Aqueous Arsenic Speciation with Hydrogeochemical Modeling and Correlation with Fluorine in Groundwater in a Semiarid Region of Mexico
Abstract
:1. Introduction
Country | As (µg/L) | Reference |
---|---|---|
Afghanistan | 100 * | [16] |
Africa | 1760 * | [17,18] |
Argentina | 3810 * | [7,19] |
Bangladesh | >1000 | [12,20,21,22] |
Chile | 770 * | [7,19] |
China | 850 * | [23] |
Cyprus | 64 * | [24] |
Finland | 980 * | [25] |
Greece | >1000 | [24] |
Hungary | 68 * | [26] |
India | 50 * | [27,28] |
Mexico | 241 * | [29,30] |
USA | 210 * | [31,32] |
2. Materials and Methods
2.1. Description of the Study Area
2.2. Geological Features
2.3. Sample Collection and Concentration Determination
2.4. Analysis of Data
2.4.1. Mapping of Parameters
2.4.2. Hydrogeochemical Modeling
2.4.3. Statistical Analysis
3. Results and Discussion
3.1. Mapping of Arsenic
3.2. Hydrogeochemical Modeling
3.3. Statistical Analysis
3.4. Applications of This Work
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boonkaewwan, S.; Sonthiphand, P.; Chotpantarat, S. Mechanisms of arsenic contamination associated with hydrochemical characteristics in coastal alluvial aquifers using multivariate statistical technique and hydrogeochemical modeling: A case study in Rayong province, eastern Thailand. Environ. Geochem. Health 2021, 43, 537–566. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.M.; McClelland, N.I.; Deininger, R.A.; Tozer, R.G. A water quality index—Do we dare? Water Sew. Work. 1970, 117, 339–343. [Google Scholar]
- Sadat-Noori, S.M.; Ebrahimi, K.; Liaghat, A.M. Groundwater quality assessment using the Water Quality Index and GIS in Saveh-Nobaran aquifer, Iran. Environ. Earth Sci. 2014, 71, 3827–3843. [Google Scholar] [CrossRef]
- Ram, A.; Tiwari, S.K.; Pandey, H.K.; Chaurasia, A.K.; Singh, S.; Singh, Y.V. Groundwater quality assessment using water quality index (WQI) under GIS framework. Appl. Water Sci. 2021, 11, 46. [Google Scholar] [CrossRef]
- Alarcón-Herrera, M.T.; Bundschuh, J.; Nath, B.; Nicolli, H.B.; Gutierrez, M.; Reyes-Gomez, V.M.; Nuñez, D.; Martín-Dominguez, I.R.; Sracek, O. Co-occurrence of arsenic and fluoride in groundwater of semi-arid regions in Latin America: Genesis, mobility and remediation. J. Hazard. Mater. 2013, 262, 960–969. [Google Scholar] [CrossRef] [PubMed]
- Litter, M.I.; Armienta, M.A.; Villanueva Estrada, R.E.; Villaamil Lepori, E.C.; Olmos, V. Arsenic in Latin America: Part II BT—Arsenic in Drinking Water and Food; Srivastava, S., Ed.; Springer: Singapore, 2020; pp. 113–182. ISBN 978-981-13-8587-2. [Google Scholar]
- Bundschuh, J.; Litter, M.I.; Parvez, F.; Román-Ross, G.; Nicolli, H.B.; Jean, J.S.; Liu, C.W.; López, D.; Armienta, M.A.; Guilherme, L.R.G.; et al. One century of arsenic exposure in Latin America: A review of history and occurrence from 14 countries. Sci. Total Environ. 2012, 429, 2–35. [Google Scholar] [CrossRef]
- Dorjderem, B.; Torres-Martínez, J.A.; Mahlknecht, J. Intensive long-term pumping in the Principal-Lagunera Region aquifer (Mexico) causing heavy impact on groundwater quality. Energy Rep. 2020, 6, 862–867. [Google Scholar] [CrossRef]
- Camacho, L.M.; Gutiérrez, M.; Alarcón-Herrera, M.T.; de Lourdes Villalba, M.; Deng, S. Occurrence and treatment of arsenic in groundwater and soil in northern Mexico and southwestern USA. Chemosphere 2011, 83, 211–225. [Google Scholar] [CrossRef]
- Alexakis, D.E.; Bathrellos, G.D.; Skilodimou, H.D.; Gamvroula, D.E. Spatial distribution and evaluation of arsenic and zinc content in the soil of a karst landscape. Sustainability 2021, 13, 6976. [Google Scholar] [CrossRef]
- Podgorski, J.; Berg, M. Global threat of arsenic in groundwater. Science 2020, 368, 845–850. [Google Scholar] [CrossRef]
- Sarkar, A.; Paul, B. The global menace of arsenic and its conventional remediation—A critical review. Chemosphere 2016, 158, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Stern, E.A. Global Arsenic Contamination: Living With the Poison Nectar. Environ. Sci. Policy Sustain. Dev. 2017, 59, 24–28. [Google Scholar] [CrossRef]
- WHO (World Health Organization). Guidelines for Drinking-Water Quality, 4th ed.; WHO: Geneva, Switzerland, 2011; ISBN 978-92-4-154995-0. Available online: https://www.who.int/publications/i/item/9789241549950 (accessed on 7 November 2021).
