Intermittent Rivers as a Challenge for Freshwater Ecosystems Quality Evaluation: A Study Case in the Ribeira de Silveirinhos, Portugal
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Sites and Fieldwork
2.3. Laboratory Procedures
2.4. Data Analysis
2.4.1. Physical and Chemical Elements
2.4.2. Biological Quality Elements
EQR | High ≥0.87 | Good [0.68–0.87] | Moderate [0.44–0.68] | Poor [0.22–0.44] | Bad [0–0.22] |
3. Results and Discussion
3.1. Physical and Chemical Elements
3.2. Biological Parameters—Benthic Macroinvertebrates
3.3. Ecological Status
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kalogianni, E.; Vourka, A.; Karaouzas, I.; Vardakas, L.; Laschou, S.; Skoulikidis, N.T. Combined effects of water stress and pollution on macroinvertebrate and fish assemblages in a Mediterranean intermittent river. Sci. Total Environ. 2017, 603–604, 639–650. [Google Scholar] [CrossRef] [PubMed]
- White, J.C.; House, A.; Punchard, N.; Hannah, D.M.; Wilding, N.A.; Wood, P.J. Macroinvertebrate community responses to hydrological controls and groundwater abstraction effects across intermittent and perennial headwater streams. Sci. Total Environ. 2018, 610–611, 1514–1526. [Google Scholar] [CrossRef] [PubMed]
- Miliša, M.; Stubbington, R.; Datry, T.; Cid, N.; Bonada, N.; Šumanović, M.; Milošević, D. Taxon-specific sensitivities to flow intermittence reveal macroinvertebrates as potential bioindicators of intermittent rivers and streams. Sci. Total Environ. 2022, 804, 150022. [Google Scholar] [CrossRef] [PubMed]
- Bonada, N.; Rieradevall, M.; Prat, N. Macroinvertebrate community structure and biological traits related to flow permanence in a Mediterranean river network. Hydrobiologia 2007, 589, 91–106. [Google Scholar] [CrossRef]
- Steward, A.L.; von Schiller, D.; Tockner, K.; Marshall, J.C.; Bunn, S.E. When the river runs dry: Human and ecological values of dry riverbeds. Front. Ecol. Environ. 2012, 10, 202–209. [Google Scholar] [CrossRef]
- Arthington, A.H.; Bernardo, J.M.; Ilhéu, M. Temporary rivers: Linking ecohydrology, ecological quality and reconciliation ecology. River Res. Appl. 2014, 30, 1209–1215. [Google Scholar] [CrossRef]
- Datry, T.; Boulton, A.J.; Bonada, N.; Fritz, K.; Leigh, C.; Sauquet, E.; Tockner, K.; Hugueny, B.; Dahm, C.N. Flow intermittence and ecosystem services in rivers of the Anthropocene. J. Appl. Ecol. 2018, 55, 353–364. [Google Scholar] [CrossRef]
- Skoulikidis, N.T.; Sabater, S.; Datry, T.; Morais, M.M.; Buffagni, A.; Dörflinger, G.; Zogaris, S.; del Mar Sánchez-Montoya, M.; Bonada, N.; Kalogianni, E.; et al. Non-perennial Mediterranean rivers in Europe: Status, pressures, and challenges for research and management. Sci. Total Environ. 2017, 577, 1–18. [Google Scholar] [CrossRef]
- Sabater, S.; Barceló, D.; De Castro-Català, N.; Ginebreda, A.; Kuzmanovic, M.; Petrovic, M.; Picó, Y.; Ponsatí, L.; Tornés, E.; Muñoz, I. Shared effects of organic microcontaminants and environmental stressors on biofilms and invertebrates in impaired rivers. Environ. Pollut. 2016, 210, 303–314. [Google Scholar] [CrossRef]
- Datry, T.; Larned, S.T.; Tockner, K. Intermittent Rivers: A Challenge for Freshwater Ecology. BioScience 2014, 64, 229–235. [Google Scholar] [CrossRef]
- Comissão Europeia. Directiva 2000/60/CE do Parlamento Europeu e do Conselho de 23 de Outubro de 2000, que estabelece um Quadro de Acção Comunitária no Domínio da Politica da Água. J. Das Comunidades Eur. 2000, 22, 1–72. [Google Scholar]
