# Exploring the Removal of Organic Matter in Constructed Wetlands Using First Order Kinetic Models

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

^{−1}. The characteristics analyzed for each system were: the season in which the experiment was conducted; type of influent sewage (raw or treated at primary level); vegetation (present or absent); total organic loading rate (OLR); hydraulic retention time (t); wetland length (L); length/width ratio (L/W); influent COD concentration (Co); type of porous substrate (gravel, crushed stone, river sand, steel slag); and treatment efficiency, represented by the remaining relative fraction (C⁄Co). Data from studies of these 41 CWs were published by nine different teams of authors [11,15,16,17,18,19,20,21,22,23]. When data were not directly available, the Digitizer tool from OriginPro software was used to obtain C or C/Co and t values throughout the profiles presented.

^{n})

## 3. Results and Discussion

#### 3.1. Determining the Best Model

^{−3}d

^{−1}, presenting 14 CWs with similar characteristics to each other. Using the SE, we determined, within each group, the model (first order or sigmoidal) that showed the best fit (Table 2).

#### 3.2. Relation between n Coeficcient and Organic Loading Rate (OLR)

#### 3.3. Association between n Coefficient and Inffluent COD Concentration (Co)

#### 3.4. Evaluation of Sigmoidal-Type Model

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Zhang, H.; Tang, W.; Wang, W.; Yin, W.; Liu, H.; Ma, X.; Zhou, Y.; Lei, P.; Wei, D.; Zhang, L.; et al. A Review on China’s Constructed Wetlands in Recent Three Decades: Application and Practice. J. Environ. Sci.
**2021**, 104, 53–68. [Google Scholar] [CrossRef] [PubMed] - Ergaieg, K.; Ben Miled, T. Full-Scale Hybrid Constructed Wetlands Monitoring for Decentralized Tertiary Treatment of Municipal Wastewater. Arab. J. Geosci.
**2021**, 14, 1407. [Google Scholar] [CrossRef] - Jiang, L.; Chui, T.F.M. A Review of the Application of Constructed Wetlands (CWs) and Their Hydraulic, Water Quality and Biological Responses to Changing Hydrological Conditions. Ecol. Eng.
**2022**, 174, 106459. [Google Scholar] [CrossRef] - Sharma, R.; Malaviya, P. Constructed wetlands for textile wastewater remediation: A review on concept, pollutant removal mechanisms, and integrated technologies for efficiency enhancement. Chemosphere
**2022**, 290, 133358. [Google Scholar] [CrossRef] [PubMed] - Parde, D.; Patwa, A.; Shukla, A.; Vijay, R.; Killedar, D.J.; Kumar, R. A review of constructed wetland on type, treatment and technology of wastewater. Environ. Technol. Innov.
**2021**, 21, 101261. [Google Scholar] [CrossRef] - Fernandez-Gatell, M.; Corbella, C.; Sanchez-Vila, X.; Puigagut, J. Microbial activity enhancement in constructed wetlands operated as bioelectrochemical systems. Chemosphere
**2022**, 287, 132383. [Google Scholar] [CrossRef] - Caselles-Osorio, A.; Vega, H.; Lancheros, J.C.; Casierra-Martínez, H.A.; Mosquera, J.E. Horizontal Subsurface-Flow Constructed Wetland Removal Efficiency Using Cyperus articulatus L. Ecol. Eng.
**2017**, 99, 479–485. [Google Scholar] [CrossRef] - Türker, O.C.; Yakar, A. A Hybrid Constructed Wetland Combined with Microbial Fuel Cell for Boron (B) Removal and Bioelectric Production. Ecol. Eng.
**2017**, 102, 411–421. [Google Scholar] [CrossRef] [Green Version] - Nivala, J.; Boog, J.; Headley, T.; Aubron, T.; Wallace, S.; Brix, H.; Mothes, S.; van Afferden, M.; Müller, R.A. Side-By-Side Comparison of 15 Pilot-Scale Conventional and Intensified Subsurface Flow Wetlands for Treatment of Domestic Wastewater. Sci. Total Environ.
**2019**, 658, 1500–1513. [Google Scholar] [CrossRef] - Matos, A.T.; Matos, M.P. Disposição de Águas Residuárias no Solo e em Sistemas Alagados Construídos; Editora UFV: Viçosa, Brazil, 2017. [Google Scholar]
- Von Sperling, M.; de Paoli, A.C. First-Order COD Decay Coefficients Associated with Different Hydraulic Models Applied to Planted and Unplanted Horizontal Subsurface-Flow Constructed Wetlands. Ecol. Eng.
