Spatiotemporal Runoff Analysis and Associated Influencing Factors in Chitral Basin, Pakistan
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Data
3.2. Methods
3.2.1. Trends and Magnitude Estimation
3.2.2. Wavelet Analysis
4. Results
4.1. Seasonal and Annual Trends in Climate and Runoff in the CRB
4.2. Temporal Variations
4.3. Nexus between Runoff with Regional Environmental Factors and Oceanic Indices
5. Discussion
6. Conclusions
- The MK and SS showed increased winter, summer and autumn precipitation, andR a decrease in annual and spring precipitation. In general, the temperature has increased annually, and in winter and spring. Moreover, a significant increasing trend in annual and seasonal runoff in the CRB is evident, except with a non-significant increase in summer.
- The seasonal runoff has shown a continual increase. In the first two decades, no obvious trend was evident. However, the overall runoff has significantly increased, with few turning points from 1980 onwards. The long-term linear trend for different seasons and the annual mean runoff in the CRB is increasing in all seasons, especially in the winter and autumn.
- The annual runoff, temperature and NDVI from the CRB have increased, whereas the annual precipitation, NDWI, and NDSI have decreased.
- The overall PDF analysis shows that the mean runoff has shown positive shifts with sharp skewness, significantly affecting the runoff trends in the CRB.
- In general, the runoff has significant inter-annual variability modes with the regional environmental factors. All of the regional environmental factors remained sporadic and significant, ranging from 4 to 16 months, while a significant oscillation of 64 months (6.3 years) is evident with NDVI. In general, monthly runoff has a positive relationship with temperature and NDVI, whereas a negative relationship is observed with precipitation, NDWI, and NDSI.
- The WTC analysis indicates that the oscillations persisted sporadically and significantly across the timescale. In general, ENSO, IOD, and PDO share a positive coherence with the monthly runoff in the CRB, whereas no significant relation was observed with AMO, AO and NAO. Overall, on a <1.0-year timeline, all indices displayed a robust but sporadic relationship.
- The MWC findings indicate that the annual runoff prevailed with regard to interannual signals with local environmental factors and with the Pacific Ocean, whereas interannual and interdecadal coherences are obvious with the Atlantic Ocean.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Taye, M.T.; Willems, P.; Block, P. Implications of climate change on hydrological extremes in the Blue Nile basin: A review. J. Hydrol. Reg. Stud. 2015, 4, 280–293. [Google Scholar] [CrossRef] [Green Version]
- Millán, M.M. Extreme hydrometeorological events and climate change predictions in Europe. J. Hydrol. 2014, 518, 206–224. [Google Scholar] [CrossRef]
- Taormina, R.; Chau, K.-W.; Sivakumar, B. Neural network river forecasting through baseflow separation and binary-coded swarm optimization. J. Hydrol. 2015, 529, 1788–1797. [Google Scholar] [CrossRef]
- Zhang, Q.; Gu, X.; Singh, V.P.; Kong, D.; Chen, X. Spatiotemporal behavior of floods and droughts and their impacts on agriculture in China. Glob. Planet. Chang. 2015, 131, 63–72. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q.; Wang, Y. Temperature and precipitation changes over the Loess Plateau between 1961 and 2011, based on high-density gauge observations. Glob. Planet. Chang. 2015, 132, 1–10. [Google Scholar] [CrossRef]
- Moazami, S.; Golian, S.; Hong, Y.; Sheng, C.; Kavianpour, M.R. Comprehensive evaluation of four high-resolution satellite precipitation products under diverse climate conditions in Iran. Hydrol. Sci. J. 2016, 61, 420–440. [Google Scholar] [CrossRef]
