Identify Priority Control Pollutants and Areas of Groundwater in an Old Metropolitan Industrial Area—A Case Study of Putuo, Shanghai, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Chemical Analysis
2.3. Risk Assessment Method
2.3.1. Single Factor Index
2.3.2. Nemerow Index (NI)
2.3.3. Health Risk Assessment
Daily intake
Non-Carcinogenic Risk
Carcinogenic Risk (CR)
2.4. Data Analyzing and Statistics
3. Results and Discussion
3.1. Descriptive Statistics
3.2. Spatial Distribution Pattern of Heavy Metals
3.3. Effects of Land-Use Covers on Groundwater Heavy Metals
3.4. Health Risk Assessment
3.4.1. Priority Control Pollutants
3.4.2. Main Contamination Pathways
3.4.3. Priority Control Areas
Carcinogenic Risk
Non-Carcinogenic Risk
3.4.4. Cumulative Risk
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Han, D.; Currell, M.J. Review of drivers and threats to coastal groundwater quality in China. Sci. Total Environ. 2022, 806, 150913. [Google Scholar] [CrossRef]
- Vitali, M.; Castellani, F.; Fragassi, G.; Mascitelli, A.; Manzoli, L. Environmental status of an Italian site highly polluted by illegal dumping of industrial wastes: The situation 15 years after the judicial intervention. Sci. Total Environ. 2020, 762, 144100. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Han, G.; Liu, M.; Li, X.; Yang, K. Spatial and Temporal Variation of Dissolved Heavy Metals in the Mun River, Northeast Thailand. Water 2019, 11, 380. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Ma, Z.; Kuijp, T.J.D.; Yuan, Z.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Gowd, S.S.; Kotaiah, B. Groundwater pollution by Cystine manufacturing industrial effluent around the factory. Environ. Geol. 2000, 39, 679–682. [Google Scholar] [CrossRef]
- Kakar, Y.P.; Bhatnagar, N.C. Ground Water Pollution Due to Industrial Effluents in Ludhiana, India. Stud. Environ. Sci. 1981, 17, 265–272. [Google Scholar]
- Volvoikar, S.P.; Nayak, G.N. Evaluation of impact of industrial effluents on intertidal sediments of a creek. Int. J. Environ. Sci. Technol. IJEST 2013, 10, 941–954. [Google Scholar] [CrossRef] [Green Version]
- Nouri, J.; Mahvi, A.H.; Jahed, G.R.; Babaei, A.A. Regional distribution pattern of groundwater heavy metals resulting from agricultural activities. Environ. Geol. 2008, 55, 1337–1343. [Google Scholar] [CrossRef]
- Medici, G.; West, L.J. Groundwater flow velocities in karst aquifers; importance of spatial observation scale and hydraulic testing for contaminant transport prediction. Environ. Sci. Pollut. Res. 2021, 28, 1–14. [Google Scholar] [CrossRef]
- Medici, G.; Baják, P.; West, L.J.; Chapman, P.J.; Banwart, S.A. DOC and nitrate fluxes from farmland; impact on a dolostone aquifer KCZ. J. Hydrol. 2021, 595, 125658. [Google Scholar] [CrossRef]
- Duan, X.; Zhang, G.; Rong, L.; Fang, H.; He, D.; Feng, D. Spatial distribution and environmental factors of catchment-scale soil heavy metal contamination in the dry-hot valley of Upper Red River in southwestern China. Catena 2015, 135, 59–69. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, J.; Wang, H.; Han, X.; Luan, H. Distribution and health risk assessment of potentially toxic elements in soils around coal industrial areas: A global meta-analysis. Sci. Total Environ. 2019, 713, 135292. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, F.; Du, H.; Liu, X.; Zhang, J. Fuzzy health risk assessment and integrated management of toxic elements exposure through soil-vegetables-farmer pathway near urban industrial complexes. Sci. Total Environ. 2020, 764, 142817. [Google Scholar] [CrossRef] [PubMed]
- Antoniadis, V.; Golia, E.E.; Liu, Y.T.; Wang, S.L.; Shaheen, S.M.; Rinklebe, J. Soil and maize contamination by trace elements and associated health risk assessment in the industrial area of Volos, Greece. Environ. Int. 2019, 124, 79–88. [Google Scholar] [CrossRef]
- Beattie, R.E.; Henke, W.; Campa, M.F.; Hazen, T.C.; McAliley, L.R.; Campbell, J.H. Variation in microbial community structure correlates with heavy-metal contamination in soils decades after mining ceased. Soil Biol. Biochem. 2018, 126, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Subhani, M.; Mustafa, I.; Alamdar, A.; Katsoyiannis, I.A.; Ali, N.; Huang, Q.; Peng, S.; Shen, H.; Eqani, S.A.M.A.S. Arsenic levels from different land-use settings in Pakistan: Bio-accumulation and estimation of potential human health risk via dust exposure. Ecotoxicol. Environ. Saf. 2015, 115, 187–194. [Google Scholar] [CrossRef]