- Nacional, E.; Unidos, E.; Secretaría, M.; Tuberculosis, D.E.L.A.; La, E.N.; Primaria, A.; Salud, A.L.A. MODIFICACION a la NORMA OFICIAL MEXICANA NOM-006-SSA2-1993, para la Prevención y. Ley Federal sobre Metrología y Normalización, se publicó en el Diario Oficial de la Federación el proyecto de la presente Norma Oficial Mexicana. 2000. Available online: https://www.cndh.org.mx/DocTR/2016/JUR/A70/01/JUR-20170331-NOR39.pdf (accessed on 7 November 2021).
- Jawadi, H.A.; Malistani, H.A.; Moheghy, M.A.; Sagin, J. Essential trace elements and arsenic in thermal springs, Afghanistan. Water 2021, 13, 134. [Google Scholar] [CrossRef]
- Ahoulé, D.G.; Lalanne, F.; Mendret, J.; Brosillon, S.; Maïga, A.H. Arsenic in African Waters: A Review. Water Air Soil Pollut. 2015, 226, 302. [Google Scholar] [CrossRef]
- Abiye, T.A.; Bhattacharya, P. Arsenic concentration in groundwater: Archetypal study from South Africa. Groundw. Sustain. Dev. 2019, 9, 100246. [Google Scholar] [CrossRef]
- Khan, K.M.; Chakraborty, R.; Bundschuh, J.; Bhattacharya, P.; Parvez, F. Health effects of arsenic exposure in Latin America: An overview of the past eight years of research. Sci. Total Environ. 2020, 710, 136071. [Google Scholar] [CrossRef]
- Rahman, M.A.; Hashem, M.A. Arsenic, iron and chloride in drinking water at primary school, Satkhira, Bangladesh. Phys. Chem. Earth 2019, 109, 49–58. [Google Scholar] [CrossRef]
- Rahman, M.A.; Rahman, A.; Khan, M.Z.K.; Renzaho, A.M.N. Human health risks and socio-economic perspectives of arsenic exposure in Bangladesh: A scoping review. Ecotoxicol. Environ. Saf. 2018, 150, 335–343. [Google Scholar] [CrossRef]
- Nickson, R.; McArthur, J.; Burgess, W.; Matin Ahmed, K.; Ravenscroft, P.; Rahman, M. Arsenic poisoning of Bangladesh groundwater. Nature 1998, 395, 338. [Google Scholar] [CrossRef]
- Liu, F.F.; Wang, J.P.; Zheng, Y.J.; Ng, J.C. Biomarkers for the evaluation of population health status 16 years after the intervention of arsenic-contaminated groundwater in Xinjiang, China. J. Hazard. Mater. 2013, 262, 1159–1166. [Google Scholar] [CrossRef]
- Golfinopoulos, S.K.; Varnavas, S.P.; Alexakis, D.E. The status of arsenic pollution in the greek and Cyprus environment: An overview. Water 2021, 13, 224. [Google Scholar] [CrossRef]
- Katko, T.S.; Lipponen, M.A.; Rönkä, E.K.T. Groundwater use and policy in community water supply in Finland. Hydrogeol. J. 2006, 14, 69–78. [Google Scholar] [CrossRef]
- Varsanyi, I. Arsenic in deep groundwater. In Proceedings of the 6th International Symposium on Water–Rock Interaction (WRI-6), Malvern, UK, 3–6 August 1989; pp. 715–718. [Google Scholar]
- Bhowmick, S.; Pramanik, S.; Singh, P.; Mondal, P.; Chatterjee, D.; Nriagu, J. Arsenic in groundwater of West Bengal, India: A review of human health risks and assessment of possible intervention options. Sci. Total Environ. 2018, 612, 148–169. [Google Scholar] [CrossRef] [PubMed]
- Ghosh (Nath), S.; Debsarkar, A.; Dutta, A. Technology alternatives for decontamination of arsenic-rich groundwater—A critical review. Environ. Technol. Innov. 2019, 13, 277–303. [Google Scholar] [CrossRef]
- Ortiz-Letechipia, J.; González-Trinidad, J.; Júnez-Ferreira, H.E.; Bautista-Capetillo, C.; Dávila-Hernández, S. Evaluation of groundwater quality for human consumption and irrigation in relation to arsenic concentration in flow systems in a semi-arid mexican region. Int. J. Environ. Res. Public Health 2021, 18, 8045. [Google Scholar] [CrossRef]
