; Rahman, A.F.; Washburne, J.C.; Goodrich, D.C.; Weltz, M.A.; Kustas, W.P. Combining the Penman-Monteith equation with measurements of surface temperature and reflectance to estimate evaporation rates of semiarid grassland. Agr. For. Meteorol. 1996, 80, 87–109. [Google Scholar] [CrossRef]
- Dinpashoh, Y.; Jahanbakhsh-Asl, S.; Rasouli, A.A.; Foroughi, M.; Singh, V.P. Impact of climate change on potential evapotranspiration (case study: West and NW of Iran). Theor. Appl. Climatol. 2019, 136, 185–201. [Google Scholar] [CrossRef]
- Xiong, Y.J.; Zhao, S.H.; Tian, F.; Qiu, G.Y. An evapotranspiration product for arid regions based on the three-temperature model and thermal remote sensing. J. Hydrol. 2015, 530, 392–404. [Google Scholar] [CrossRef]
- Adnan, S.; Ullah, K.; Khan, A.H.; Gao, S. Meteorological impacts on evapotranspiration in different climatic zones of Pakistan. J. Arid. Land. 2017, 9, 938–952. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Pan, S.; Zhang, W.; Xu, Y.; Cao, L.; Hao, Y.; Wang, Y. Influence of climate change on reference evapotranspiration and aridity index and their temporal-spatial variations in the Yellow River Basin, China, from 1961 to 2012. Quatern. Int. 2015, 380, 75–82. [Google Scholar] [CrossRef]
- Doorenbos, J. Guidelines for predicting crop water requirements. In Irrigation and Drainage Paper; FAO: Rome, Italy, 1977; Volume 24, pp. 1–179. [Google Scholar]
- Ma, N.; Szilagyi, J.; Jozsa, J. Benchmarking large-scale evapotranspiration estimates: A perspective from a calibration-free complementary relationship approach and FLUXCOM. J. Hydrol. 2020, 590, 125221. [Google Scholar] [CrossRef]
- Langensiepen, M.; Fuchs, M.; Bergamaschi, H.; Moreshet, S.; Cohen, Y.; Wolff, P.; Jutzi, S.C.; Cohen, S.; Rosa, L.M.G.; Li, Y.; et al. Quantifying the uncertainties of transpiration calculations with the Penman–Monteith equation under different climate and optimum water supply conditions. Agr. For. Meteorol. 2009, 149, 1063–1072. [Google Scholar] [CrossRef]
- Zeng, P.; Sun, F.; Liu, Y.; Che, Y. Future river basin health assessment through reliability-resilience-vulnerability: Thresholds of multiple dryness conditions. Sci. Total. Environ. 2020, 741, 140395. [Google Scholar] [CrossRef]
- Zeng, P.; Sun, F.; Liu, Y.; Wang, Y.; Li, G.; Che, Y. Mapping future droughts under global warming across China: A combined multi-timescale meteorological drought index and SOM-Kmeans approach. Weather Clim. Extrem. 2021, 31, 100304. [Google Scholar] [CrossRef]
- Lhomme, J.P. Towards a rational definition of potential evaporation. Hydrol. Earth Syst. Sci. 1997, 1, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.; Zhang, Q.; Yang, J.; Li, C. Response of Potential Evapotranspiration to Warming and Wetting in Northwest China. Atmosphere 2022, 13, 353. [Google Scholar] [CrossRef]
- Irmak, S.; Kabenge, I.; Skaggs, K.E.; Mutiibwa, D. Trend and magnitude of changes in climate variables and reference evapotranspiration over 116-yr period in the Platte River Basin, central Nebraska—USA. J. Hydrol. 2012, 420, 228–244. [Google Scholar] [CrossRef]
- Sun, S.; Chen, H.; Wang, G.; Li, J.; Mu, M.; Yan, G.; Xu, B.; Huang, J.; Wang, J.; Zhang, F.; et al. Shift in potential evapotranspiration and its implications for dryness/wetness over Southwest China. J. Geophys. Res. Atmos. 2016, 121, 9342–9355. [Google Scholar] [CrossRef] [Green Version]
