Visualization of Multi Scenario Water Resources Regulation Based on a Dualistic Water Cycle Framework
Abstract
:1. Introduction
2. Theory and Methodology
2.1. Dualistic Water Cycle Framework
2.1.1. Natural Water Cycle
2.1.2. Social Water Cycle
2.1.3. Dualistic Water Cycle
2.2. Visual Description
2.2.1. Description Tool
2.2.2. Description Method
3. Case Study
3.1. Study Area and Data
3.2. Visual Environment Construction
3.2.1. Visual Description of the Natural Water Cycle
3.2.2. Visual Description of the Social Water Cycle
3.2.3. Validation of the System
3.3. Visual Simulation of Multi-Scenario Control
3.3.1. Time Scale
3.3.2. Increased Water Demand
3.3.3. Increased Water Users
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.H.; Wang, H. Principle and Regulation of Social Water Cycle; China Science Press: Beijing, China, 2014. [Google Scholar]
- Peña-Guzmán, C.A.; Melgarejo, J.; Prats, D.; Torres, A.; Martínez, S. Urban water cycle simulation/management models: A review. Water 2017, 9, 285. [Google Scholar] [CrossRef] [Green Version]
- Qin, D.Y.; Lu, C.Y.; Liu, J.H.; Wang, H.; Wang, J.H.; Li, H.H.; Chu, J.Y.; Chen, G.F. Theoretical framework of dualistic nature–social water cycle. Chin. Sci. Bull. 2014, 59, 810–820. [Google Scholar] [CrossRef]
- Jia, Y.W.; Wang, H.; Zhou, Z.H.; You, J.J.; Gan, Z.G.; Qiu, Y.Q.; Lu, C.Y.; Luo, X.Y. Development and application of dualistic water cycle model in haihe river basin: I. model development and validation. Adv. Water Sci. 2010, 21, 1–8. [Google Scholar]
- Wang, J.; Zhang, X.H.; Xu, C.Y.; Wang, H.; Lei, X.H.; Wang, X.; Li, S.Y. Development of Load Duration Curve System in Data Scarce Watersheds Based on a Distributed Hydrological Model. Hydrol. Res. 2019, 50, 16. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Yan, D.; Qin, T.; Weng, B.; Wang, H.; Bi, W.; Li, X.A.; Dorjsuren, B. new topological and hierarchical river coding method based on the hydrology structure. J. Hydrol. 2020, 580, 124243. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, F.; Huang, K.; Zhang, H.; Yu, J.; Han, A.Y. System Dynamics-Multiple Objective Optimization Model for Water Resource Management: A Case Study in Jiaxing City, China. Water 2021, 13, 671. [Google Scholar] [CrossRef]
- Wen, T.F.; Wang, J.H.; Liu, J.J.; Zhao, N.F.; Zhou, Z.H. Analysis of artificial impact of runoff change in Fuhe River Basin Based on binary water cycle simulation. Hydrology 2020, 40, 7–14. [Google Scholar]
- Pei, Y.S.; Xu, J.J.; Xiao, W.H.; Yang, Z.M.; Hou, B.D. Development and application of combined regulation model of water quantity, water quality and water efficiency based on binary water cycle. J. Water Conserv. 2020, 51, 1473–1485. [Google Scholar]
- Wang, H.; Hu, P. Key issues of ecological protection in the Yellow River Basin from the perspective of water cycle. J. Water Conserv. 2020, 51, 1009–1014. [Google Scholar]
- Zhou, J.J.; Wang, H.; Liu, J.H.; Wang, Z.J.; Zhang, Y.X. “Nature-Social” dual attribute and seasonal characteristics of urban water dissipation: A case study of Beijing. J. Water Conserv. 2020, 51, 1325–1334. [Google Scholar]
- Zhang, S.H.; Fan, W.W.; Yi, Y.J.; Zhao, Y.; Liu, J.H. Evaluation method for regional water cycle health based on nature-society water cycle theory. J. Hydrol. 2017, 551, 352–364. [Google Scholar] [CrossRef]