- Avila-Sandoval, C.; Júnez-Ferreira, H.; González-Trinidad, J.; Bautista-Capetillo, C.; Pacheco-Guerrero, A.; Olmos-Trujillo, E. Spatio-Temporal Analysis of Natural and Anthropogenic Arsenic Sources in Groundwater Flow Systems. Int. J. Environ. Res. Public Health 2018, 15, 2374. [Google Scholar] [CrossRef] [Green Version]
- Foust, R.D.; Mohapatra, P.; Compton-O’Brien, A.M.; Reifel, J. Groundwater arsenic in the Verde Valley in central Arizona, USA. Appl. Geochem. 2004, 19, 251–255. [Google Scholar] [CrossRef]
- Frost, F.; Franke, D.; Pierson, K.; Woodruff, L.; Raasina, B.; Davis, R.; Davies, J. A seasonal study of arsenic in groundwater, Snohomish County, Washington, USA. Environ. Geochem. Health 1993, 15, 209–214. [Google Scholar] [CrossRef]
- Dehbandi, R.; Abbasnejad, A.; Karimi, Z.; Herath, I.; Bundschuh, J. Hydrogeochemical controls on arsenic mobility in an arid inland basin, Southeast of Iran: The role of alkaline conditions and salt water intrusion. Environ. Pollut. 2019, 249, 910–922. [Google Scholar] [CrossRef]
- Aullón Alcaine, A.; Schulz, C.; Bundschuh, J.; Jacks, G.; Thunvik, R.; Gustafsson, J.P.; Mörth, C.M.; Sracek, O.; Ahmad, A.; Bhattacharya, P. Hydrogeochemical controls on the mobility of arsenic, fluoride and other geogenic co-contaminants in the shallow aquifers of northeastern La Pampa Province in Argentina. Sci. Total Environ. 2020, 715, 136671. [Google Scholar] [CrossRef]
- Saravanan, K.; Srinivasamoorthy, K.; Prakash, R.; Gopinath, S.; Suma, C.S. An Evaluation of Hydrogeochemistry of Groundwater in Upper Vellar Sub—Basin Using Mineral Stability and Solute Transport Modelling. Aquat. Procedia 2015, 4, 1119–1125. [Google Scholar] [CrossRef]
- Kammoun, S.; Trabelsi, R.; Re, V.; Zouari, K. Coastal aquifer salinization in semi-arid regions: The case of grombalia (Tunisia). Water 2021, 13, 129. [Google Scholar] [CrossRef]
- Chebotarev, I.I. Metamorphism of natural waters in the crust of weathering-2. Geochim. Cosmochim. Acta 1955, 8, 137–170. [Google Scholar] [CrossRef]
- Navarro, O.; González, J.; Júnez-Ferreira, H.E.; Bautista, C.-F.; Cardona, A. Correlation of Arsenic and Fluoride in the Groundwater for Human Consumption in a Semiarid Region of Mexico. Procedia Eng. 2017, 186, 333–340. [Google Scholar] [CrossRef]
- Bundschuh, J.; Litter, M.; Ciminelli, V.S.T.; Morgada, M.E.; Cornejo, L.; Hoyos, S.G.; Hoinkis, J.; Alarcón-Herrera, M.T.; Armienta, M.A.; Bhattacharya, P. Emerging mitigation needs and sustainable options for solving the arsenic problems of rural and isolated urban areas in Latin America—A critical analysis. Water Res. 2010, 44, 5828–5845. [Google Scholar] [CrossRef]
- Ferguson, J.F.; Gavis, J. A review of the arsenic cycle in natural waters. Water Res. 1972, 6, 1259–1274. [Google Scholar] [CrossRef]
- Roh, T.; Lynch, C.F.; Weyer, P.; Wang, K.; Kelly, K.M.; Ludewig, G. Low-level arsenic exposure from drinking water is associated with prostate cancer in Iowa. Environ. Res. 2017, 159, 338–343. [Google Scholar] [CrossRef]
- Gevaert, A.; Hoogesteger, J.; Stoof, C. Suitability of Using Groundwater Temperature and Geology to Predict ARSENIC Contamination in Drinking Water—A Case Study in Central Mexico; Internet-First University Press, 2012; Available online: https://ecommons.cornell.edu/handle/1813/29590 (accessed on 7 November 2021).