- MacDonald, A.; Bonsor, H.; Ahmed, K.; Burgess, W.; Basharat, M.; Calow, R.; Dixit, A.; Foster, S.; Gopal, K.; Lapworth, D. Groundwater quality and depletion in the Indo-Gangetic Basin mapped from in situ observations. Nat. Geosci. 2016, 9, 762–766. [Google Scholar] [CrossRef] [Green Version]
- Hoang, L.P.; Lauri, H.; Kummu, M.; Koponen, J.; Van Vliet, M.T.; Supit, I.; Leemans, R.; Kabat, P.; Ludwig, F. Mekong River flow and hydrological extremes under climate change. Hydrol. Earth Syst. Sci. 2016, 20, 3027–3041. [Google Scholar] [CrossRef] [Green Version]
- Halder, S.; Saha, S.K.; Dirmeyer, P.A.; Chase, T.N.; Goswami, B.N. Investigating the impact of land-use land-cover change on Indian summer monsoon daily rainfall and temperature during 1951–2005 using a regional climate model. Hydrol. Earth Syst. Sci. 2016, 20, 1765–1784. [Google Scholar] [CrossRef] [Green Version]
- Shamsudduha, M.; Panda, D.K. Spatio-temporal changes in terrestrial water storage in the Himalayan river basins and risks to water security in the region: A review. Int. J. Disaster Risk Reduct. 2019, 35, 101068. [Google Scholar] [CrossRef]
- You, Q.-L.; Ren, G.-Y.; Zhang, Y.-Q.; Ren, Y.-Y.; Sun, X.-B.; Zhan, Y.-J.; Shrestha, A.B.; Krishnan, R. An overview of studies of observed climate change in the Hindu Kush Himalayan (HKH) region. Adv. Clim. Chang. Res. 2017, 8, 141–147. [Google Scholar] [CrossRef]
- Dimri, A.; Thayyen, R.; Kibler, K.; Stanton, A.; Jain, S.; Tullos, D.; Singh, V. A review of atmospheric and land surface processes with emphasis on flood generation in the Southern Himalayan rivers. Sci. Total Environ. 2016, 556, 98–115. [Google Scholar] [CrossRef]
- Maskrey, A.; Peduzzi, P.; Chatenoux, B.; Herold, C.; Dao, Q.-H.; Giuliani, G. Revealing Risk, Redefining Development, Global Assessment Report on Disaster Risk Reduction. In United Nations Strategy for Disaster Reduction; Information Press: Oxford, UK, 2011; pp. 17–51. [Google Scholar]
- Forkuo, E.K. Flood hazard mapping using Aster image data with GIS. Int. J. Geomat. Geosci. 2011, 1, 932–950. [Google Scholar]
- Shah, S.M.H.; Mustaffa, Z.; Teo, F.Y.; Imam, M.A.H.; Yusof, K.W.; Al-Qadami, E.H.H. A review of the flood hazard and risk management in the South Asian Region, particularly Pakistan. Sci. Afr. 2020, 10, e00651. [Google Scholar] [CrossRef]
- Wijngaard, R.R.; Lutz, A.F.; Nepal, S.; Khanal, S.; Pradhananga, S.; Shrestha, A.B.; Immerzeel, W.W. Future changes in hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra River basins. PLoS ONE 2017, 12, e0190224. [Google Scholar] [CrossRef] [PubMed]
- Tahir, A.A.; Chevallier, P.; Arnaud, Y.; Neppel, L.; Ahmad, B. Modeling snowmelt-runoff under climate scenarios in the Hunza River basin, Karakoram Range, Northern Pakistan. J. Hydrol. 2011, 409, 104–117. [Google Scholar] [CrossRef]
- Hussain, A.; Ali, S.; Begum, S.; Hussain, I.; Ali, H. Climate Change Perspective in Mountain Area: Impacts and Adaptations in Naltar Valley, Western Himalaya, Pakistan. Fresenius Environ. Bull. 2019, 28, 6683. [Google Scholar]
- Archer, D. Hydrological implications of spatial and altitudinal variation in temperature in the upper Indus basin. Hydrol. Res. 2004, 35, 209–222. [Google Scholar] [CrossRef]
- Ehsanzadeh, E.; Adamowski, K. Trends in timing of low stream flows in Canada: Impact of autocorrelation and long-term persistence. Hydrol. Process. Int. J. 2010, 24, 970–980. [Google Scholar] [CrossRef]
- Yaseen, Z.M.; Sulaiman, S.O.; Deo, R.C.; Chau, K.-W. An enhanced extreme learning machine model for river flow forecasting: State-of-the-art, practical applications in water resource engineering area and future research direction. J. Hydrol. 2019, 569, 387–408. [Google Scholar] [CrossRef]
