Effects of Sea Level Rise on Land Use and Ecosystem Services in the Liaohe Delta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Methods
2.2.1. Simulate Terrestrial Changes Caused by Sea Level Rise
2.2.2. Assessment of Ecosystem Services
3. Results
3.1. Dynamic Changes in Coastal Wetlands in the YRD under Different SLR Scenarios
3.2. Effects of Sea Level Rise on Ecosystem Services in the Liaohe Delta
3.2.1. Carbon Storage
3.2.2. Habitat Quality
3.2.3. Water Quality Purification
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, T.T.; Liang, C.; Li, X.W.; Xie, T.; Cui, B. Quantitative assessment of the impact of reclamation activities on coastal wetlands in China. Wetl. Sci. 2015, 13, 653–659. [Google Scholar]
- Ma, Z.J.; Melville, D.S.; Liu, J.G.; Chen, Y.; Yang, H.Y.; Ren, W.W.; Zhang, Z.W. Ecosystems management rethinking China’s new great wall. Science 2014, 346, 912–914. [Google Scholar] [CrossRef] [Green Version]
- Cui, B.S.; Xie, T.; Wang, Q.; Li, S.Z.; Yan, J.G.; Yu, S.L.; Liu, K.; Zheng, J.J.; Liu, Z.Z. Impacts of large-scale reclamation on coastal wetlands and countermeasures. Proc. Chin. Acad. Sci. 2017, 32, 418–425. [Google Scholar]
- Cui, L.F. Vulnerability Assessment of Coastal Wetlands in the Yangtze Estuary under the Influence of Sea Level Rise; East China Normal University: Shanghai, China, 2016. [Google Scholar]
- IPCC. 2021: Summary for Policymakers. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Nicolai, M., Okem, A., Petzold, J., et al., Eds.; IPCC: Geneva, Switzerland, 2021; In press. [Google Scholar]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.J.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Betini, G.S.; Fitzpatrick, M.J.; Norris, D.R. Experimental evidence for the effect of habitat loss on the dynamics of migratory networks. Ecol. Lett. 2015, 18, 526–534. [Google Scholar] [CrossRef]
- Pontee, N. Defining coastal squeeze: A discussion. Ocean Coast. Manag. 2013, 84, 204–207. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Lv, X.G.; Liu, H.Y. A comparative study of wetland resources in the Yellow River Delta and Liaohe Delta. Resour. Sci. 2000, 3, 60–65. [Google Scholar]
- Wang, B.Q.; Yang, F.; Wang, Z.B. The impact of sea level rise on ecosystem service value and adaptive measures. Acta Ecol. 2015, 35, 7998–8008. [Google Scholar]
- Yoskowitz, D.; Carollo, C.; Pollack, J.B.; Santos, C.; Welder, K. Integrated Ecosystem Services Assessment: Valuation of Changes due to Sea Level Rise in Galveston Bay, Texas, USA. Integr. Environ. Assess. Manag. 2017, 13, 431–443. [Google Scholar] [CrossRef]
- Craft, C.; Clough, J.; Ehman, J.; Joye, S.; Park, R.; Pennings, S.; Guo, H.; Machmuller, M. Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Front. Ecol. Environ. 2009, 7, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Krauss, K.W.; Cormier, N.; Osland, M.J.; Kirwan, M.L.; Stagg, C.L.; Nestlerode, J.A.; Russell, M.J.; From, A.S.; Spivak, A.; Dantin, D.; et al. Created mangrove wetlands store belowground carbon and surface elevation change enables them to adjust to sea-level rise. Sci. Rep. 2017, 7, 1030. [Google Scholar] [CrossRef] [Green Version]
- Sikder, A.H.M.K.; Mozumder, P. Risk Perceptions and Adaptation to Climate Change and Sea-Level Rise: Insights from General Public Opinion Survey in Florida. J. Water Resour. Plan. Manag. 2020, 146, 04019081. [Google Scholar] [CrossRef]
- Laura, G.; Freeman, K.; Kelly, E.; Gordon, D.R.; Putz, F.E. Retrospective and prospective model simulations of sea level rise impacts on Gulf of Mexico coastal marshes and forests in Waccasassa Bay, Florida. Clim. Change 2011, 107, 35–57. [Google Scholar]