**2013**, 57, 205–209. [Google Scholar] [CrossRef] - Ferreira, A.G.; Borges, A.C.; Rosa, A.P. Comparison of First-Order Kinetic Models for Sewage Treatment in Horizontal Subsurface-Flow Constructed Wetlands. Environ. Technol.
**2020**, 42, 4511–4518. [Google Scholar] [CrossRef] [PubMed] - Ventura, D.; Rapisarda, R.; Sciuto, L.; Milani, M.; Consoli, S.; Cirelli, G.L.; Licciardello, F. Application of First-Order Kinetic Removal Models on Constructed Wetlands under Mediterranean Climatic Conditions. Ecol. Eng.
**2022**, 175, 106500. [Google Scholar] [CrossRef] - Matos, A.T.; Matos, M.P.; Costa, R.A.; von Sperling, M. Influence of the Geometric Configuration of Unplanted Horizontal Subsurface Flow Constructed Wetlands in the Adjustment of Parameters of Organic Matter Decay Models. J. Water Process Eng.
**2018**, 22, 123–130. [Google Scholar] [CrossRef] - Brasil, M.D.S.; Matos, A.T.; Silva, C.M.; Cecon, P.R.; Soares, A.A. Modeling of Pollution Removal in Constructed Wetlands with Horizontal Subsurface Flow. Agrartech. Forsch. (Agric. Eng. Res.)
**2007**, 13, 48–56. [Google Scholar] - Giraldi, D.; de Michieli Vitturi, M.; Iannelli, R. Fitovert: A Dynamic Numerical Model of Subsurface Vertical Flow Constructed Wetlands. Environ. Model. Softw.
**2010**, 25, 633–640. [Google Scholar] [CrossRef] - Villaseñor, J.; Mena, J.; Fernández, F.J.; Gómez, R.; de Lucas, A. Kinetics of Domestic Wastewater COD Removal by Subsurface Flow Constructed Wetlands Using Different Plant Species in Temperate Period. Int. J. Environ. Anal. Chem.
**2011**, 91, 693–707. [Google Scholar] [CrossRef] - Chagas, R.C.; Matos, A.T.; Cecon, P.R.; Lo Monaco, P.A.V.; França, L.G.F. Cinética de Remoção de Matéria Orgânica em Sistemas Alagados Construídos Cultivados com Lírio Amarelo. Rev. Bras. Eng. Agrícola E Ambient.
**2011**, 15, 1186–1192. [Google Scholar] [CrossRef] - Konnerup, D.; Koottatep, T.; Brix, H. Treatment of Domestic Wastewater in Tropical, Subsurface Flow Constructed Wetlands Planted with Canna and Heliconia. Ecol. Eng.
**2009**, 35, 248–257. [Google Scholar] [CrossRef] - Trang, N.T.D.; Konnerup, D.; Schierup, H.-H.; Chiem, N.H.; Tuan, L.A.; Brix, H. Kinetics of Pollutant Removal from Domestic Wastewater in a Tropical Horizontal Subsurface Flow Constructed Wetland System: Effects of Hydraulic Loading Rate. Ecol. Eng.
**2010**, 36, 527–535. [Google Scholar] [CrossRef] - Valentim, M.A.A. Desempenho de Leitos Cultivados (“Constructed Wetland”) para Tratamento de Esgoto: Contribuições para Concepção e Operação. Ph.D. Thesis, State University of Campinas, Campinas, Brazil, 2003. [Google Scholar]
- Sandoval-Cobo, J.J.; Peña, M.R. Análisis del Desempeño de un Humedal Artificial de Flujo Sub-Superficial en Zonas Tropicales Basado en Modelos Hidráulicos y una Cinética de Primer Orden. In Proceedings of the Seminario Manejo Integral de Aguas Residuales Domésticas—Conferencia Latino Americana (LATINOSAN), Cali, Colombia, 12–16 November 2007. [Google Scholar]
- Eustáquio Júnior, V.; Matos, A.T.; Lo Monaco, P.A.V.; Campos, L.C.; Borges, A.C. Efficiency of Constructed Wetland Systems Cultivated with Black Oats Treatment of Domestic Sewage. Acta Sci. Technol.
**2012**, 34, 391–398. [Google Scholar] [CrossRef] - Moré, J.J. The Levenberg-Marquardt algorithm: Implementation and theory. Anal. Lect. Notes Math.
**1978**, 630, 105–116. [Google Scholar] [CrossRef] [Green Version] - Spiess, A.-N.; Neumeyer, N. An Evaluation of R
^{2}as an Inadequate Measure for Nonlinear Models in Pharmacological and Biochemical Research: A Monte Carlo Approach. BMC Pharmacol.**2010**, 10, 6. [Google Scholar] [CrossRef] [Green Version] - Hom, L.W. Kinetics of Chlorine Disinfection in an Ecosystem. J. Sanit. Eng. Div.
**1972**, 98, 183–194. [Google Scholar] [CrossRef] - Fia, F.R.L.; Matos, A.T.; Fia, R.; Borges, A.C.; Teixeira, D.L. Remoção de Matéria Orgânica e Determinação de Parâmetros Cinéticos em Sistemas Alagados Construídos em Escala Laboratorial. Acta Sci. Technol.
**2012**, 34, 149–156. [Google Scholar] [CrossRef] [Green Version] - Matos, A.T.; Matos, M.P.; Costa, R.A.; von Sperling, M. Influence Factors in the Adjustment of Parameters of the Modified First-Order Kinetics Equation Used to Model Constructed Wetland Systems. Acta Sci. Technol.
**2019**, 41, 36709. [Google Scholar] [CrossRef] - Cerf, O. Tailing of Survival Curves of Bacterial Spores. J. Appl. Bacteriol.
**1977**, 42, 1–19. [Google Scholar] [CrossRef] - Marugán, J.; van Grieken, R.; Sordo, C.; Cruz, C. Kinetics of the Photocatalytic Disinfection of Escherichia Coli Suspensions. Appl. Catal. B Environ.
**2008**, 82, 27–36. [Google Scholar] [CrossRef]

