Identification of Water Contamination Sources Using Hydrochemical and Isotopic Studies—The Kozłowa Góra Reservoir Catchment Area (Southern Poland)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Analyses
3. Results
3.1. Water Chemistry
3.1.1. The Brynica River and Streams
3.1.2. The Kozłowa Góra Reservoir
3.1.3. Groundwater
3.2. Isotopic Composition of Sulphate
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bradley, P.M.; Barber, L.B.; Clark, J.M.; Duris, J.W.; Foreman, W.T.; Furlong, E.T.; Givens, C.E.; Hubbars, L.E.; Hutchinson, K.J.; Journey, C.A.; et al. Pre/post-closure assessment of groundwater pharmaceutical fate in a wastewater-facility-impacted stream reach. Sci. Total. Environ. 2016, 568, 916–925. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.-S.; Xie, Y.-F.; Li, X.-W.; Wang, D.-Y.; Yang, L.-S.; Nie, Z.-Q. Accumulation of steroid hormones in soil and its adjacent aquatic environment from a typical intensive vegetable cultivation of North China. Sci. Total. Environ. 2015, 538, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Wolf, L.; Zwiener, C.; Zemann, M. Tracking artificial sweeteners and pharmaceuticals introduced into urban groundwater by leaking sewer networks. Sci. Total. Environ. 2012, 430, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Phillips, P.J.; Schubert, C.; Argue, D.; Fisher, I.; Furlong, E.T.; Foreman, W.; Gray, J.; Chalmers, A. Concentrations of hormones, pharmaceuticals and other micropollutants in groundwater affected by septic systems in New England and New York. Sci. Total. Environ. 2015, 512–513, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Kapelewska, J.; Kotowska, U.; Wiśniewska, K. Determination of personal care products and hormones in leachate and groundwater from Polish MSM landfills by ultrasound-assisted emulsification microextraction and GC-MS. Environ. Sci. Pollut. Res. 2016, 23, 1642–1652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paíga, P.; Delerue-Matos, C. Determination of pharmaceuticals in groundwater collected in five cemeteries’ areas (Portugal). Environ. Sci. Pollut. Res. 2016, 569–570, 16–22. [Google Scholar] [CrossRef]
- Ślósarczyk, K.; Jakóbczyk-Karpierz, S.; Różkowski, J.; Witkowski, A.J. Occurrence of Pharmaceuticals and Personal Care Products in the Water Environment of Poland: A Review. Water 2021, 13, 2283. [Google Scholar] [CrossRef]
- Yang, X.; Chen, F.; Meng, F.; Xie, Y.; Chen, H.; Young, K.; Luo, W.; Ye, T.; Fu, W. Occurrence and fate of PPCPs and correlations with water quality parameters in urban riverine waters of the Pearl River Delta, South China. Environ. Sci. Pollut. Res. 2013, 20, 5864–5875. [Google Scholar] [CrossRef]
- Cary, L.; Casanova, J.; Gaaloul, N.; Guerrot, C. Combining boron isotopes and carbamazepine to trace sewage in salinazed groundwater: A case study in Cap Bon, Tunesia. Appl. Geochem. 2013, 34, 126–139. [Google Scholar] [CrossRef] [Green Version]
- Otero, N.; Soler, A.; Canals, A. Controls of δ34S and δ18O in dissolved sulphate: Learning from a detailed survey in the Llobregat River (Spain). Appl. Geochem. 2008, 23, 1166–1185. [Google Scholar] [CrossRef]
- Lorite-Herrera, M.; Jiménez-Espinosa, R. Impact of agricultural activity and geologic controls on groundwater quality of the alluvial aquifer of the Guadalquivir River (province of Jaén, Spain): A case study. Environ. Geol. 2008, 54, 1391–1402. [Google Scholar] [CrossRef]
- Puig, R.; Folch, A.; Mencio, A.; Soler, A.; Mas-Pla, J. Multi-isotopic study (15N, 34S, 18O, 13C) to identify processes affecting nitrate and sulfate in response to local and regional groundwater mixing in a large-scale flow system. Appl. Geochem. 2013, 32, 129–141. [Google Scholar] [CrossRef]
- Sacchi, E.; Acutis, M.; Bartoli, M.; Brenna, S.; Delconte, C.A.; Laini, A.; Pennisi, M. Origin and fate of nitrates in ground-water from the central Po plain: Insights from isotopic investigations. Appl. Geochem. 2013, 34, 164–180. [Google Scholar] [CrossRef]