- Wei, N.; You, J.J.; Jia, Y.W.; Gan, Y.D.; Niu, C.W.; Zhang, S.P. Dualistic water cycle based-study on control of total water use and water use efficiency—a case study on Weihe River Basin. Hydraul. Hydroelectr. Technol. 2015, 46, 2–26. [Google Scholar]
- Wang, X.Q.; Liu, C.M.; Zhang, Y. Water quantity-quality combined evaluation method for rivers’ water requirements of the instream environment in dualistic water cycle: A case study of Liaohe River Basin. J. Geogr. Sci. 2006, 11, 1132–1140. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.M.; Wang, J.H.; Zhou, Z.H.; Chen, Y.M. Theory of annual runoff evolution under natural-artificial dual mode and case study of Wuding River basin on the middle Yellow River. Sci. China Ser. E Technol. Sci. 2004, 47, 51–59. [Google Scholar] [CrossRef]
- Peng, J.; Lu, S.; Cao, Y. A dualistic water cycle system dynamic model for sustainable water resource management through progressive operational scenario analysis. Environ. Sci. Pollut. Res. 2019, 26, 16085–16096. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Zhang, X.; Bao, H. Review of social water cycle research in a changing environment. Renew. Sustain. Energy Rev. 2016, 63, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Hou, L.; Wei, C. Study on Water Quantity and Quality-Integrated Evaluation Based on the Natural-Social Dualistic Water Cycle. Pol. J. Environ. Stud. 2015, 24, 829–840. [Google Scholar] [CrossRef]
- Liu, H.; Jia, Y.; Niu, C. Evaluation of regional water security in China based on dualistic water cycle theory. Water Policy 2018, 20, 510–529. [Google Scholar] [CrossRef]
- Xifeng, W.; Zuhao, Z.; Guiyu, Y.; Yangwen, J. Development of Social-natural Dualistic Water Cycle Model and Dynamic Assessment of Water Resources in Hun River Basin in China. HKIE Trans. Hong Kong Inst. Eng. 2012, 19, 31–37. [Google Scholar] [CrossRef]
- Bederson, B.; Shneiderman, B. The Craft of Information Visualization: Readings and Reflections; Morgan Kaufmann Publishers Inc.: Burlington, SF, USA, 2003. [Google Scholar]
- Howard, R.A. Knowledge Maps. Manag. Sci. 1989, 35, 903–922. [Google Scholar] [CrossRef]
- Moniz, P.F.; Almeida, J.S.; Pino, A.T.; Suárez Rivero, J.P. A GIS-based solution for urban water management. Water Int. 2020, 45, 660–677. [Google Scholar] [CrossRef]
- Cai, Y.; Xie, W.J. Construction and application of one map of national water conservancy. Water Conserv. Informatiz. 2020, 1, 1–5. [Google Scholar]
- Cai, Y.; Xie, W.J.; Cheng, Y.L.; Chen, D.Q.; Chen, Z.D.; Fu, J. Review on Key Technologies of one map of national water conservancy. J. Water Conserv. 2020, 51, 685–694. [Google Scholar]
- Zhang, F.; Xiao, W.B.; Peng, J.L. Design of “one map” shared service platform for watershed institutions based on cloud environment. People’s Pearl River 2017, 38, 105–108. [Google Scholar]
- Zhou, H.; Song, C. Exploration on the construction of a picture of smart water conservancy and shared service platform. Water Conserv. Informatiz. 2020, 6, 7–11. [Google Scholar]
- Zhu, G.J.; Yang, X.Q.; Wang, L.F. Construction and application of Hubei province water conservancy "one map" service sharing platform. Water Conserv. Informatiz. 2014, 1, 54–58. [Google Scholar]
- Xie, J.C.; Chai, L.; Gao, Y.; Liu, J. The platform supports the business application mode of theme service. Water Conserv. Informatiz. 2015, 6, 18–24. [Google Scholar]
