Experimental Study on Head Loss Due to Cluster of Randomly Distributed Non-Uniform Roughness Elements in Supercritical Flow
Abstract
:1. Introduction
2. Methodology
2.1. Experimental Setup
2.2. Measurements
2.3. Proposed Empirical Models
3. Results
3.1. Water Surface and Velocity Profiles
3.2. Head Loss
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agostino, V.D.; Michelini, T. On kinematics and flow velocity prediction in step-pool channels. Water Resour. Res. 2015, 51, 4650–4667. [Google Scholar] [CrossRef]
- Bathurst, J.C. Flow resistance estimation in mountain rivers. J. Hydraul. Eng. 1985, 111, 625–643. [Google Scholar] [CrossRef]
- Comiti, F.; Mao, L.; Wilcox, A.; Wohl, E.E.; Lenzi, M.A. Field-derived relationships for flow velocity and resistance in high-gradient streams. J. Hydrol. 2007, 40, 48–62. [Google Scholar] [CrossRef]
- Ferguson, R. Flow resistance equations for gravel- and boulder-bed streams. Water Resour. Res. 2007, 43, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Hey, R.D. Flow resistance in gravel-bed Rivers. J. Hydraul. Div. 1979, 105, 365–379. [Google Scholar] [CrossRef]
- Yochum, S.E.; Bledsoe, P.B.; David, G.C.L.; Wohl, E. Velocity prediction in high gradient channels. J. Hydrol. 2012, 424, 84–98. [Google Scholar] [CrossRef]
- Cullen, J.J. Hypotheses to explain high-nutrient conditions in the open sea. Limnol. Oceanogr. 1991, 36, 1578–1599. [Google Scholar] [CrossRef] [Green Version]
- Maloney, K.O.; Munguia, P.; Mitchell, R.M. Anthropogenic disturbance and landscape patterns affect diversity patterns of aquatic benthic macroinvertebrates. J. N. Am. Benthol. Soc. 2011, 30, 284–295. [Google Scholar] [CrossRef]
- Poff, N.L.; Zimmerman, J.K.H. Ecological responses to altered flow regimes: A literature review to inform the science and management of environmental flows. Env. Flows Sci. Manag. 2009, 55, 194–205. [Google Scholar] [CrossRef]
- Crowder, D.W.; Diplas, P. Applying spatial hydraulic principles to quantify stream habitat. River Res. Appl. 2006, 22, 79–89. [Google Scholar] [CrossRef]
- Hayes, J.W.; Jowett, I.G. Microhabitat models of large drift-feeding brown trout in three New Zealand rivers. N. Am. J. Fish. Manag. 1994, 14, 710–725. [Google Scholar] [CrossRef]
- Modrick, T.M.; Georgakakos, K.P. Regional bankfull geometry relationships for southern California mountain streams and hydrologic applications. Geomorphology 2014, 221, 242–260. [Google Scholar] [CrossRef]
- Thorne, C.R.; Zevenbergen, L.W. Estimating mean velocity in mountain rivers. J. Hydraul. Eng. 1985, 111, 612–624. [Google Scholar]
- Chin, A. The geomorphic significance of step-pools in mountain streams. Geomorphology 2003, 55, 125–137. [Google Scholar] [CrossRef]
- Baki, A.B.M.; Zhu, D.Z.; Rajaratnam, N. Mean flow characteristics in a rock-ramp type fish pass. J. Hydraul. Eng. 2014, 140, 156–168. [Google Scholar] [CrossRef]
- Cassan, L.; Tien, T.; Courret, D.; Laurens, P.; Dartus, D. Hydraulic resistance of emergent macroroughness at large Froude numbers: Design of nature-like fishpasses. J. Hydraul. Eng. 2014, 140, 4014043. [Google Scholar] [CrossRef] [Green Version]
- Pagliara, S.; Dazzini, D. Hydraulics of block ramp for riverrestoration. In New Trends in Water and Environmental Engineering for Safety and Life: Eco-Compatible Solution for Aquatic Environments; Capri, CSDU: Milano, Italy, 2002. [Google Scholar]