- Kallis, G.; Butler, D. The EU water framework directive: Measures and implications. Water Policy 2001, 3, 125–142. [Google Scholar] [CrossRef]
- Instituto da Água, I.P. Critérios para a classificação do estado das massas de água superficiais–Rios e Albufeiras. Ministério Do Ambiente, Do Ordenamento Do Território e Do Desenvolvimento Regional. Inst. Da Água IP 2009, 75, 13–20. [Google Scholar]
- Li, L.; Zheng, B.; Liu, L. Biomonitoring and Bioindicators Used for River Ecosystems: Definitions, Approaches and Trends. Procedia Environ. Sci. 2010, 2, 1510–1524. [Google Scholar] [CrossRef]
- Couceiro, S.R.M.; Hamada, N.; Luz, S.L.B.; Forsberg, B.R.; Pimentel, T.P. Deforestation and sewage effects on aquatic macroinvertebrates in urban streams in Manaus, Amazonas, Brazil. Hydrobiologia 2007, 575, 271–284. [Google Scholar] [CrossRef]
- Mondy, C.P.; Villeneuve, B.; Archaimbault, V.; Usseglio-Polatera, P. A new macroinvertebrate-based multimetric index (I2M2) to evaluate ecological quality of French wadeable streams fulfilling the WFD demands: A taxonomical and trait approach. Ecol. Indic. 2012, 18, 452–467. [Google Scholar] [CrossRef]
- Gresens, S.; Smith, R.; Sutton-Grier, A.; Kenney, M. Benthic macroinvertebrates as indicators of water quality: The intersection of science and policy. Terr. Arthropod Rev. 2009, 2, 99–128. [Google Scholar] [CrossRef]
- Sánchez-Montoya, M.M.; Vidal-Abarca, M.R.; Suárez, M.L. Comparing the sensitivity of diverse macroinvertebrate metrics to a multiple stressor gradient in Mediterranean streams and its influence on the assessment of ecological status. Ecol. Indic. 2010, 10, 896–904. [Google Scholar] [CrossRef]
- Viterbo, R.; Bessa, R.M.; Nunes, M.J. Parque das Serras do Porto—Levantamento do Património Natural e Cultural. Anexo IV: Fichas de Caracterização Parque Serras do Porto. Porto, Portugal. 2015. Available online: https://serrasdoporto.pt/ (accessed on 15 November 2022).
- Associação de Municípios do Parque das Serras do Porto. Parque das Serras do Porto; Associação de Municípios do Parque das Serras do Porto: Porto, Portugal, 2017. [Google Scholar]
- Andresen, T.; Andrade, G.; Viterbo, R.; Lima, A.; Moutinho, J.; Matias, R.; Leal, S.; Gandra, V.; Silva, A.; Bessa, R.; et al. Plano de Gestão do Parque das Serras do Porto—Estudos Prévios; Associação de Municípios do Parque das Serras do Porto: Porto, Portugal, 2018; Available online: http://serrasdoporto.pt/wp-content/uploads/2018/02/CAP1.pdf (accessed on 15 November 2022).
- Santos, P.C. Estudo da Suscetibilidade Magnética em Solos Contaminados pela Extração Mineira de São Pedro da Cova; Faculdade de Ciências da Universidade do Porto: Porto, Portugal, 2013. [Google Scholar]
- INAG, I.P. Protocolo de Amostragem e Análise para os Macroinvertebrados Bentónicos. Ministério Do Ambiente, Do Ordenamento Do Território e Do Desenvolvimento Regional; Instituto Da Água: Lisboa, Portugal, 2008. [Google Scholar]
- Alba-Tercedor, J.; Sánchez-Ortega, A. A Simple and Quick Method to Evaluate Biological Quality of Renning Freshwater Base on Hellawell. Limnética 1988, 4, 51–56. [Google Scholar] [CrossRef]
- Tachet, H.; Richoux, P.; Bournaud, M.; Usseglio-Polatera, P. Invertébrés d’eau Douce: Systématique, Biologie, Écologie; CNRS: Paris, France, 2000; ISBN 2-271-05745-0.