Group | OLR Range | Elements |
---|---|---|

1 | 4~43 | 14 |

2 | 60~92 | 9 |

3 | 107~118 | 4 |

4 | 158~211 | 8 |

5 | 253 | 6 |

^{−3}d

^{−1}), which is obtained by the math division of the load applied by the total volume.

**Table 2.**Best model for each group according to the standard errors of regression (SE) and their ranges.

Group | Best Model | SE Range |
---|---|---|

1 | First Order | 0.00013~0.13863 |

2 | Sigmoidal-type | 0.01263~0.09233 |

3 | Sigmoidal-type | 0.01592~0.07601 |

4 | Sigmoidal-type | 0.01912~0.27059 |

5 | Sigmoidal-type | 0.02668~0.06458 |

Group | Range of n | Means | Geometric Means | Medians |
---|---|---|---|---|

1 | 0.11~1.01 | 0.60 | 0.52 | 0.54 |

2 | 0.22~0.62 | 0.47 | 0.45 | 0.54 |

3 | 0.21~0.46 | 0.35 | 0.34 | 0.36 |

4 | 0.22~0.46 | 0.32 | 0.31 | 0.29 |

5 | 0.20~0.40 | 0.34 | 0.33 | 0.36 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Soares, B.S.; Borges, A.C.; de Matos, A.T.; Barbosa, R.B.G.; Silva, F.F.e.
Exploring the Removal of Organic Matter in Constructed Wetlands Using First Order Kinetic Models. *Water* **2022**, *14*, 472.
https://doi.org/10.3390/w14030472

**AMA Style**

Soares BS, Borges AC, de Matos AT, Barbosa RBG, Silva FFe.
Exploring the Removal of Organic Matter in Constructed Wetlands Using First Order Kinetic Models. *Water*. 2022; 14(3):472.
https://doi.org/10.3390/w14030472

**Chicago/Turabian Style**

Soares, Bárbara Santos, Alisson Carraro Borges, Antonio Teixeira de Matos, Rubens Barrichello Gomes Barbosa, and Fabyano Fonseca e Silva.
2022. "Exploring the Removal of Organic Matter in Constructed Wetlands Using First Order Kinetic Models" *Water* 14, no. 3: 472.
https://doi.org/10.3390/w14030472