- Duethmann, D.; Bolch, T.; Farinotti, D.; Kriegel, D.; Vorogushyn, S.; Merz, B.; Pieczonka, T.; Jiang, T.; Su, B.; Güntner, A. Attribution of streamflow trends in snow and glacier melt-dominated catchments of the T arim R iver, Central A sia. Water Resour. Res. 2015, 51, 4727–4750. [Google Scholar] [CrossRef] [Green Version]
- Muneeb, M.; Waseem, M.; Zafar, M.A.; ul Haq, F. Impact of climate variation on hydrological behavior of snow fed catchment in Chitral basin, Pakistan. In Proceedings of the International Conference on Hydrology and Water Resources (ICHWR-21), Online Conference, 25 March 2021. [Google Scholar]
- Baig, M.A.; Zaman, Q.; Baig, S.A.; Qasim, M.; Khalil, U.; Khan, S.A.; Ismail, M.; Muhammad, S.; Ali, S. Regression analysis of hydro-meteorological variables for climate change prediction: A case study of Chitral Basin, Hindukush region. Sci. Total Environ. 2021, 793, 148595. [Google Scholar] [CrossRef] [PubMed]
- Yaseen, M.; Ahmad, I.; Guo, J.; Azam, M.I.; Latif, Y. Spatiotemporal variability in the hydrometeorological time-series over Upper Indus River Basin of Pakistan. Adv. Meteorol. 2020, 2020, 5852760. [Google Scholar] [CrossRef]
- Ahmad, S.; Jia, H.; Chen, Z.; Li, Q.; Yin, D.; Israr, M.; Hayat, W.; Bilal, H.; Ahmed, R.; Ashraf, A. Effects of climate and land use changes on stream flow of Chitral river basin of northern highland Hindu-Kush region of Pakistan. J. Hydro-Environ. Res. 2021, 38, 53–62. [Google Scholar] [CrossRef]
- Hussain, A.; Cao, J.; Ali, S.; Ullah, W.; Muhammad, S.; Hussain, I.; Rezaei, A.; Hamal, K.; Akhtar, M.; Abbas, H. Variability in runoff and responses to land and oceanic parameters in the source region of the Indus River. Ecol. Indic. 2022, 140, 109014. [Google Scholar] [CrossRef]
- Ahmad, Z.; Hafeez, M.; Ahmad, I. Hydrology of mountainous areas in the upper Indus Basin, Northern Pakistan with the perspective of climate change. Environ. Monit. Assess. 2012, 184, 5255–5274. [Google Scholar] [CrossRef]
- Khalid, S.; Rehman, S.U.; Shah, S.M.A.; Naz, A.; Saeed, B.; Alam, S.; Ali, F.; Gul, H. Hydro-meteorological characteristics of Chitral River basin at the peak of the Hindukush range. Nat. Sci. 2013, 5, 987–992. [Google Scholar] [CrossRef] [Green Version]
- Shakir, A.S.; Ehsan, S. Climate change impact on river flows in Chitral watershed. Pak. J. Eng. Appl. Sci. 2010, 7, 12–23. [Google Scholar]
- Khan, K.; Yaseen, M.; Latif, Y.; Nabi, G. Detection of river flow trends and variability analysis of upper indus basin, pakistan. Sci. Int. 2015, 27, 1261–1270. [Google Scholar]
- Ahmad, S.; Israr, M.; Liu, S.; Hayat, H.; Gul, J.; Wajid, S.; Ashraf, M.; Baig, S.U.; Tahir, A.A. Spatio-temporal trends in snow extent and their linkage to hydro-climatological and topographical factors in the Chitral River Basin (Hindukush, Pakistan). Geocarto. Int. 2020, 35, 711–734. [Google Scholar] [CrossRef]
- Hussain, A.; Hussain, I.; Ud-Din, S.; Ali, S. Combined responses of stakeholders on deforestation and its causes in Gilgit Baltistan Pakistan. J. Nat. Appl. Sci. Pak. 2022, 4, 860–875. [Google Scholar]
- Khattak, M.S.; Babel, M.; Sharif, M. Hydro-meteorological trends in the upper Indus River basin in Pakistan. Clim. Res. 2011, 46, 103–119. [Google Scholar] [CrossRef]
- Akhtar, M.; Zhao, Y.; Gao, G.; Gulzar, Q.; Hussain, A. Assessment of spatiotemporal variations of ecosystem service values and hotspots in a dryland: A case-study in Pakistan. Land Degrad. Dev. 2022, 33, 1383–1397. [Google Scholar] [CrossRef]
- Government of Pakistan Islamabad. Provisional Summary Results of 6th Population and Housing Census—2017; Government of Pakistan Islamabad: Islamabad, Pakistan, 2017.