- Shin, W.-J.; Ryu, J.-S.; Lee, K.-S.; Park, Y. Identification of anthropogenic contaminant sources in urbanized streams using multiple isotopes. Environ. Earth Sci. 2015, 73, 8311–8324. [Google Scholar] [CrossRef]
- Torres-Martínez, J.A.; Mora, A.; Knappett, P.S.K.; Ornelas-Soto, N.; Mahlknecht, J. Tracking nitrate and sulfate sources in groundwater of an urbanized valley using a multi-tracer approach combined with a Bayesian isotope mixing model. Water Res. 2020, 182, 115962. [Google Scholar] [CrossRef]
- Bottrell, S.; Telam, J.; Bartlett, R.; Hughes, A. Isotopic composition of sulfate as a tracer of natural and anthropogenic influences on groundwater geochemistry in an urban sandstone aquifer, Birmingham, UK. Appl. Geochem. 2008, 23, 2382–2394. [Google Scholar] [CrossRef]
- Ingri, J.; Torssander, P.; Andersson, P.S.; Morth, C.-M.; Kusakabe, M. Hydrogeochemistry of sulfur isotopes in the Kalix River catchment, northern Sweden. Appl. Geochem. 1997, 12, 483–496. [Google Scholar] [CrossRef]
- Cortecci, G.; Dinelli, E.; Bencini, A.; Adorni-Braccesi, A.; La Ruffa, G. Natural and anthropogenic SO4 sources in the Arno river catchment, northern Tuscany, Italy: A chemical and isotopic reconnaissance. Appl. Geochem. 2001, 17, 79–92. [Google Scholar] [CrossRef]
- Zhang, J.; Jin, M.; Cao, M.; Huang, X.; Zhang, Z.; Zhang, L. Sources and behaviors of dissolved sulfate in the Jinan karst spring catchment in northern China identified by using environmental stable isotopes and a Bayesian isotope-mixing model. Appl. Geochem. 2021, 134, 105109. [Google Scholar] [CrossRef]
- Caschetto, M.; Colombani, N.; Mastrocicco, M.; Petitta, M.; Aravena, R. Nitrogen and sulphur cycling in the saline coastal aquifer of Ferrara, Italy. A multi-isotope approach. Appl. Geochem. 2017, 76, 88–98. [Google Scholar] [CrossRef]
- Jakóbczyk-Karpierz, S.; Sitek, S.; Jakobsen, R.; Kowalczyk, A. Geochemical and isotopic study to determine sources and processes affecting nitrate and sulphate in groundwater influenced by intensive human activity-carbonate aquifer Gliwice (southern Poland). Appl. Geochem. 2017, 76, 168–181. [Google Scholar] [CrossRef]
- Jakóbczyk-Karpierz, S.; Ślósarczyk, K.; Sitek, S. Tracing multiple sources of groundwater pollution in a complex carbonate aquifer (Tarnowskie Góry, southern Poland) using hydrogeochemical tracers, TCE, PCE, SF6 and CFCs. Appl. Geochem. 2020, 118, 104623. [Google Scholar] [CrossRef]
- Szynkiewicz, A.; Witcher, J.C.; Modelska, M.; Borrok, D.M.; Pratt, L.M. Anthropogenic sulfate loads in the Rio Grande, New Mexico (USA). Chem. Geol. 2011, 283, 194–209. [Google Scholar] [CrossRef]
- Cravotta, C.A. Use of Stable Isotopes of Carbon, Nitrogen, and Sulfur to Identify Sources of Nitrogen in Surface Waters in the Lower Susquehanna River Basin, Pennsylvania; U.S. Geological Survey Water-Supply Paper 2497; US Geological Survey: Denver, CO, USA, 1997. [Google Scholar]
- Negrel, P.; Pauwels, H. Interaction between different groundwaters in Brittany catchments (France): Characterizing multiple sources through strontium- and sulphur isotope tracing. Water Air Soil Pollut. 2003, 151, 261–285. [Google Scholar] [CrossRef]
- Moncaster, S.J.; Bottrell, S.H.; Tellam, J.H.; Lloyd, J.W.; Konhauser, K.O. Migration and attenuation of agrochemical pollutants: Insights from isotopic analysis of groundwater sulphate. J. Contam. Hydrol. 2000, 43, 147–163. [Google Scholar] [CrossRef]
- Knoller, K.; Schubert, M. Interaction of dissolved and sedimentary sulfur compounds in contaminated aquifers. Chem. Geol. 2010, 276, 284–293. [Google Scholar] [CrossRef]
- Longinelli, A.; Flora, O. Isotopic composition of gypsum samples of Permian and Triassic age from the north-eastern Italian Alps: Palaeoenvironmental implications. Chem. Geol. 2007, 245, 275–284. [Google Scholar] [CrossRef]
- Interreg Central Europe boDEREC-CE. The Project Website. Available online: https://www.interreg-central.eu/Content.Node/boDEREC-CE.html (accessed on 22 February 2022).