- Ferguson, R. Time to abandon the Manning equation. Earth Surf. Processes Landf. 2010, 35, 1873–1876. [Google Scholar] [CrossRef]
- Jordanova, A.A. Low Flow Hydraulics in Rivers for Environmental Applications in South Africa. Ph.D. Thesis, University of Witwatersrand, Johannesburg, South Africa, 2008. [Google Scholar]
- Romero, M.; Revollo, N.; Molina, J. Flow resistance in steep mountain rivers in Bolivia. J. Hydrodyn. 2010, 22, 702–707. [Google Scholar] [CrossRef]
- Baki, A.B.M.; Zhang, W.; Zhu, D.Z.; Rajaratnam, N. Flow structures in the vicinity of a submerged boulder within a boulder array. J. Hydraul. Eng. 2017, 143, 04016104. [Google Scholar] [CrossRef]
- Cassan, L.; Laurens, P. Design of emergent and submerged rock-ramp fish passes. Knowl. Manag. Aquat. Ecosyst. 2016, 417, 45. [Google Scholar] [CrossRef] [Green Version]
- Pagliara, S.; Chiavaccini, P. Flow Resistance of Rock Chutes with Protruding Boulders. J. Hydraul. Eng. 2006, 6, 545–552. [Google Scholar] [CrossRef]
- Abdulla, A.A. Three-Dimensional Flow Model for Different Cross-Section High-Velocity Channels. Ph.D. Thesis, University of Plymouth, Plymouth, UK, 2013. [Google Scholar]
- Thappeta, S.K.; Bhallamudi, S.M.; Fiener, P.; Narasimhan, B. Resistance in steep open channels due to randomly distributed macro roughness elements at large Froude numbers. J. Hydrol. Eng. 2017, 22, 04017052. [Google Scholar] [CrossRef]
- Baki, A.B.M.; Zhu, D.Z.; Rajaratnam, N. Flow Simulation in a rock-ramp fish pass. J. Hydraul. Eng. 2016, 142, 4016031. [Google Scholar] [CrossRef]
- Cassan, L.; Roux, J.; Garambois, P.A. A semi-analytical model for the hydraulic resistance due to macro-roughness of varying shapes and densities. Water 2017, 9, 637. [Google Scholar] [CrossRef] [Green Version]
- Thappeta, S.K.; Bhallamudi, S.M.; Fiener, P.; Chandra, V.; Abul, B.M.B. Energy Loss in Steep Open Channels with Step-Pools. Water 2021, 13, 72. [Google Scholar] [CrossRef]
- Goring, D.G.; Nikora, V.I. Despiking Acoustic Doppler velocimeter data. J. Hydraul. Eng. 2002, 128, 0733–9429. [Google Scholar] [CrossRef] [Green Version]
- SonTek. ADV Technical Documentation; SonTek: San Diego, CA, USA, 1997. [Google Scholar]
- Canovaro, F.; Paris, E.; Solari, L. Effects of macro-scale bed roughness geometry on flow resistance. Water Resour. Res. 2007, 43, W10414. [Google Scholar] [CrossRef] [Green Version]
- Flammer, G.H.; Skogerboe, G.V.; Wei, C.Y.; Rasheed, H. Closed conduit to open channel stilling basin. J. Irrig. Drain. Eng. 1970, 96, 1–10. [Google Scholar] [CrossRef]
- David, R.L.; Gregory, J.M. Evaluating the use of goodness of the fit measures in hydrologic and hydro climatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar]
Flume Characteristics | Details of Macro Roughness Element’s | Flow Characteristics | Authors | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Length | Width | Bed Slope | Shape | Diameter | Distribution | Cluster Density Range † | Flow Rate | Relative Submergence ‡ | Froude Number | |
m | m | % | – | m | – | % | m3/s | – | – | – |
3.5, 6, and 9 | 0.25, 0.35, and 0.5 | 8, 18, 25, and 40 | Hemi sphere | 0.029 and 0.038 | Random | 0–30 | – | 0.5–10.5 | 0.8–2.8 | Pagliara and Chiavaccii [23] |
12 | 2 | 0.001 and 0.005 | Hemi sphere | 0.054 and 0.116 | Random | 2.9–74.9 | 0.0004–0.0105 | 0.4–2.0 | <1 | Jordanova [19] |