- Anjum, M.N.; Ding, Y.; Shangguan, D. Simulation of the projected climate change impacts on the river flow regimes under CMIP5 RCP scenarios in the westerlies dominated belt, northern Pakistan. Atmos. Res. 2019, 227, 233–248. [Google Scholar] [CrossRef]
- Wang, G.; Garcia, D.; Liu, Y.; De Jeu, R.; Dolman, A.J. A three-dimensional gap filling method for large geophysical datasets: Application to global satellite soil moisture observations. Environ. Model. Softw. 2012, 30, 139–142. [Google Scholar] [CrossRef]
- Ullah, W.; Wang, G.; Ali, G.; Tawia Hagan, D.F.; Bhatti, A.S.; Lou, D. Comparing multiple precipitation products against in-situ observations over different climate regions of Pakistan. Remote Sens. 2019, 11, 628. [Google Scholar] [CrossRef] [Green Version]
- Hussain, A.; Cao, J.; Hussain, I.; Begum, S.; Akhtar, M.; Wu, X.; Guan, Y.; Zhou, J. Observed Trends and Variability of Temperature and Precipitation and Their Global Teleconnections in the Upper Indus Basin, Hindukush-Karakoram-Himalaya. Atmosphere 2021, 12, 973. [Google Scholar] [CrossRef]
- Hussain, A.; Cao, J.; Ali, S.; Muhammad, S.; Ullah, W.; Hussain, I.; Akhtar, M.; Wu, X.; Guan, Y.; Zhou, J. Observed trends and variability of seasonal and annual precipitation in Pakistan during 1960–2016. Int. J. Climatol. 2022, 42, 8313–8332. [Google Scholar] [CrossRef]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—The CRU TS3. 10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, T.D.; Jones, P.D. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol. A J. R. Meteorol. Soc. 2005, 25, 693–712. [Google Scholar] [CrossRef]
- Akhtar, M.; Zhao, Y.; Gao, G.; Gulzar, Q.; Hussain, A.; Samie, A. Assessment of ecosystem services value in response to prevailing and future land use/cover changes in Lahore, Pakistan. Reg. Sustain. 2020, 1, 37–47. [Google Scholar] [CrossRef]
- Hussain, A.; Ali, H.; Begum, F.; Hussain, A.; Khan, M.Z.; Guan, Y.; Zhou, J.; Hussain, K. Mapping of Soil Properties under Different Land Uses in Lesser Karakoram Range, Pakistan. Pol. J. Environ. Stud. 2021, 30, 1181–1189. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 3rd ed.; Griffin, C., Ed.; Hafner Publishing Company: Royal Oak, MI, USA, 1962. [Google Scholar]
- Ullah, S.; You, Q.; Ali, A.; Ullah, W.; Jan, M.A.; Zhang, Y.; Xie, W.; Xie, X. Observed changes in maximum and minimum temperatures over China-Pakistan economic corridor during 1980–2016. Atmos. Res. 2019, 216, 37–51. [Google Scholar] [CrossRef]
- Hussain, A.; Hussain, I.; Ali, S.; Ullah, W.; Khan, F.; Ullah, S.; Abbas, H.; Manzoom, A.; Cao, J.; Zhou, J. Spatiotemporal temperature trends over homogenous climatic regions of Pakistan during 1961–2017. Theor. Appl. Climatol. 2023. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Guan, Y.; Zheng, F.; Zhang, X.; Wang, B. Trends and variability of daily precipitation and extremes during 1960–2012 in the Yangtze River Basin, China. Int. J. Climatol. 2017, 37, 1282–1298. [Google Scholar] [CrossRef]