- Zeng, P.; Sun, F.; Liu, Y.; Feng, H.; Zhang, R.; Che, Y. Changes of potential evapotranspiration and its sensitivity across China under future climate scenarios. Atmos. Res. 2021, 261, 105763. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, L.; Huang, J.; Zhang, L.; Wang, W.; Sha, S. Spatial distribution of surface energy fluxes over the Loess Plateau in China and its relationship with climate and the environment. Sci. China Earth Sci. 2014, 57, 2135–2147. [Google Scholar] [CrossRef]
- Yu, Z.; Zhou, W.; Zhang, X. An attribution analysis of changes in potential evapotranspiration in the Beijing-Tianjin-Hebei Region under climate change. J. Trop. Meteorol. 2019, 25, 82–91. [Google Scholar]
- Dong, Q.; Wang, W.; Shao, Q.; Xing, W.; Ding, Y.; Fu, J. The response of reference evapotranspiration to climate change in Xinjiang, China: Historical changes, driving forces, and future projections. Int. J. Climatol. 2020, 40, 235–254. [Google Scholar] [CrossRef]
- Lin, P.; He, Z.; Du, J.; Chen, L.; Zhu, X.; Li, J. Impacts of climate change on reference evapotranspiration in the Qilian Mountains of China: Historical trends and projected changes. Int. J. Climatol. 2018, 38, 2980–2993. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Wen, Z.; Chen, Y.; Cao, Y.; Ren, J. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011–2100. Agr. For. Meteorol. 2017, 233, 183–194. [Google Scholar] [CrossRef] [Green Version]
- Jhajharia, D.; Dinpashoh, Y.; Kahya, E.; Singh, V.P.; Fakheri-Fard, A. Trends in reference evapotranspiration in the humid region of northeast India. Hydrol. Process. 2012, 26, 421–435. [Google Scholar] [CrossRef]
- Dinpashoh, Y.; Babamiri, O. Trends in reference crop evapotranspiration in Urmia Lake basin. Arab. J. Geosci. 2020, 13, 372. [Google Scholar] [CrossRef]
- Di Nunno, F.; Granata, F. Future trends of reference evapotranspiration in Sicily based on CORDEX data and Machine Learning algorithms. Agric. Water Manag. 2023, 280, 108232. [Google Scholar] [CrossRef]
- Jerin, J.N.; Islam, H.M.T.; Islam, A.R.M.T.; Shahid, S.; Hu, Z.; Badhan, M.A.; Chu, R.; Elbeltagi, A. Spatiotemporal trends in reference evapotranspiration and its driving factors in Bangladesh. Theor. Appl. Climatol. 2021, 144, 793–808. [Google Scholar] [CrossRef]
- Fu, J.; Gong, Y.; Zheng, W.; Zou, J.; Zhang, M.; Zhang, Z.; Qin, J.; Liu, J.; Quan, B. Spatial-temporal variations of terrestrial evapotranspiration across China from 2000 to 2019. Sci. Total. Environ. 2022, 825, 153951. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Liang, C.; Cui, N.; Zhao, L.; Du, T.; Hu, X.; Feng, Y.; Guan, J.; Feng, Y. Impacts of climatic variables on reference evapotranspiration during growing season in Southwest China. Agr. Water Manag. 2019, 216, 365–378. [Google Scholar] [CrossRef]
- Zhang, K.; Zhu, G.; Ma, J.; Yang, Y.; Shang, S.; Gu, C. Parameter analysis and estimates for the modis evapotranspiration algorithm and multiscale verification. Water Resour. Res. 2019, 55, 2211–2231. [Google Scholar] [CrossRef]
- Yang, L.; Feng, Q.; Li, C.; Si, J.; Wen, X.; Yin, Z. Detecting climate variability impacts on reference and actual evapotranspiration in the Taohe River Basin, NW China. Hydrol. Res. 2016, 48, 596–612. [Google Scholar] [CrossRef] [Green Version]
- Li, C.B.; Yang, L.S.; Yang, W.J.; Wang, S.B. Land use and land cover change in Taohe River Basin and its driving forces. Sci. Geogr. Sin. 2014, 34, 848–855. (In Chinese) [Google Scholar]