- Corine Land Cover 2018. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018?tab=download (accessed on 30 June 2021).
- Czekaj, J.; Skrzypczak, M.; Siudy, A.; Lach, L.; Sędor, T. Interreg Central Europe PROLINE-CE. Set up of Pilot Specific Management Practices. D.T2.1.4 Descriptive Documentation of Pilot Actions and Related Issues. Report of PROLINE-CE Workpackage T2, Activity T2.1., Pilot Action 2.2: Kozłowa Góra. Available online: https://www.interreg-central.eu/Content.Node/CE110-PROLINE-CE-D.T2.1.4-documentation-pilot-actions.zip (accessed on 5 May 2021).
- Czekaj, J.; Skrzypczak, M.; Siudy, A. Interreg Central Europe PROLINE-CE. Implementation of Best Practices for Water Protection in Pilot Actions. D.T2.2.2 Partner-Specific Pilot Action Documentations. Report of PROLINE-CE Workpackage T2, Activity T2.2., Pilot Action 2.2: Kozłowa Góra. Available online: https://www.interreg-central.eu/Content.Node/CE110-PROLINE-CE-T2-D.T2.2.2-9-pilot-action-reports.zip (accessed on 5 May 2021).
- Measurement and Observation Data of the Institute of Meteorology and Water Management. Available online: https://danepubliczne.imgw.pl/data/dane_pomiarowo_obserwacyjne/ (accessed on 12 November 2021).
- Gajowiec, B. Hydrogeological Map of Poland 1:50 000, Sheet Koziegłowy 878; Polish Geological Institute: Warsaw, Poland, 1997. [Google Scholar]
- Gajowiec, B.; Wagner, J.; Kowalczyk, A.; Rubin, K. Hydrogeological Map of Poland 1:50 000, Sheet Kalety 877; Polish Geological Institute: Warsaw, Poland, 1998. [Google Scholar]
- Kropka, J.; Kowalczyk, A.; Rubin, K. Hydrogeological Map of Poland 1:50 000, Sheet Bytom 910; Polish Geological Institute: Warsaw, Poland, 1998. [Google Scholar]
- Wagner, J.; Chmura, A.; Siemiński, A. Hydrogeological Map of Poland 1:50 000, Sheet Wojanowice 911; Polish Geological Institute: Warsaw, Poland, 1997. [Google Scholar]
- Regulation of the Minister of Health of 7 December 2017 on Water Quality Intended for Human Consumption. 2017. Available online: http://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20170002294/O/D20172294.pdf (accessed on 12 November 2021).
- Ślósarczyk, K.; Witkowski, A.J. Preliminary Evaluation of the Possible Occurrence of Pesticides in Groundwater Contaminated with Nitrates—A Case Study from Southern Poland. Water 2021, 13, 3091. [Google Scholar] [CrossRef]
- Kendall, C.; Aravena, R. Nitrate Isotopes in Groundwater Systems. In Environmental Tracers in Subsurface Hydrology; Cook, P.G., Herczeg, A.L., Eds.; Springer: Boston, MA, USA, 2000; pp. 261–297. ISBN 978–0-7923–7707–8. [Google Scholar]
- Apollaro, C.; Tripodi, V.; Vespasiano, G.; De Rosa, R.; Dotsika, E.; Fuoco, I.; Critelli, S.; Muto, R. Chemical, isotopic and geotectonic relations of the warm and cold waters of the Galatro and Antonimina thermal areas, southern Calabria, Italy. Mar. Pet. Geol. 2019, 109, 469–483. [Google Scholar] [CrossRef]
- Apollaro, C.; Di Curzio, D.; Fuoco, I.; Buccianti, A.; Dinelli, E.; Vespasiano, G.; Castrignanò, A.; Rusi, S.; Barca, D.; Figoli, A.; et al. A multivariate non-parametric approach for estimating probability of exceeding the local natural background level of arsenic in the aquifers of Calabria region (Southern Italy). Sci. Total Environ. 2022, 806, 150345. [Google Scholar] [CrossRef]