- Sneyers, S. On the Statistical Analysis of Series of Observations; Technical Note No. 143, WMO No. 725 415; Secretariat of the World Meteorological Organization: Geneva, Switzerland, 1990. [Google Scholar]
- Rebi, A.; Hussain, A.; Hussain, I.; Cao, J.; Ullah, W.; Abbas, H.; Ullah, S.; Zhou, J. Spatiotemporal Precipitation Trends and Associated Large-Scale Teleconnections in Northern Pakistan. Atmosphere 2023, 14, 871. [Google Scholar] [CrossRef]
- Hussain, A.; Cao, J.; Ali, S.; Ullah, W.; Muhammad, S.; Hussain, I.; Abbas, H.; Hamal, K.; Sharma, S.; Akhtar, M. Wavelet coherence of monsoon and large-scale climate variabilities with precipitation in Pakistan. Int. J. Climatol. 2022, 42, 9950–9966. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Rezaei, A.; Gurdak, J.J. Large-scale climate variability controls on climate, vegetation coverage, lake and groundwater storage in the Lake Urmia watershed using SSA and wavelet analysis. Sci. Total Environ. 2020, 724, 138273. [Google Scholar] [CrossRef]
- Labat, D. Cross wavelet analyses of annual continental freshwater discharge and selected climate indices. J. Hydrol. 2010, 385, 269–278. [Google Scholar] [CrossRef]
- Ciria, T.P.; Chiogna, G. Intra-catchment comparison and classification of long-term streamflow variability in the Alps using wavelet analysis. J. Hydrol. 2020, 587, 124927. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Torrence, C.; Webster, P.J. Interdecadal changes in the ENSO–monsoon system. J. Clim. 1999, 12, 2679–2690. [Google Scholar] [CrossRef]
- Rezaei, A. Ocean-atmosphere circulation controls on integrated meteorological and agricultural drought over Iran. J. Hydrol. 2021, 603, 126928. [Google Scholar] [CrossRef]
- Labat, D. Wavelet analysis of the annual discharge records of the world’s largest rivers. Adv. Water Resour. 2008, 31, 109–117. [Google Scholar] [CrossRef]
- Sharma, S.; Hamal, K.; Pokharel, B.; Fosu, B.; Wang, S.Y.S.; Gillies, R.R.; Aryal, D.; Shrestha, A.; Marahatta, S.; Hussain, A.; et al. Atypical forcing embedded in typical forcing leading to the extreme summer 2020 precipitation in Nepal. Clim. Dyn. 2023, 1–12. [Google Scholar] [CrossRef]
- Déry, S.J.; Stadnyk, T.A.; MacDonald, M.K.; Gauli-Sharma, B. Recent trends and variability in river discharge across northern Canada. Hydrol. Earth Syst. Sci. 2016, 20, 4801–4818. [Google Scholar] [CrossRef] [Green Version]
- Ullah, S.; You, Q.; Ullah, W.; Ali, A.; Xie, W.; Xie, X. Observed changes in temperature extremes over China–Pakistan Economic Corridor during 1980–2016. Int. J. Climatol. 2019, 39, 1457–1475. [Google Scholar] [CrossRef]
- Arnell, N.W.; Gosling, S.N. The impacts of climate change on river flood risk at the global scale. Clim. Chang. 2016, 134, 387–401. [Google Scholar] [CrossRef] [Green Version]
- Mehmood, A.; Jia, S.; Lv, A.; Zhu, W.; Mahmood, R.; Saifullah, M.; Adnan, R.M. Detection of spatial shift in flood regime of the Kabul river basin in Pakistan, causes, challenges, and opportunities. Water 2021, 13, 1276. [Google Scholar] [CrossRef]
- Khan, A.N. Analysis of flood causes and associated socio-economic damages in the Hindukush region. Nat. Hazards 2011, 59, 1239–1260. [Google Scholar]