- Li, J.; Shang, Z.; Wang, F.; Chen, Y.; Tian, L.; Jiang, X.; Wang, H. Holocene sea level change on the west coast of the Bohai Bay. Quat. Sci. 2015, 35, 243–264. [Google Scholar]
- Wang, H.; Ge, Z.M.; Yuan, L.; Zhang, L.Q. Evaluation of the combined threat from sea-level rise and sedimentation reduction to the coastal wetlands in the Yangtze Estuary, China. Ecol. Eng. 2014, 71, 346–354. [Google Scholar] [CrossRef]
- Zhou, G.S.; Zhou, L.; Guan, E.K.; Zhao, F.W. Liaohe Delta Wetland and Global Change. J. Meteorol. Environ. 2006, 22, 7–12. [Google Scholar]
- Li, X.W.; Xiao, D.N.; Hu, Y.M. Analysis and Evaluation of Liaodong Bay Coastal Wetland Landscape Planning Plan. J. Ecol. 2002, 2, 224–232. [Google Scholar]
- Sun, J. Evolution Characteristics and Value Evaluation of Tidal Flat Resources in Panjin City under Remote Sensing Monitoring; Jilin University: Changchun, China, 2007. [Google Scholar]
- Huang, G.L. Study on the Change and Driving Mechanism of Wetland Landscape in Liaohe Delta. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2011. [Google Scholar]
- Dong, Y. The Impact of Climate Change on the Ecological Environment of the Liaohe Delta Wetland; Northeastern University: Boston, MA, USA, 2008. [Google Scholar]
- Ding, L.; Zhang, H.; Sun, C.Z. Study on landscape pattern changes of coastal wetlands in Liaoning Province. Wetl. Sci. 2008, 66, 7–12. [Google Scholar]
- Wang, Y.; Zhou, L.; Jia, Q.Y.; Yu, W.Y. Soil freezing and thawing characteristics of Panjin reed marshes. Wetl. Sci. 2016, 1414, 295–301. [Google Scholar]
- Zhang, X.L.; Zhang, Z.H.; Gu, D.Q.; Xu, Z.J.; Ye, S.Y. Evolution of coastal wetlands in the Liaohe Delta. J. Ecol. Environ. 2009, 18, 1003–1009. [Google Scholar]
- Yan, X.; Liu, M.; Zhong, J.; Guo, J.; Wu, W. How Human Activities Affect Heavy Metal Contamination of Soil and Sediment in a Long-Term Reclaimed Area of the Liaohe River Delta, North China. Sustainability 2018, 10, 338. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Yeager, K.M.; Peterson, M.S.; Fulford, R.S. Neutral models as a way to evaluate the sea level affecting marshes model (SLAMM). Ecol. Model. 2015, 303, 55–69. [Google Scholar] [CrossRef]
- Clough, J. A White Paper on Data Requirements and Data Inventory for Alaska SLAMM Analyses; Warren Pinnacle Consulting, Inc.: Warren, VT, USA, 2010. [Google Scholar]
- Rahmstorf, S. A Semi-Empirical Approach to Projecting Future Sea-Level Rise. Science 2007, 315, 368–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vermeer, M.; Rahmstorf, S. Global sea level linked to global temperature. Proc. Natl. Acad. Sci. USA 2009, 106, 21527–21532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfeffer, W.T.; Harper, J.T.; O’Neel, S. Kinematic Constraints on Glacier Contributions to 21st-Century Sea Level Rise. Science 2008, 321, 1340–1343. [Google Scholar] [CrossRef] [PubMed]
- China Gulf Chronicle Compilation Committee. China Gulf Chronicle; Ocean Publishing House: Beijing, China, 1998; Volume 14. [Google Scholar]
- Wang, B.F.; Zhai, Q.F.; Ao, X.; Zhao, Y.J.; Ren, Z.Y.; Zhu, D.H.; Liu, N.N.; Qi, C.; Zhao, X.Q. Analysis of Storm Surge Disaster in Liaoning. Anhui Agric. Sci. 2014, 42, 1765–1768, 1835. [Google Scholar]
- Li, W.S.; Wang, H.; Zhang, J.L.; Zuo, C.S.; Li, H.; Dong, J.X. Coastal erosion and impact assessment of Liaodong Bay under sea level rise scenarios. Ocean Bulletin. 2019, 38, 31–37. [Google Scholar]
- Liu, D.W.; Hu, K.; Zhao, X.; Zhang, K.X.; Gong, X.J.; Tang, G.W. Study on the sedimentary environment of Gaizhou Beach in the Liaohe Estuary in the past 30 years. J. Oceanogr. 2017, 39, 131–142. [Google Scholar]
- Tian, H.; Sun, Q.; Jin, H.T.; Liang, X.J.; Ma, S.M.; Du, J.Z.; Li, X.G. Exploration on Environmental Geological Problems in Liaohe Delta Region. Groundwater 2017, 39, 133–135, 139. [Google Scholar]