- Witczak, S.; Kania, J.; Kmiecik, E. Katalog Wybranych Fizycznych i Chemicznych Wskaźników Zanieczyszczeń Wód Podziemnych i metod Ich Oznaczania; Biblioteka Monitoringu Środowiska: Warsaw, Poland, 2013; ISBN 978–83–61227–13–7. [Google Scholar]
- Dojlido, J. Chemia Wód Powierzchniowych; Wydawnictwo Ekonomia i Śodowisko: Białystok, Poland, 1995; p. 342. ISBN 83–85792–22–8. [Google Scholar]
- Claypool, G.E.; Holser, W.T.; Kaplan, I.R.; Sakai, H.; Zak, I. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem. Geol. 1980, 28, 199–260. [Google Scholar] [CrossRef]
- Cortecci, G.; Reyes, E.; Berti, G.; Casati, P. Sulfur and oxygen isotopes in Italian marine sulfates of Permian and Triassic ages. Chem. Geol. 1981, 34, 65–79. [Google Scholar] [CrossRef]
- Krouse, H.R.; Mayer, B. Sulphur and oxygen isotopes in sulphate. In Environmental Tracers in Subsurface Hydrology; Cook, P.G., Herzeg, A., Eds.; Kluwer Academic Publishers: Boston, MA, USA, 2000; pp. 195–231. [Google Scholar]
- Nielsen, H.; Pilot, J.; Grinenko, L.N.; Grinenko, V.A.; Lein, A.Y.; Smith, J.W.; Pankina, R.G. Lithospheric sources of sulphur. In Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment SCOPE; Krouse, H.R., Grinenko, V.A., Eds.; Wiley: Chichester, UK, 1991; pp. 5–132. [Google Scholar]
- Boschetti, T.; Cortecci, G.; Toscani, L.; Iacumin, P. Sulfur and oxygen isotope compositions of Upper Triassic sulfates from Northern Apennines (Italy): Palaeogeographic and hydrogeochemical implications. Geol. Acta 2011, 9, 129–147. [Google Scholar]
- Juergens-Gschwind, S. Ground water nitrates in other developed countries (Europe). Relationships to land use patterns. In Nitrogen Management and Groundwater Protection; Follett, R.F., Ed.; Elsevier Science Publisher: Amsterdam, The Netherlands, 1989; pp. 75–138. ISBN 9780444599391. [Google Scholar]
- Chief Inspectorate for Environmental Protection. Chemistry of Precipitation-Concentration and Loads. Available online: https://powietrze.gios.gov.pl/pjp/maps/chemistry/concentration?lang=en (accessed on 22 February 2022).
- Jaguś, A.; Rzętała, M. Kozłowa Góra Water Reservoir. Functioning and Protection against a Background of Geographical and Limnological Characteristics; Polish Geographical Society, Hydrological Commission: Warsaw, Poland, 2003; p. 156. ISBN 83–919007–0-3. [Google Scholar]
- Kiedryńska, L.; Papciak, D.; Granops, M. Chemia Sanitarna; Wydawnictwo SGGW: Warsaw, Poland, 2006; p. 194. ISBN 83–7244–803–5. [Google Scholar]
- Ulańczyk, R.; Kożuch, B. Monitoring środowiska wodnego i badania modelowe realizowane w obszarze zlewni zbiornika Kozłowa Góra. Gospod. Wodna 2020, 2, 19–22. [Google Scholar]
Parameter (Unit) | Brynica River | Streams | Reservoir | Groundwater | |
---|---|---|---|---|---|
T (°C) | min max | 1.0 (R2) 17.8 (R4) | 2.6 (S2) 18.8 (S7) | 0.5 (Z1) 24.6 (Z1) | 6.8 (W1) 14.6 (W3) |
pH | min max | 6.96 (R2) 7.75 (R1) | 6.55 (S1) 7.94 (S10) | 6.58 (Z2) 8.88 (Z1) | 6.37 (W1) 7.61 (W3) |
EC (µS/cm) | min max | 374 (R4) 742 (R5) | 210 (S11) 1010 (S10) | 335 (Z1) 460 (Z1) | 182 (W1) 1650 (W4) |