- Liu, Q.; Lu, X.; Peng, H.; Popowich, A.; Tao, J.; Uppal, J.S.; Yan, X.; Boe, D.; Le, X.C. Speciation of arsenic—A review of phenylarsenicals and related arsenic metabolites. TrAC-Trends Anal. Chem. 2018, 104, 171–182. [Google Scholar] [CrossRef]
- U.S. EPA. 2010 U.S. Environmental Protection Agency (EPA) Decontamination Research and Development Conference; 2011; EPA/600/R-. Available online: https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NHSRC&dirEntryId=231764 (accessed on 7 November 2021).
- Weerasundara, L.; Ok, Y.S.; Bundschuh, J. Selective removal of arsenic in water: A critical review. Environ. Pollut. 2021, 268, 115668. [Google Scholar] [CrossRef]
- Planer-Friedrich, B.; Armienta, M.A.; Merkel, B.J. Origin of arsenic in the groundwater of the Rioverde basin, Mexico. Environ. Geol. 2001, 40, 1290–1298. [Google Scholar] [CrossRef]
- Flora, S.J.S. Arsenic: Chemistry, Occurrence, and Exposure. In Handbook of Arsenic Toxicology; Academic Press: Cambridge, MA, USA, 2015; pp. 1–49. ISBN 9780124199552. [Google Scholar]
- Fazi, S.; Amalfitano, S.; Casentini, B.; Davolos, D.; Pietrangeli, B.; Crognale, S.; Lotti, F.; Rossetti, S. Arsenic removal from naturally contaminated waters: A review of methods combining chemical and biological treatments. Rend. Lincei 2016, 27, 51–58. [Google Scholar] [CrossRef]
- Cui, J.; Jing, C. A review of arsenic interfacial geochemistry in groundwater and the role of organic matter. Ecotoxicol. Environ. Saf. 2019, 183, 109500. [Google Scholar] [CrossRef] [PubMed]
- Maier, M.V.; Isenbeck-Schröter, M.; Klose, L.B.; Ritter, S.M.; Scholz, C. In Situ-mobilization of Arsenic in Groundwater—An Innovative Remediation Approach? Procedia Earth Planet. Sci. 2017, 17, 452–455. [Google Scholar] [CrossRef]
- THE 17 GOALS | Sustainable Development. Available online: https://sdgs.un.org/goals (accessed on 7 November 2021).
- Comisión Nacional del Agua Actualización de la disponibilidad media anual de agua en el acuífero Calera (3225), estado de Zacatecas. D. Of. La Fed. 2018, pp. 1–39. Available online: https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/zacatecas/DR_3225.pdf (accessed on 7 November 2021).
- INEGI. Síntesis geográfica de Zacatecas. 1981. Available online: http://internet.contenidos.inegi.org.mx/contenidos/productos/prod_serv/contenidos/espanol/bvinegi/productos/historicos/2104/702825220686/702825220686_3.pdf (accessed on 7 November 2021).
- Gandullo, J.M. Edaphology, ecology and reforestation [Spanish]. Ecologia 1990, 128–138. Available online: https://agris.fao.org/agris-search/search.do?recordID=ES9100328 (accessed on 7 November 2021).