8.89 | 0.92 | 1.5, 3, and 5 | Sphere | 0.12–0.16 | Structured | – | 0.0250–0.1600 | 0.77–1.6 | 0.39–0.78 | Baki et al. [15] |
8.89 | 0.92 | 1.5 | Sphere | 0.14 | Structured | – | 0.1400–0.1980 | 1.56–1.90 | <1 | Baki et al. [21] |
7 and 10 | 0.25 and 1 | 1–9 | Cylinder | 0.035 and 0.115 | Structured | 8–16 | 0.0100–0.0900 | 0.3–2.8 | 0.14–1.8 | Cassan et al. [16] |
4 | 0.4 | 1–9 | Cylinder | 0.035 | Structured | 8–19 | 0.0010–0.0180 | >1 | 0.2–1.4 | Cassan and Laurens [20] |
7 | 0.92 | 5 | Sphere | 0.036–0.498 | Random | 0.7–16, 44 | 0.05–0.45 | 0.2–2.4 | 1.2–2.8 | Thappeta et al. [25] * |
Pattern | Flow Rate (m 3/s) | Average Flow Depth at “Section-U” Hu (m) | Relative Submergence Hu/Deff | Froude Number at “Section-U” Fu | Cluster Density λ (%) |
---|---|---|---|---|---|
A, B, and C | 0.110 | 0.0616 | 0.93 | 2.71 | 3 |
0.121 | 0.0666 | 1.00 | 2.65 | 3 | |
0.131 | 0.0721 | 1.09 | 2.56 | 3 |
Present Experimental Study Observations | Pagliara and Chinvacini [23] Model fi = cλd (c = 0.6; d = 0.7) | Cassan et al. [27] Model
| Thappeta et al. [25] Model ΔTE = ΔE + ΔEbed | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pattern | Q | Vu | ΔEbed | ΔTE | fi | ΔE | ΔTE | Error | q | ΔTE | Error | ΔE | ΔTE | Error |
(m3/s) | (m/s) | (m) | (m) | - | (m) | (m) | (%) | (m2/s) | (m) | (%) | (m) | (m) | (%) | |
A | 0.110 | 1.98 | 0.058 | 0.131 | 0.050 | 0.187 | 0.243 | −85 | 0.187 | 0.167 | −22 | 0.092 | 0.150 | −12 |
0.121 | 2.02 | 0.048 | 0.110 | 0.050 | 0.170 | 0.217 | −97 | 0.232 | 0.153 | −28 | 0.082 | 0.130 | −15 | |
0.131 | 2.02 | 0.046 | 0.092 | 0.050 | 0.170 | 0.212 | −130 | 0.225 | 0.144 | −36 | 0.074 | 0.120 | −23 | |
B | 0.110 | 1.98 | 0.058 | 0.124 | 0.050 | 0.187 | 0.243 | −96 | 0.187 | 0.167 | −26 | 0.092 | 0.150 | −17 |
0.121 | 2.02 | 0.048 | 0.127 | 0.050 | 0.170 | 0.217 | −71 | 0.232 | 0.153 | −17 | 0.082 | 0.130 | −2 | |
0.131 | 2.02 | 0.046 | 0.095 | 0.050 | 0.170 | 0.212 | −123 | 0.235 | 0.144 | −34 | 0.074 | 0.120 | −20 | |
C | 0.110 | 1.98 | 0.058 | 0.154 | 0.050 | 0.187 | 0.243 | −58 | 0.187 | 0.167 | −7.9 | 0.092 | 0.150 | +2 |
0.121 | 2.02 | 0.048 | 0.147 | 0.050 | 0.170 | 0.217 | −48 | 0.232 | 0.153 | −4 | 0.082 | 0.130 | +11 | |
0.131 | 2.02 | 0.046 | 0.087 | 0.050 | 0.170 | 0.212 | −144 | 0.225 | 0.144 | −39 | 0.074 | 0.120 | −27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thappeta, S.K.; Fiener, P.; Chandra, V. Experimental Study on Head Loss Due to Cluster of Randomly Distributed Non-Uniform Roughness Elements in Supercritical Flow. Water 2022, 14, 464. https://doi.org/10.3390/w14030464
Thappeta SK, Fiener P, Chandra V. Experimental Study on Head Loss Due to Cluster of Randomly Distributed Non-Uniform Roughness Elements in Supercritical Flow. Water. 2022; 14(3):464. https://doi.org/10.3390/w14030464
Chicago/Turabian StyleThappeta, Suresh Kumar, Peter Fiener, and Venu Chandra. 2022. "Experimental Study on Head Loss Due to Cluster of Randomly Distributed Non-Uniform Roughness Elements in Supercritical Flow" Water 14, no. 3: 464. https://doi.org/10.3390/w14030464
APA StyleThappeta, S. K., Fiener, P., & Chandra, V. (2022). Experimental Study on Head Loss Due to Cluster of Randomly Distributed Non-Uniform Roughness Elements in Supercritical Flow. Water, 14(3), 464. https://doi.org/10.3390/w14030464