- APA—Agência Portuguesa do Ambiente. Plano de Ordenamento Da Albufeira Da Aguieira; Agência Portuguesa do Ambiente: Lisboa, Portugal, 2005. [Google Scholar]
- Antunes, S.C.; Pereira, R.; Sousa, J.P.; Santos, M.C.; Gonçalves, F. Spatial and temporal distribution of litter arthropods in different vegetation covers of Porto Santo Island (Madeira Archipelago, Portugal). Eur. J. Soil Biol. 2008, 44, 45–56. [Google Scholar] [CrossRef]
- APA—Agência Portuguesa do Ambiente. Plano de Gestão da Região Hidrográfica do Douro Relatório de Base Parte 2—Caracterização e Diagnóstico ANEXOS; APA: Lisboa, Portugal, 2016. [Google Scholar]
- Pinheiro, C. Assessment of the Ecological Quality of Sousa River. Master’s Thesis, Faculdade de Ciências da Universidade do Porto, Porto, Portugal, 2017; 181p. Available online: https://sigarra.up.pt/fcup/pt/pub_geral.show_file?pi_doc_id=144727 (accessed on 23 September 2022).
- Alfaia, A.L.P. Comportamento das Águas Sulfúreas Alcalinas das Termas da Fadagosa de Nisa. Ph.D. Thesis, Universidade da Beira Interior, Covilhã, Portugal, 2009. [Google Scholar]
- Alberto, S.; Pamplona, J.V.; Alves, C.S.; Silva, M.O. Ocorrência Discreta de Águas Férreas em Fraião-Braga, NW de Portugal: Modelo Hidrogeológico Conceptual. n.d. 1. Available online: https://www.aprh.pt/congressoagua98/files/com/055.pdf (accessed on 28 September 2022).
- Pires, A.M.; Cowx, I.G.; Coelho, M.M. Benthic macroinvertebrate communities of intermittent streams in the middle reaches of the Guadiana Basin (Portugal). Hydrobiologia 2000, 435, 167–175. [Google Scholar] [CrossRef]
- Boulton, A.J.; Lake, P.S. The ecology of two intermittent streams in Victoria, Australia. I. Multivariate analyses of physicochemical features. Freshw. Biol. 1990, 24, 123–141. [Google Scholar] [CrossRef]
- Chiu, M.C.; Leigh, C.; Mazor, R.; Cid, N.; Resh, V. Chapter 5.1—Anthropogenic Threats to Intermittent Rivers and Ephemeral Streams. In Intermittent Rivers and Ephemeral Streams; Datry, T., Bonada, B., Boulton, A., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 433–454. ISBN 9780128038352. [Google Scholar] [CrossRef]
- Stubbington, R.; Bogan, M.T.; Bonada, N.; Boulton, A.J.; Datry, T.; Leigh, C.; Vander Vorste, R. Chapter 4.3. The Biota of Intermittent Rivers and Ephemeral Streams: Aquatic Invertebrates. In Intermittent Rivers and Ephemeral Streams: Ecology and Management; Academic Press: Cambridge, MA, USA, 2017; pp. 217–243. ISBN 978-0-12-803835-2. [Google Scholar] [CrossRef]