- Lenore, S.; Clesceri, A.; Greenberg, E.; Trussel, R.R. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington, DC, USA, 2006. [Google Scholar]
- Oliver, M.A.; Webster, R. Kriging: A method of interpolation for geographical information systems. Int. J. Geogr. Inf. Syst. 1990, 4, 313–332. [Google Scholar] [CrossRef]
- Chirinos, L.R.; Mallqui, C.G. Comparación entre Interpoladores Espaciales en el Estudio de Distribución de Partículas Sedimentables Insolubles en la Cuenca Atmosférica de Lima y Callao. Inf. Tecnológica 2016, 27, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Parkhurst, D.L.; Appelo, C.A.J. User’s Guide to PHREEQC (Version 2): A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations; USGS Publications Warehouse: Menlo Park, CA, USA, 1999. [Google Scholar]
- Daintith, J. (Ed.) A Dictionary of Chemistry, 6th ed.; Oxford University Press: Oxford, UK, 2008; ISBN 9780199204632. [Google Scholar]
- Liu, J.-L.; Li, C.-L. A generalized Debye-Hückel theory of electrolyte solutions. AIP Adv. 2019, 9, 015214. [Google Scholar] [CrossRef] [Green Version]
- Thyne, G. Review of PHREEQC. • Southwest Hydrol. • 37. Available online: https://igwmc.mines.edu/ (accessed on 7 November 2021).
- Toran, L.; Grandstaff, D. PHREEQC and PHREEQCI: Geochemical Modeling with an Interactive Interface. Ground Water 2002, 40, 462–464. [Google Scholar] [CrossRef]
- Liu, C.W.; Wu, M.Z. Geochemical, mineralogical and statistical characteristics of arsenic in groundwater of the Lanyang Plain, Taiwan. J. Hydrol. 2019, 577, 123975. [Google Scholar] [CrossRef]
- Unger-Shayesteh, K.; Vorogushyn, S.; Farinotti, D.; Gafurov, A.; Duethmann, D.; Mandychev, A.; Merz, B. What do we know about past changes in the water cycle of Central Asian headwaters? A review. Glob. Planet. Change 2013, 110, 4–25. [Google Scholar] [CrossRef]
- Mitra, A.; Chatterjee, S.; Gupta, D.K. Environmental Arsenic Exposure and Human Health Risk; Springer: Cham, Switzerland, 2020; pp. 103–129. [Google Scholar] [CrossRef]
- Basu, A.; Saha, D.; Saha, R.; Ghosh, T.; Saha, B. A review on sources, toxicity and remediation technologies for removing arsenic from drinking water. Res. Chem. Intermed. 2014, 40, 447–485. [Google Scholar] [CrossRef]
- Malyan, S.K.; Singh, R.; Rawat, M.; Kumar, M.; Pugazhendhi, A.; Kumar, A.; Kumar, V.; Kumar, S.S. An overview of carcinogenic pollutants in groundwater of India. Biocatal. Agric. Biotechnol. 2019, 21, 101288. [Google Scholar] [CrossRef]
- Smith, A.H.; Hopenhayn-Rich, C.; Bates, M.N.; Goeden, H.M.; Hertz-Picciotto, I.; Duggan, H.M.; Wood, R.; Kosnett, M.J.; Smith, M.T. Cancer risks from arsenic in drinking water. Environ. Health Perspect. 1992, 97, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Faria, M.C.S.; Rosemberg, R.S.; Bomfeti, C.A.; Monteiro, D.S.; Barbosa, F.; Oliveira, L.C.A.; Rodriguez, M.; Pereira, M.C.; Rodrigues, J.L. Arsenic removal from contaminated water by ultrafine δ-FeOOH adsorbents. Chem. Eng. J. 2014, 237, 47–54. [Google Scholar] [CrossRef]
- Jageerani, S. Review: Arsenic Remediation by Synthetic and Natural Adsorbents. Pak. J. Anal. Environ. Chem. 2017, 18, 18–36. [Google Scholar] [CrossRef]
- Fu, D.; Kurniawan, T.A.; Li, H.; Wang, H.; Wang, Y.; Li, Q. Co-oxidative removal of arsenite and tetracycline based on a heterogeneous Fenton-like reaction using iron nanoparticles-impregnated biochar. Environ. Pollut. 2021, 290, 118062. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.; Kurniawan, T.A.; Lin, L.; Li, Y.; Avtar, R.; Dzarfan Othman, M.H.; Li, F. Arsenic removal in aqueous solutions using FeS2. J. Environ. Manag. 2021, 286, 112246. [Google Scholar] [CrossRef]
- Freeze, A.; Cherry, J. Groundwater: Englewood Cliffs, Chapter 7_ Chemical Evolution of Natural Groundwater _ HWB. In Groundwater; Prentice-Hall Inc.: Englewood Cliffs, NJ, USA, 1979; Available online: http://hydrogeologistswithoutborders.org/wordpress/1979-english/chapter-7/ (accessed on 7 November 2021).