- Wang, H.; Jia, Y.W. Theory and study methodology of dualistic water cycle in river basins under changing conditions. J. Water Conserv. 2016, 47, 1219–1226. [Google Scholar]
- Cheng, J.Q.; Wang, H.; Yang, X.L. Water Resource; China Science Press: Beijing, China, 2002; p. 25. [Google Scholar]
- Wang, H.; Long, A.H.; Yu, F.L.; Wang, X.D. Study on theoretical method of social water cycle I: Definition and dynamical mechanism. J. Water Conserv. 2011, 42, 379–387. [Google Scholar]
- Kralj, A.K. Industrial wastewater collection using a separation technique. J. Ind. Eng. Chem. 2012, 18, 1320–1325. [Google Scholar] [CrossRef]
- Mosiichuk, Y.B.; Khoruzy, P.D. Water Purification in Closed Water Supply Systems at Agro-Industrial Complex Enterprises. J. Water Chem. Technol. 2019, 41, 261–268. [Google Scholar] [CrossRef]
- Wang, H.; Chen, M.J.; He, X.W.; Qin, D.Y.; Wang, D.X.; Tang, K.W.; Yin, M.; Wan, W.F.; Wang, Y.; Gan, H.; et al. Study on the rational allocation and carrying capacity of water resources in northwest China. China Water Resour. 2004, 22, 43–45. [Google Scholar]
- Liu, J.H.; Qin, D.Y.; Wang, H.; Wang, M.N.; Yang, Z.Y. The dualistic water cycle pattern and its evolution regular in Haihe River basin. Chin. Sci. Bull. 2010, 55, 512–521. [Google Scholar]
- Xie, J.C.; Luo, J.G. Integrated service platform and application mode of water conservancy informatization. Water Conserv. Informatiz. 2010, 5, 18–23. [Google Scholar]
- Li, J.X.; Xie, J.C.; Zhang, Y.J. Data integration and service model for water conservancy business application. Water Conserv. Informatiz. 2011, 4, 1–3. [Google Scholar]
- Shrestha, R.R.; Nestmann, F. Physically Based and Data-Driven Models and Propagation of Input Uncertainties in River Flood Prediction. J. Hydrol. Eng. 2009, 14, 1309–1319. [Google Scholar] [CrossRef]
- Valiantzas, J.D.; Pollalis, E.D.; Soulis, K.X.; Londra, P.A. Modified Form of the Extended Kostiakov Equation Including Various Initial and Boundary Conditions. J. Irrig. Drain. Eng. 2009, 135, 450–458. [Google Scholar] [CrossRef]
- Vimal, S.; Singh, V.P. Re-discovering Robert E. Horton’s Lake Evaporation Formulae: New Directions for Evaporation Physics. Hydrol. Earth Syst. Sci. 2021, 26, 445–467. [Google Scholar] [CrossRef]
- Shao, Q.; Baumgartl, T. Field Evaluation of Three Modified Infiltration Models for the Simulation of Rainfall Sequences. Soil Sci. 2016, 181, 1. [Google Scholar] [CrossRef]
- Delfs, J.O.; Park, C.H.; Kolditz, O. A sensitivity analysis of Hortonian flow. Adv. Water Resour. 2009, 32, 1386–1395. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, Z.; Yan, Z.; Gong, J.; Jia, Y.; Xu, C.Y.; Wang, H. A new approach to separating the impacts of climate change and multiple human activities on water cycle processes based on a distributed hydrological model. J. Hydrol. 2019, 578, 124096. [Google Scholar] [CrossRef]
- Zhou, Z.; Jia, Y.; Qiu, Y. Simulation of Dualistic Hydrological Processes Affected by Intensive Human Activities Based on Distributed Hydrological Model. J. Water Resour. Plan. Manag. 2018, 144, 04018077. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Jia, Y.; Yang, G.; Zhou, Z.; Qiu, Y.; Niu, C.; Peng, H. Integrated simulation of the dualistic water cycle and its associated processes in the Haihe River Basin. Chin. Sci. Bull. 2013, 58, 3297–3311. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Ning, S.; Cao, X.; Jin, J.; Song, F.; Yuan, X.; Zhang, L.; Xu, X.; Udmale, P. Optimal Water Resources Regulation for the Pond Irrigation System Based on Simulation—A Case Study in Jiang-Huai Hilly Regions, China. Int. J. Environ. Res. Public Health 2019, 16, 2717. [Google Scholar] [CrossRef] [Green Version]