- Lieb, B.; Dimitrova, K.; Kang, H.S.; Braun, S.; Gebauer, W.; Martin, A.; Hanelt, B.; Saenz, S.A.; Adema, C.M.; Markl, J. Red blood with blue-blood ancestry: Intriguing structure of a snail hemoglobin. Proc. Natl. Acad. Sci. USA 2006, 103, 12011–12016. [Google Scholar] [CrossRef] [PubMed]
- Datry, T.; Larned, S.T.; Fritz, K.M.; Bogan, M.T.; Wood, P.J.; Meyer, E.I.; Santos, A.N. Broad-scale patterns of invertebrate richness and community composition in temporary rivers: Effects of flow intermittence. Ecography 2014, 37, 94–104. [Google Scholar] [CrossRef]
- Sánchez-Montoya, M.M.; Vidal-Abarca, M.R.; Puntí, T.; Poquet, J.M.; Prat, N.; Rieradevall, M.; Alba-Tercedor, J.; Zamora-Muñoz, C.; Toro, M.; Robles, S.; et al. Defining criteria to select reference sites in Mediterranean streams. Hydrobiologia 2009, 619, 39–54. [Google Scholar] [CrossRef]
- Pinto, I.; Rodrigues, S.; Antunes, S.C. Assessment of the Benthic Macroinvertebrate Communities in the Evaluation of the Water Quality of Portuguese Reservoirs: An Experimental Approach. Water 2021, 13, 3391. [Google Scholar] [CrossRef]
Sampling Sites | Season | T (°C) | Cond. (µS/cm) | TDS (mg/L) | pH | O2 (mg/L) | O2 (%) | NO3 (mg/L) | NH4 (mg/L) | P (mg/L) | BOD5 (mg/L) |
---|---|---|---|---|---|---|---|---|---|---|---|
EQS [13] | ≥6 to ≤9 | ≥5 | ≥60 and ≤120 | ≤25 | ≤1 | ≤0.10 | ≤6 | ||||
RS_1 | Sp19 | 15.4 | 52.6 | 53 | 5.56 | 8.44 | 85.7 | Φ | 0.02 | Φ | 0.27 |
Au19 | No water | ||||||||||
Sp20 | 16.1 | 55.9 | 56 | 5.17 | 6.35 | 74.7 | Φ | Φ | Φ | 0.47 | |
RS_2 | Sp19 | 14.7 | 53.3 | 53 | 6.05 | 9.72 | 96.8 | Φ | 0.02 | Φ | 0.20 |
Au19 | No water | ||||||||||
Sp20 | 17.9 | 55.6 | 56 | 5.91 | 7.69 | 82.2 | Φ | Φ | Φ | 0.57 | |
RS_3 | Sp19 | 15.1 | 75.7 | 76 | 6.41 | 9.41 | 93.4 | Φ | 0.02 | 0.15 | 0.47 |
Au19 | No water | ||||||||||
Sp20 | 17.6 | 107.7 | 108 | 6.60 | 7.05 | 74.6 | Φ | Φ | Φ | 0.98 | |
RS_4 | Sp19 | 16.5 | 391.0 | 392 | 6.77 | 9.15 | 93.5 | Φ | Φ | 0.16 | 1.46 |
Au19 | 17.7 | 1091.0 | 1091 | 6.77 | 6.81 | 70.8 | Φ | 0.42 | 0.23 | 3.34 | |
Sp20 | 18.8 | 910.0 | 854 | 6.93 | 8.11 | 87.5 | Φ | 0.03 | 0.25 | 3.54 | |
RS_5 | Sp19 | 17.3 | 449.0 | 449 | 7.17 | 9.45 | 97.5 | Φ | 0.05 | 0.16 | 0.49 |
Au19 | 15.6 | 950.0 | 950 | 7.72 | 9.70 | 96.7 | Φ | 0.20 | Φ | 2.06 | |
Sp20 | 20.1 | 774.0 | 774 | 7.35 | 8.41 | 93.0 | 0.50 | Φ | 0.02 | 0.67 |