- Fahad, S.; Wang, J.; Khan, A.A.; Ullah, A.; Ali, U.; Hossain, M.S.; Khan, S.U.; Huong, N.T.L.; Yang, X.; Hu, G.-y. Evaluation of farmers’ attitude and perception toward production risk: Lessons from Khyber Pakhtunkhwa Province, Pakistan. Hum. Ecol. Risk Assess. Int. J. 2018, 24, 1710–1722. [Google Scholar] [CrossRef]
- Rizwan, M.; Li, X.; Chen, Y.; Anjum, L.; Hamid, S.; Yamin, M.; Chauhdary, J.N.; Shahid, M.A.; Mehmood, Q. Simulating future flood risks under climate change in the source region of the Indus River. J. Flood Risk Manag. 2023, 16, e12857. [Google Scholar] [CrossRef]
- Asadieh, B.; Krakauer, N.Y. Global trends in extreme precipitation: Climate models versus observations. Hydrol. Earth Syst. Sci. 2015, 19, 877–891. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, N.; Lu, H.; Booij, M.J.; Wang, G.; Marhaento, H.; Bhat, M.S.; Adnan, S. Innovative polygon trend analysis of monthly precipitation (1952–2015) in the Hindukush-Karakoram-Himalaya river basins of Pakistan. Int. J. Climatol. 2022, 42, 9967–9993. [Google Scholar] [CrossRef]
- Hussain, M.S.; Lee, S. Long-term variability and changes of the precipitation regime in Pakistan. Asia-Pac. J. Atmos. Sci. 2014, 50, 271–282. [Google Scholar] [CrossRef]
- Kamil, S.; Almazroui, M.; Kang, I.-S.; Hanif, M.; Kucharski, F.; Abid, M.A.; Saeed, F. Long-term ENSO relationship to precipitation and storm frequency over western Himalaya–Karakoram–Hindukush region during the winter season. Clim. Dyn. 2019, 53, 5265–5278. [Google Scholar] [CrossRef]
- Erb, K.-H.; Lauk, C.; Kastner, T.; Mayer, A.; Theurl, M.C.; Haberl, H. Exploring the biophysical option space for feeding the world without deforestation. Nat. Commun. 2016, 7, 11382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Temperature | Precipitation | Runoff | |
---|---|---|---|
Annual | 0.08 | −0.38 | 0.63 |
Winter | 0.28 | 0.02 | 0.18 |
Spring | 0.36 | −7.27 | 0.59 |
Summer | −0.25 | 0.54 | 1.47 |
Autumn | −0.05 | 1.06 | 0.59 |
Variable | Correlation Coefficient |
---|---|
Temperature | 0.12 |
Precipitation | 0.21 |
NDVI | 0.04 |
NDSI | 0.02 |
NDWI | 0.02 |
ENSO | 0.10 |
IOD | 0.04 |
PDO | 0.10 |
NAO | 0.10 |
AO | 0.07 |
AMO | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nawaz, F.; Wang, T.; Hussain, A. Spatiotemporal Runoff Analysis and Associated Influencing Factors in Chitral Basin, Pakistan. Water 2023, 15, 2175. https://doi.org/10.3390/w15122175
Nawaz F, Wang T, Hussain A. Spatiotemporal Runoff Analysis and Associated Influencing Factors in Chitral Basin, Pakistan. Water. 2023; 15(12):2175. https://doi.org/10.3390/w15122175
Chicago/Turabian StyleNawaz, Fatima, Tao Wang, and Azfar Hussain. 2023. "Spatiotemporal Runoff Analysis and Associated Influencing Factors in Chitral Basin, Pakistan" Water 15, no. 12: 2175. https://doi.org/10.3390/w15122175
APA StyleNawaz, F., Wang, T., & Hussain, A. (2023). Spatiotemporal Runoff Analysis and Associated Influencing Factors in Chitral Basin, Pakistan. Water, 15(12), 2175. https://doi.org/10.3390/w15122175