- Sun, L.; Wang, Y.; Zhang, J.; Yang, Q.; Bao, Z.; Guan, X.; Guan, T.; Chen, X.; Wang, G. Impact of environmental change on runoff in a transitional basin: Tao River Basin from the Tibetan Plateau to the Loess Plateau, China. Adv. Clim. Change Res. 2019, 10, 214–224. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D5109. [Google Scholar]
- Fan, J.; Wu, L.; Zhang, F.; Xiang, Y.; Zheng, J. Climate change effects on reference crop evapotranspiration across different climatic zones of China during 1956–2015. J. Hydrol. 2016, 542, 923–937. [Google Scholar] [CrossRef]
- Talebi, H.; Samadianfard, S.; Kamran, K.V. Investigating the roles of different extracted parameters from satellite images in improving the accuracy of daily reference evapotranspiration estimation. Appl. Water Sci. 2023, 13, 59. [Google Scholar] [CrossRef]
- Dinpashoh, Y.; Jhajharia, D.; Fakheri-Fard, A.; Singh, V.P.; Kahya, E. Trends in reference crop evapotranspiration over Iran. J. Hydrol. 2011, 399, 422–433. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, P.; Lai, C.; Chen, X.; Wu, X.; Zeng, Z.; Li, J. Spatiotemporal variability of reference evapotranspiration and contributing climatic factors in China during 1961–2013. J. Hydrol. 2017, 544, 97–108. [Google Scholar] [CrossRef]
- Yin, Y.; Wu, S.; Chen, G.; Dai, E. Attribution analyses of potential evapotranspiration changes in China since the 1960s. Theor. Appl. Climatol. 2010, 101, 19–28. [Google Scholar] [CrossRef]
- Zhu, C.H. A further discussion on the Climatological Calculating Method of Total Radiation (II). Trans. Atmos. Sci. 1982, 2, 196–206. (In Chinese) [Google Scholar]
- Liu, J.; Zhang, Q.; Singh, V.P.; Shi, P. Contribution of multiple climatic variables and human activities to streamflow changes across China. J. Hydrol. 2017, 545, 145–162. [Google Scholar] [CrossRef] [Green Version]
- Schaake, J.C. From climate to flow. Clim. Chang. US Water Resour. 1990, 89, 177–206. [Google Scholar]
- Gemmer, M.; Jiang, T.; Su, B.; Kundzewicz, Z.W. Seasonal precipitation changes in the wet season and their influence on flood/drought hazards in the Yangtze River Basin, China. Quatern. Int. 2008, 186, 12–21. [Google Scholar] [CrossRef]
- Pettitt, A.N. A Non-Parametric Approach to the Change-Point Problem. J. R. Stat. Soc. Ser. C 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Lyu, J.; Yin, S.; Sun, Y.; Wang, K.; Luo, P.; Meng, X. Flood Runoff Simulation under Changing Environment, Based on Multiple Satellite Data in the Jinghe River Basin of the Loess Plateau, China. Remote Sens. 2023, 15, 550. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1975. [Google Scholar]
- Pan, H.; You, X.; Liu, S.; Zhang, D. Pearson correlation coefficient-based pheromone refactoring mechanism for multi-colony ant colony optimization. Appl. Intell. 2021, 51, 752–774. [Google Scholar] [CrossRef]
- Xiao, C.; Ye, J.; Esteves, R.M.; Rong, C. Using Spearman's correlation coefficients for exploratory data analysis on big dataset. Concurr. Comput. Pract. Exp. 2016, 28, 3866–3878. [Google Scholar] [CrossRef]
- Xu, J.; Liu, Z.; Yin, L.; Liu, Y.; Tian, J.; Gu, Y.; Zheng, W.; Yang, B.; Liu, S. Grey Correlation Analysis of Haze Impact Factor PM2.5. Atmosphere 2021, 12, 1513. [Google Scholar] [CrossRef]
- Dewey, D.R.; Lu, K.H. A Correlation and Path-Coefficient Analysis of Components of Crested Wheatgrass Seed Production1. Agron. J. 1959, 51, 515–518. [Google Scholar] [CrossRef]