Order | Trichoptera | Hirudinea | Plecoptera | Dugesiidae | Oligochaeta | Odonata | Heteroptera | Gastropoda | Ephemeroptera | Diptera | Crustacea | Coleoptera | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Family | Hydropsychidae (Hyp) | Leptoceridae (Lec) | Philopotamidae (Phi) | Polycentropodidae (Pol) | Glossiphoniidae (Glo) | Hirudidae (Hir) | Leuctridae (Leu) | Nemouridae (Nem) | Dugesiidae (Dug) | Oligochaeta (Oli) | Aeshnidae (Aes) | Cordulegastridae (Cor) | Gomphidae (Gom) | Libellulidae (Lib) | Aphelocheridae (Aph) | Gerridae (Ger) | Hydrometridae (Hym) | Nepidae (Nep) | Notonectidae (Not) | Veliidae (Vel) | Assimineidae (Ass) | Lymnaeidae (Lym) | Planorbidae (Pla) | Baetidae (Bae) | Leptophlebiidae (Lep) | Potamanthidae (Pot) | Siphlonuridae (Sip) | Athericidae (Ath) | Ceratopogonidae (Cer) | Chironomidae (Chi) | Culicidae (Cul) | Empididae (Emp) | Limoniidae (Lim) | Simuliidae (Sim) | Tipulidae (Tip) | Crangonycitidae (Cra) | Curculionidae (Cur) | Dryopidae (Dry) | Dytiscidae (Dyt) | Elmidae (Elm) | Gyrinidae (Gyr) | Hydrophilidae (Hyd) | |
Site | Season | ||||||||||||||||||||||||||||||||||||||||||
RS_1 | Sp19 | 1 | 4 | 8 | 4 | 373 | 3 | 19 | |||||||||||||||||||||||||||||||||||
Au19 | |||||||||||||||||||||||||||||||||||||||||||
Sp20 | 5 | 1 | 2 | 5 | 1 | 148 | 29 | ||||||||||||||||||||||||||||||||||||
RS_2 | Sp19 | 1 | 1 | 1 | 3 | 4 | 97 | 4 | 2 | 5 | 3 | 729 | 3 | 1 | 16 | 1 | 3 | 1 | |||||||||||||||||||||||||
Au19 | |||||||||||||||||||||||||||||||||||||||||||
Sp20 | 59 | 1 | 1 | 1 | 12 | 355 | 1 | ||||||||||||||||||||||||||||||||||||
RS_3 | Sp19 | 1 | 12 | 8 | 1 | 9 | 4 | 126 | 3 | 19 | 1 | 9 | |||||||||||||||||||||||||||||||
Au19 | |||||||||||||||||||||||||||||||||||||||||||
Sp20 | 10 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 33 | 1 | 4 | 2 | |||||||||||||||||||||||||||||||
RS_4 | Sp19 | 1 | 7 | 9 | 1 | 1 | 1 | 1 | 5 | 5 | 1 | 1 | 4 | 57 | 1 | 2 | 2 | ||||||||||||||||||||||||||
Au19 | 1 | 1 | 1 | 5 | 3 | 2 | 1 | ||||||||||||||||||||||||||||||||||||
Sp20 | 1 | 1 | 4 | 1 | 1 | 3 | 103 | 1 | |||||||||||||||||||||||||||||||||||
Sp19 | 8 | 1 | 1 | 7 | 1 | 22 | 1 | 12 | 41 | 2 | 7 | 1 | 1 | ||||||||||||||||||||||||||||||
RS_5 | Au19 | 4 | 1 | 2 | 2 | 1 | 2 | 7 | 7 | 9 | 3 | 163 | 7 | 6 | 1 | 1 | 1 | ||||||||||||||||||||||||||
Sp20 | 3 | 1 | 1 | 2 | 28 | 1 | 2 | 1 |
Sampling Sites | Season | Abundance | Diversity | Richness | Evenness | EPT | log (Sel. ETD + 1) | IASTP-2 | IPtIN | EQR |
---|---|---|---|---|---|---|---|---|---|---|
EQS [18] | 30 | 0.71 | 16 | 1.95 | 4.52 | 1.02 | ||||
RS_1 | Sp19 | 412 | 0.45 | 7 | 0.23 | 2 | 0.30 | 2 | 0.27 | 0.27 |
Au19 | No water | |||||||||