- Hughes, J.D.; Kim, S.; Dutta, D.; Vaze, J. Optimization of a multiple gauge, regulated river-system model. A system approach. Hydrol. Processes 2016, 30, 1955–1967. [Google Scholar] [CrossRef]
- Dong, Z.; Ni, X.; Chen, M.; Yao, H.; Jia, W.; Zhong, J.; Ren, L. Time-varying Decision-making Method for Multi-objective Regulation of Water Resources. Water Resour. Manag. 2021, 35, 3411–3430. [Google Scholar] [CrossRef]
- Kang, M.-S.; Srivastava, P.; Song, J.-H.; Park, J.; Her, Y.; Kim, S.M.; Song, I. Development of a Component-Based Modeling Framework for Agricultural Water-Resource Management. Water 2016, 8, 351. [Google Scholar] [CrossRef] [Green Version]
- Olaru, V.; Voiculescu, M.; Georgescu, L.P.; Caldararu, A. Integrated management and control system for water resources. Environ. Eng. Manag. J. 2010, 9, 423–428. [Google Scholar]
- Cannata, M.; Neumann, J.; Rossetto, R. Open source GIS platform for water resource modelling: FREEWAT approach in the Lugano Lake. Spat. Inf. Res. 2017, 26, 241–251. [Google Scholar] [CrossRef] [Green Version]
Element Type | Representative Meaning | Content Included |
---|---|---|
spot | Water source node | Surface reservoir water source, groundwater well water source, water diversion project, reclaimed water source water diversion project, etc. |
User node | Domestic water users, agricultural water users, industrial water users, ecological water users, etc. | |
Line | Water supply system | Channel, pipe network, tunnel, etc. |
Drainage system | Drainage pipe network, channel, tunnel, etc. |
Serial Number | Component Name | The Component Class Name |
---|---|---|
1 | Rain gauge basic information component | Action_RainfallStationInfo_Response |
2 | Precipitation statistical component of rainfall station | Action_RainfallStationRain_Response |
3 | Regional precipitation volume component | Action_RainfallArea_Response |
4 | Multi-year mean rainfall component | Action_RainfallYearsAverage_Response |
5 | Rainfall comparison module | Action_RainfallCompare_Response |
n | …… | …… |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, J.; Xie, J.; Wang, X.; Wang, S.; Yu, M. Visualization of Multi Scenario Water Resources Regulation Based on a Dualistic Water Cycle Framework. Water 2022, 14, 1128. https://doi.org/10.3390/w14071128
Liang J, Xie J, Wang X, Wang S, Yu M. Visualization of Multi Scenario Water Resources Regulation Based on a Dualistic Water Cycle Framework. Water. 2022; 14(7):1128. https://doi.org/10.3390/w14071128
Chicago/Turabian StyleLiang, Jichao, Jiancang Xie, Xue Wang, Shaojiu Wang, and Mengyu Yu. 2022. "Visualization of Multi Scenario Water Resources Regulation Based on a Dualistic Water Cycle Framework" Water 14, no. 7: 1128. https://doi.org/10.3390/w14071128
APA StyleLiang, J., Xie, J., Wang, X., Wang, S., & Yu, M. (2022). Visualization of Multi Scenario Water Resources Regulation Based on a Dualistic Water Cycle Framework. Water, 14(7), 1128. https://doi.org/10.3390/w14071128