- Wu, L.; Zhou, H.; Li, J.; Li, K.; Sun, X.; Lu, S.; Li, L.; Zhu, T.; Guo, Q. Thiessen polygon analysis and spatial pattern evolution of Neolithic cultural sites (8.0–4.0 ka BP) in Huaibei Plain of Anhui, East China. Quatern. Int. 2019, 521, 75–84. [Google Scholar] [CrossRef]
- Yildirim, D.; Küçüktopcu, E.; Cemek, B.; Simsek, H. Comparison of machine learning techniques and spatial distribution of daily reference evapotranspiration in Türkiye. Appl. Water Sci. 2023, 13, 107. [Google Scholar] [CrossRef]
Correlation Coefficient | Pearson | Spearman | Grey Relational Degree | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ET0 | RH | Rn | Tmax | Tmin | u2 | ET0 | RH | Rn | Tmax | Tmin | u2 | ||
ET0 | 1 | 0.490 ** | 0.989 ** | 0.936 ** | 0.892 ** | 0.447 ** | 1 | 0.489 ** | 0.982 ** | 0.941 ** | 0.890 ** | 0.486 ** | 1 |
RH | 1 | 0.493 ** | 0.671 ** | 0.786 ** | −0.169 ** | 1 | 0.490 ** | 0.67 4 ** | 0.788 ** | −0.171 ** | 0.614 | ||
Rn | 1 | 0.901 ** | 0.869 ** | 0.495 ** | 1 | 0.896 ** | 0.851 ** | 0.499 ** | 0.887 | ||||
Tmax | 1 | 0.977 ** | 0.245 ** | 1 | 0.974** | 0.247 ** | 0.804 | ||||||
Tmin | 1 | 0.211 ** | 1 | 0.198 ** | 0.736 | ||||||||
u2 | 1 | 1 | 0.625 |
Meteorological Factors | Path Coefficient (Direct Effect) | Indirect Path Coefficient (Indirect Effect) | Simple Correlation Coefficient | |||||
---|---|---|---|---|---|---|---|---|
Rn | Tmax | RH | u2 | Tmin | Σ | |||
Rn | 0.743 | 0.311 | −0.057 | −0.013 | 0.005 | 0.246 | 0.989 | |
Tmax | 0.345 | 0.670 | −0.078 | −0.006 | 0.006 | 0.591 | 0.936 | |
RH | −0.116 | 0.366 | 0.232 | 0.004 | 0.005 | 0.607 | 0.490 | |
u2 | −0.026 | 0.368 | 0.084 | 0.020 | 0.001 | 0.473 | 0.447 | |
Tmin | 0.006 | 0.646 | 0.337 | −0.091 | −0.005 | 0.886 | 0.892 |
Meteorological Factors | Elasticity Coefficient | Average Annual Value | Average Annual Change | Annual Change in ET0/mm | Contribution Rate/% |
---|---|---|---|---|---|
Rn | 0.722 | 3068.66 MJ⋅m−2⋅d−1 | 4.27 MJ⋅m−2⋅d−1 | 0.82 | 2.22 |
Tmax | 0.143 | 12.34 °C | 1.21 °C | 11.49 | 30.98 |
Tmin | −0.016 | −1.33 °C | 1.12 °C | 10.80 | 29.11 |
u2 | −0.110 | 1.27 m/s | −0.03 m/s | 2.44 | 6.57 |
RH | −0.001 | 65.19% | −1.33% | 0.02 | 0.05 |
ET0 | - | 819.46 mm | 37.10 mm | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Niu, Z.; Wang, X.; Sun, D.; Jia, L. The Influence of Meteorological Variables on Reference Evapotranspiration Based on the FAO P-M Model—A Case Study of the Taohe River Basin, NW China. Water 2023, 15, 2264. https://doi.org/10.3390/w15122264
Ma Y, Niu Z, Wang X, Sun D, Jia L. The Influence of Meteorological Variables on Reference Evapotranspiration Based on the FAO P-M Model—A Case Study of the Taohe River Basin, NW China. Water. 2023; 15(12):2264. https://doi.org/10.3390/w15122264
Chicago/Turabian StyleMa, Yali, Zuirong Niu, Xingfan Wang, Dongyuan Sun, and Ling Jia. 2023. "The Influence of Meteorological Variables on Reference Evapotranspiration Based on the FAO P-M Model—A Case Study of the Taohe River Basin, NW China" Water 15, no. 12: 2264. https://doi.org/10.3390/w15122264
APA StyleMa, Y., Niu, Z., Wang, X., Sun, D., & Jia, L. (2023). The Influence of Meteorological Variables on Reference Evapotranspiration Based on the FAO P-M Model—A Case Study of the Taohe River Basin, NW China. Water, 15(12), 2264. https://doi.org/10.3390/w15122264