Sp20 | 191 | 0.78 | 7 | 0.40 | 1 | 0.00 | 1.57 | 0.23 | 0.22 | |
RS_2 | Sp19 | 875 | 0.69 | 17 | 0.24 | 5 | 0.60 | 3.25 | 0.50 | 0.49 |
Au19 | No water | |||||||||
Sp20 | 430 | 0.59 | 7 | 0.30 | 2 | 0.00 | 3.71 | 0.37 | 0.36 | |
RS_3 | Sp19 | 193 | 1.32 | 11 | 0.55 | 2 | 0.00 | 2.55 | 0.36 | 0.35 |
Au19 | No water | |||||||||
Sp20 | 59 | 1.56 | 12 | 0.63 | 3 | 0.30 | 3.33 | 0.47 | 0.46 | |
RS_4 | Sp19 | 99 | 1.68 | 16 | 0.61 | 1 | 0.30 | 3 | 0.46 | 0.45 |
Au19 | 14 | 1.73 | 7 | 0.89 | 0 | 0.30 | 3.29 | 0.43 | 0.42 | |
Sp20 | 115 | 0.52 | 8 | 0.25 | 1 | 0.30 | 3.50 | 0.37 | 0.37 | |
RS_5 | Sp19 | 105 | 1.84 | 13 | 0.72 | 0 | 0.00 | 1.54 | 0.31 | 0.31 |
Au19 | 217 | 1.16 | 16 | 0.42 | 2 | 0.70 | 2.44 | 0.44 | 0.44 | |
Sp20 | 39 | 1.12 | 8 | 0.54 | 1 | 0.30 | 2.25 | 0.33 | 0.33 |
Sampling Sites | Season | Physical and Chemical Elements | Biological Elements | Ecological Status |
---|---|---|---|---|
RS_1 | Sp19 | Moderate | Poor | Poor |
Au19 | No water | |||
Sp20 | Moderate | Poor | Poor | |
RS_2 | Sp19 | Good | Moderate | Moderate |
Au19 | No water | |||
Sp20 | Moderate | Poor | Poor | |
RS_3 | Sp19 | Moderate | Poor | Poor |
Au19 | No water | |||
Sp20 | Good | Moderate | Moderate | |
RS_4 | Sp19 | Moderate | Moderate | Moderate |
Au19 | Moderate | Poor | Poor | |
Sp20 | Moderate | Poor | Poor | |
RS_5 | Sp19 | Moderate | Poor | Poor |
Au19 | Good | Poor | Poor | |
Sp20 | Good | Poor | Poor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, S.; Xavier, B.; Nogueira, S.; Antunes, S.C. Intermittent Rivers as a Challenge for Freshwater Ecosystems Quality Evaluation: A Study Case in the Ribeira de Silveirinhos, Portugal. Water 2023, 15, 17. https://doi.org/10.3390/w15010017
Rodrigues S, Xavier B, Nogueira S, Antunes SC. Intermittent Rivers as a Challenge for Freshwater Ecosystems Quality Evaluation: A Study Case in the Ribeira de Silveirinhos, Portugal. Water. 2023; 15(1):17. https://doi.org/10.3390/w15010017
Chicago/Turabian StyleRodrigues, Sara, Bárbara Xavier, Sandra Nogueira, and Sara C. Antunes. 2023. "Intermittent Rivers as a Challenge for Freshwater Ecosystems Quality Evaluation: A Study Case in the Ribeira de Silveirinhos, Portugal" Water 15, no. 1: 17. https://doi.org/10.3390/w15010017
APA StyleRodrigues, S., Xavier, B., Nogueira, S., & Antunes, S. C. (2023). Intermittent Rivers as a Challenge for Freshwater Ecosystems Quality Evaluation: A Study Case in the Ribeira de Silveirinhos, Portugal. Water, 15(1), 17. https://doi.org/10.3390/w15010017