- Pujades, E.; Jurado, A. Groundwater-related aspects during the development of deep excavations below the water table: A short review. Undergr. Sp. 2019, 6, 35–45. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Polya, D.; Jovanovic, D. (Eds.) Best Practice Guide on the Control of Arsenic in Drinking Water; IWA Publishing: London, UK, 2017; ISBN 9781780404929. [Google Scholar]
- Mohan, D.; Pittman, C.U. Arsenic removal from water/wastewater using adsorbents—A critical review. J. Hazard. Mater. 2007, 142, 1–53. [Google Scholar] [CrossRef]
- Alarcón-Herrera, M.T.; Martin-Alarcon, D.A.; Gutiérrez, M.; Reynoso-Cuevas, L.; Martín-Domínguez, A.; Olmos-Márquez, M.A.; Bundschuh, J. Co-occurrence, possible origin, and health-risk assessment of arsenic and fluoride in drinking water sources in Mexico: Geographical data visualization. Sci. Total Environ. 2020, 698, 134168. [Google Scholar] [CrossRef]
- Pearson, K. VII. Mathematical contributions to the theory of evolution.—III. Regression, heredity, and panmixia. Philos. Trans. R. Soc. London 1896, 187, 253–318. [Google Scholar] [CrossRef] [Green Version]
- Rosales-Rivera, M.; Díaz-González, L.; Verma, S.P. A new online computer program (BiDASys) for ordinary and uncertainty weighted least-squares linear regressions: Case studies from food chemistry. Rev. Mex. Ing. Quim. 2018, 17, 507–522. [Google Scholar] [CrossRef]
- López-Guzmán, M.; Alarcón-Herrera, M.T.; Irigoyen-Campuzano, J.R.; Torres-Castañón, L.A.; Reynoso-Cuevas, L. Simultaneous removal of fluoride and arsenic from well water by electrocoagulation. Sci. Total Environ. 2019, 678, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Guo, H.; Wang, Y.; Wang, G.; Wang, H.; Zang, X.; Zhu, J. Groundwater hydrogeochemical characteristics and quality suitability assessment for irrigation and drinking purposes in an agricultural region of the North China plain. Environ. Earth Sci. 2021, 80, 162. [Google Scholar] [CrossRef]
- Martínez-Acuña, M.I.; Mercado-Reyes, M.; Alegría-Torres, J.A.; Mejía-Saavedra, J.J. Preliminary human health risk assessment of arsenic and fluoride in tap water from Zacatecas, México. Environ. Monit. Assess. 2016, 188, 476. [Google Scholar] [CrossRef] [PubMed]
- Thakur, L.S.; Mondal, P. Simultaneous arsenic and fluoride removal from synthetic and real groundwater by electrocoagulation process: Parametric and cost evaluation. J. Environ. Manag. 2017, 190, 102–112. [Google Scholar] [CrossRef]
- Narasaiah, V.; Rao, B.V. Groundwater quality of an hard rock aquifer in the Subledu Basin of Khammam district, India. Appl. Water Sci. 2021, 11, 89. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortiz Letechipia, J.; González-Trinidad, J.; Júnez-Ferreira, H.E.; Bautista-Capetillo, C.; Robles-Rovelo, C.O.; Contreras Rodríguez, A.R.; Dávila-Hernández, S. Aqueous Arsenic Speciation with Hydrogeochemical Modeling and Correlation with Fluorine in Groundwater in a Semiarid Region of Mexico. Water 2022, 14, 519. https://doi.org/10.3390/w14040519
Ortiz Letechipia J, González-Trinidad J, Júnez-Ferreira HE, Bautista-Capetillo C, Robles-Rovelo CO, Contreras Rodríguez AR, Dávila-Hernández S. Aqueous Arsenic Speciation with Hydrogeochemical Modeling and Correlation with Fluorine in Groundwater in a Semiarid Region of Mexico. Water. 2022; 14(4):519. https://doi.org/10.3390/w14040519
Chicago/Turabian StyleOrtiz Letechipia, Jennifer, Julián González-Trinidad, Hugo Enrique Júnez-Ferreira, Carlos Bautista-Capetillo, Cruz Octavio Robles-Rovelo, Ada Rebeca Contreras Rodríguez, and Sandra Dávila-Hernández. 2022. "Aqueous Arsenic Speciation with Hydrogeochemical Modeling and Correlation with Fluorine in Groundwater in a Semiarid Region of Mexico" Water 14, no. 4: 519. https://doi.org/10.3390/w14040519