- Piao, S.L.; Fang, J.Y.; He, J.S.; Xiao, Y. Grassland vegetation biomass and its spatial distribution pattern in China. Chin. J. Plant Ecol. 2004, 4, 491–498. [Google Scholar]
- Bagstad, K.J.; Semmens, D.J.; Winthrop, R. Comparing approaches to spatially explicit ecosystem service modeling: A case study from the San Pedro River, Arizona. Ecosyst. Serv. 2013, 5, 40–50. [Google Scholar] [CrossRef]
- Keller, A.A.; Fournier, E.; Fox, J. Minimizing impacts of land use change on ecosystem services using multi-criteria heuristic analysis. J. Environ. Manag. 2015, 156, 23–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Meng, J.; Qi, Y.; Peng, F. Review of ecosystem management based on the InVEST model. Chin. J. Ecol. 2015, 34, 3526–3532. [Google Scholar]
- Zhen, W.; Huang, M.; Zhai, Y.L.; Chen, K.; Gong, Y.Z. Changes in forest vegetation carbon storage and carbon sequestration rate in Liaoning Province. Chin. J. Appl. Ecol. 2014, 25, 1259–1265. [Google Scholar]
- Suo, A.; Zhao, D.; Zhang, F. Research on the function of carbon storage and carbon sequestration of vegetation in estuarine wetlands in northern my country: Taking Panjin area of Liaohe Delta as an example. Oceanogr. Res. 2010, 28, 67–71. [Google Scholar]
- Dong, H.F.; Yu, J.B.; Sun, Z.G.; Mou, X.J.; Chen, X.B.; Mao, P.L.; Wu, C.F.; Guan, B. Spatial distribution characteristics of organic carbon in tidal flat wetlands along the coast of the Yellow River Estuary. Environ. Sci. 2010, 6, 1594–1599. [Google Scholar]
- Huang, M.; Ji, J.J.; Cao, M.K.; Li, K.R. Simulation of aboveground and belowground biomass of vegetation in China. Chin. J. Ecol. 2006, 12, 4156–4163. [Google Scholar]
- Zheng, Y.; Zhang, P.T.; Tang, F.; Zhao, L.I.; Zhao, X. Research on the impact of land use change on habitat quality in Changli County based on InVEST model. China Agric. Resour. Zoning 2018, 39, 121–128. [Google Scholar]
- Yang, J.W.; Gou, M.X.Z.; Jia, Z.L.; Wei, T.; Mo, L.; Li, Y.X. Non-point source pollution load assessment and control measures in Xiji River Basin. Sci. Technol. Eng. 2019, 19, 419–424. [Google Scholar]
- Wu, R.; Liu, G.; Wen, Y. Temporal and spatial variation of water production and water purification services in Guanting Reservoir basin based on InVEST model. Environ. Sci. Res. 2017, 30, 406–414. [Google Scholar]
- Fu, C.; Su, J.; Zhao, H.; Li, Q. GIS-Based Non-Point Source Pollution Load Estimation for Cities in the Upper Reaches of Zhanghe River. Water Resour. Prot. 2020, 36, 60–66. [Google Scholar]
- Ma, T.T. Research on the Optimization and Regulation of the Damaged Coastal Wetland Restoration System in the Yellow River Delta; Beijing Normal University: Beijing, China, 2019. [Google Scholar]
- Kirwan, M.L.; Megonigal, J.P. Tidal wetland stability in the face of human impactsandsea-levelrise. Nature 2013, 504, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Chapman, M.G.; Underwood, A.J. Evaluation of ecological engineering of “armoured” shorelines to improve their value as habitat. J. Exp. Mar. Biol. Ecol. 2011, 400, 302–313. [Google Scholar] [CrossRef]
- Wang, F.; Lu, X.; Sanders, C.J.; Tang, J. Tidal wetland resilience to sea level rise increases their carbon sequestration capacity in United States. Nat. Commun. 2019, 10, 5434. [Google Scholar] [CrossRef]
- Perera, K.A.R.S.; De Silva, K.H.W.L.; Amarasinghe, M.D. Potential impact of predicted sea level rise on carbon sink function of mangrove ecosystems with special reference to Negombo estuary, Sri Lanka. Glob. Planet. Change 2018, 161, 162–171. [Google Scholar] [CrossRef]