Eh (mV) | min max | 34 (R1) 206 (R2) | −93 (S7) 183 (S4) | 90 (Z3) 189 (Z1) | −13 (W2) 238 (W1) |
O2 (mg/L) | min max | 2.84 (R2) 10.50 (R2) | 2.60 (S10) 9.30 (S6) | 6.27 (Z1) 10.10 (Z3) | 4.09 (W3) 7.79 (W2) |
Ca2+ (mg/L) | min max | 62 (R3) 120 (R1) | 27 (S11) 102 (S4) | 45 (Z2,Z3) 78 (Z2) | 38 (W1) 184 (W4) |
Mg2+ (mg/L) | min max | 4.1 (R1) 22 (R3,R4) | 5.5 (S1) 38 (S6,S7) | 11 (Z3) 20 (Z2) | 4.2 (W1) 34 (W4) |
Na+ (mg/L) | min max | 7.7 (R1) 52 (R5) | 4.2 (S11) 65 (S9) | 9.8 (Z3) 16 (Z1) | 3.0 (W1) 135 (W4) |
K+ (mg/L) | min max | 2.1 (R1,R2) 18 (R5) | 1.1 (S11) 90 (S4) | 3.6 (Z3) 5.3 (Z2) | 2.6 (W1) 38 (W4) |
HCO3− (mg/L) | min max | 124 R4) 291 (R1) | 48 (S11) 466 (S10) | 119 (Z3) 177 (Z3) | 57 (W1) 592 (W4) |
SO42− (mg/L) | min max | 31 (R2) 99 (R4) | <10 (S2) 110 (S9,S11) | 40 (Z2) 66 (Z1) | 21 (W1) 104 (W4) |
Cl− (mg/L) | min max | 16 (R1) 84 (R5) | 7.8 (S7) 114 (S9) | 19 (Z3) 32 (Z1,Z2) | <5 (W1,W2,W3) 256 W4) |
PO43− (mg/L) | min max | <0.05 0.141 (R4) | <0.05 12.5 (S10) | <0.05 | <0.05 3.200 (W3) |
TOC (mg/L) | min max | 4.5 (R1) 22 (R3) | 3.9 (S1) 120 (S7) | 8.7 (Z2) 14 (Z2) | 2.2 (W2) 11 (W1) |
NO3− (mg/L) | min max | 0.9 (R2) 12.8 (R1) | 0.4 (S2,S11) 22.6 (S6) | 0.9 (Z1,Z2) 3.5 (Z2) | 7.5 (W1) 79.7 (W2) |
NO2− (mg/L) | min max | 0.010 (R2) 0.253 (R5) | <0.002 (S7) 0.148 (S7) | 0.010 (Z1) 0.033 (Z2) | 0.010 (W1) 0.240 (W3) |
NH4+ (mg/L) | min max | <0.01 (R3,R4,R5,R6) 0.84 (R4) | <0.01 (S9) 51.52 (S10) | <0.01 (Z2) 0.21 (Z1) | <0.01 0.30 (W2) |
Parameter (Unit) | R2 | R3 | R4 | R5 1 | R6 | S4 | S6 | S7 | S9 | S11 | Z1 | Z2 | Z3 | W3 | W4 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
δ34SVCDT (‰) | min max | 6.66 11.85 | 6.88 7.38 | 5.30 7.04 | 5.12 | 4.94 6.48 | 6.37 7.45 | 5.94 6.56 | 8.63 12.28 | 4.38 7.36 | 9.14 13.39 | 7.31 9.38 | 7.12 9.57 | 4.01 10.09 | 4.87 7.52 | 2.96 5.17 |
δ18OVSMOW (‰) | min max | 6.69 13.30 | 5.97 6.42 | 4.62 6.31 | 5.38 | 4.82 5.87 | 5.29 8.48 | 3.59 6.28 | 7.45 11.73 | 4.50 7.70 | 9.11 11.69 | 6.43 8.40 | 6.45 8.66 | 6.41 10.46 | 2.69 3.25 | 5.16 6.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ślósarczyk, K.; Jakóbczyk-Karpierz, S.; Witkowski, A.J. Identification of Water Contamination Sources Using Hydrochemical and Isotopic Studies—The Kozłowa Góra Reservoir Catchment Area (Southern Poland). Water 2022, 14, 846. https://doi.org/10.3390/w14060846
Ślósarczyk K, Jakóbczyk-Karpierz S, Witkowski AJ. Identification of Water Contamination Sources Using Hydrochemical and Isotopic Studies—The Kozłowa Góra Reservoir Catchment Area (Southern Poland). Water. 2022; 14(6):846. https://doi.org/10.3390/w14060846
Chicago/Turabian StyleŚlósarczyk, Kinga, Sabina Jakóbczyk-Karpierz, and Andrzej Jarosław Witkowski. 2022. "Identification of Water Contamination Sources Using Hydrochemical and Isotopic Studies—The Kozłowa Góra Reservoir Catchment Area (Southern Poland)" Water 14, no. 6: 846. https://doi.org/10.3390/w14060846
APA StyleŚlósarczyk, K., Jakóbczyk-Karpierz, S., & Witkowski, A. J. (2022). Identification of Water Contamination Sources Using Hydrochemical and Isotopic Studies—The Kozłowa Góra Reservoir Catchment Area (Southern Poland). Water, 14(6), 846. https://doi.org/10.3390/w14060846