- Borchert, S.M.; Osland, M.J.; Enwright, N.M.; Griffith, K.T. Coastal wetland adaptation to sea level rise: Quantifying potential for landward migration and coastal squeeze. J. Appl. Ecol. 2018, 55, 2876–2887. [Google Scholar] [CrossRef]
- Zhi, L.H.; Li, X.W.; Bai, J.H.; Guan, Y.N. Integrating ecological and socioeconomic networks using nitrogen metabolism in the Yellow River Delta, China. Resour. Conserv. Recycl. 2020, 162, 105012. [Google Scholar] [CrossRef]
- Liang, C.; Li, X.W.; Cui, B.S.; Ma, T.T. Construction of priority protection pattern of coastal wetlands in China. Wetl. Sci. 2015, 13, 660–666. [Google Scholar]
- Li, X.W.; Liang, C.; Shi, J.B. Developing wetland restoration scenarios and modeling its ecological consequences in the Liao he River Delta wetlands, China. Clean Soil Air Water 2012, 40, 1185–1196. [Google Scholar] [CrossRef]
Parameter Types | Values |
---|---|
Sea level rise trend (mm/year) | 3 |
Elevation correction based on average tide level (m) | 0.25 |
Diurnal range (m) | 2.7 |
Salt marsh elevation (above Average tide level) (m) | 1.8 |
Vegetation marsh erosion rate (m/year) | 2.5 |
Forest swamp erosion rate (m/year) | 2.5 |
Erosion rate of tidal flat (m/year) | 2.5 |
Frequency of periodic flood swamp accretion (mm/year) | 28.3 |
Frequency of swamp accretion by seasonal flood (mm/year) | 28.3 |
Accretion frequency of tidal freshwater marshes (mm/year) | 29 |
Beach subsidence rate (mm/year) | 75 |
The frequency of major storms (times/year) | 1 |
Land Use | Cabove | Cbelow | Csoil | Cdead |
---|---|---|---|---|
Developed land a | 0 | 0 | 36 | 0 |
Undeveloped land b | 51 | 15 | 53.1 | 0.9 |
Freshwater marshes | 51 | 24 | 45 | 1.65 |
Salt marsh | 30 | 15 | 59.5 | 1.5 |
Regularly Flooded Marsh | 30 | 15 | 59.5 | 1.5 |
Tidal flats | 3 | 0 | 45 | 0 |
Water Body | 7.5 | 4.5 | 78 | 0 |
Types of the Threat Source | The Scope of the Threat | Level of Threat | Mode of Decays |
---|---|---|---|
Field | 0.8 | 0.5 | exponential |
Construction land | 2.8 | 0.7 | exponential |
Waterway | 1.6 | 0.7 | linear |
Port | 3.8 | 0.7 | exponential |
Land Use | Suitability Degree | Field | Construction Land | Waterway | Port |
---|---|---|---|---|---|
Developed Dry Land | 0 | 1 | 1 | 1 | 1 |
Undeveloped Dry Land | 1 | 1 | 1 | 1 | 1 |
Freshwater Marsh | 0.9 | 0.6 | 0.9 | 0.5 | 0.3 |
Salt Marsh | 0.7 | 0.8 | 0.9 | 0.5 | 0.8 |
Regularly Flooded Marsh | 0.7 | 0.8 | 0.9 | 0.5 | 0.8 |
Tidal Flat | 0.7 | 0.6 | 0.9 | 0.2 | 0.4 |
Water Body | 0.9 | 0.4 | 0.9 | 0.8 | 0.2 |
Land Use | Total Nitrogen Load (kg/hm2) | Total Phosphorus Load (kg/hm2) |
---|---|---|
Developed Dry Land | 11 | 0.25 |
Undeveloped Dry Land | 15 | 0.2 |
Freshwater Marsh | 2 | 0.1 |
Salt Marsh | 2 | 0.1 |
Regularly Flooded Marsh | 2 | 0.1 |
Tidal Flat | 0.1 | 0.01 |
Water Body | 0.1 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhi, L.; Gou, M.; Li, X.; Bai, J.; Cui, B.; Zhang, Q.; Wang, G.; Bilal, H.; Abdullahi, U. Effects of Sea Level Rise on Land Use and Ecosystem Services in the Liaohe Delta. Water 2022, 14, 841. https://doi.org/10.3390/w14060841
Zhi L, Gou M, Li X, Bai J, Cui B, Zhang Q, Wang G, Bilal H, Abdullahi U. Effects of Sea Level Rise on Land Use and Ecosystem Services in the Liaohe Delta. Water. 2022; 14(6):841. https://doi.org/10.3390/w14060841
Chicago/Turabian StyleZhi, Liehui, Muxinzhou Gou, Xiaowen Li, Junhong Bai, Baoshan Cui, Qingyue Zhang, Gaojing Wang, Hazrat Bilal, and Usman Abdullahi. 2022. "Effects of Sea Level Rise on Land Use and Ecosystem Services in the Liaohe Delta" Water 14, no. 6: 841. https://doi.org/10.3390/w14060841
APA StyleZhi, L., Gou, M., Li, X., Bai, J., Cui, B., Zhang, Q., Wang, G., Bilal, H., & Abdullahi, U. (2022). Effects of Sea Level Rise on Land Use and Ecosystem Services in the Liaohe Delta. Water, 14(6), 841. https://doi.org/10.3390/w14060841