- Huang, L.; Rad, S.; Xu, L.; Gui, L.; Chen, Z. Heavy Metals Distribution, Sources, and Ecological Risk Assessment in Huixian Wetland, South China. Water 2020, 12, 431. [Google Scholar] [CrossRef] [Green Version]
- Shahab, A.; Zhang, H.; Ullah, H.; Rashid, A.; Xiao, H. Pollution characteristics and toxicity of potentially toxic elements in road dust of a tourist city, Guilin, China: Ecological and health risk assessment. Environ. Pollut. 2020, 266, 115419. [Google Scholar] [CrossRef]
- Oves, M.; Khan, M.S.; Zaidi, A.; Ahmad, E. Soil contamination, nutritive value, and human health risk assessment of heavy metals: An overview. Toxic. Heavy Met. Legumes Bioremediation 2012, 1–27. [Google Scholar]
- Li, Y.; Bi, Y.; Mi, W.; Sx, D.; Li, J.A. Land-use change caused by anthropogenic activities increase fluoride and arsenic pollution in groundwater and human health risk. J. Hazard. Mater. 2021, 406, 124337. [Google Scholar] [CrossRef]
- Poggio, L.; Vrscaj, B. A GIS-based human health risk assessment for urban green space planning—An example from Grugliasco (Italy). Sci. Total Environ. 2009, 407, 5961–5970. [Google Scholar] [CrossRef] [PubMed]
- Ijumulana, J.; Ligate, F.; Bhattacharya, P.; Fm, B.; Cz, E. Spatial analysis and GIS mapping of regional hotspots and potential health risk of fluoride concentrations in groundwater of northern Tanzania. Sci. Total Environ. 2020, 735, 139584. [Google Scholar] [CrossRef] [PubMed]
- Morra, P.; Bagli, S.; Spadoni, G. The analysis of human health risk with a detailed procedure operating in a GIS environment. Environ. Int. 2006, 32, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Apollaro, C.; Di Curzio, D.; Fuoco, I.; Buccianti, A.; Dinelli, E.; Vespasiano, G.; Castrignanò, A.; Rusi, S.; Barca, D.; Figoli, A.; et al. A multivariate non-parametric approach for estimating probability of exceeding the local natural background level of arsenic in the aquifers of Calabria region (Southern Italy). Sci. Total Environ. 2022, 806, 150345. [Google Scholar] [CrossRef]
- Ravindra, K.; Mor, S. Distribution and health risk assessment of arsenic and selected heavy metals in Groundwater of Chandigarh, India. Environ. Pollut. 2019, 250, 820–830. [Google Scholar] [CrossRef]
- Nouri, J.; Mahvi, A.H.; Babaei, A.A.; Jahed, G.R.; Ahmadpour, E. Investigation of heavy metals in groundwater. Pak. J. Biol. Sci. 2006, 9, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Bi, C.; Zhou, Y.; Chen, Z.; Jia, J.; Bao, X. Heavy metals and lead isotopes in soils, road dust and leafy vegetables and health risks via vegetable consumption in the industrial areas of Shanghai, China. Sci. Total Environ. 2018, 619, 1349–1357. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Z.; Tao, Y.; Wang, D.; Huang, J.; Qiao, F.; Lei, L.; Xing, Q. Distribution characteristics, source appointment, and health risk assessment of Cd exposure via household dust in six cities of China. Build. Environ. 2020, 172, 106728. [Google Scholar] [CrossRef]
- Xie, Z.F.; Shen, S.L.; Arulrajah, A.; Sh, E. Environmentally sustainable groundwater control during dewatering with barriers: A case study in Shanghai. Undergr. Space 2021, 6, 12–23. [Google Scholar] [CrossRef]
- People’s Government of Putuo District, Shanghai. Available online: http://www.shpt.gov.cn/shpt/upload/202104/0419_090624_861.pdf (accessed on 18 November 2021).
- Krzysztof, L.; Wiechula, D.; Korns, I. Metal contamination of farming soils affected by industry. Environ. Int. 2003, 30, 159–165. [Google Scholar]
- Li, X.; Feng, L. Spatial distribution of hazardous elements in urban topsoils surrounding Xi’an industrial areas, (NW, China): Controlling factors and contamination assessments. J. Hazard. Mater. 2010, 174, 662–669. [Google Scholar] [CrossRef] [PubMed]
- Environmental Protection Agency. Office of Emergency and Remedial Response. Risk Assessment Guidance for Superfund (RAGS) Part A. Saúde Pública 1989, 804, 636–640. [Google Scholar]
- Cheng, Z.; Chen, L.; Li, H.; Lin, J.; Yang, Z.; Yang, Y.; Xu, X.; Xian, J.; Shao, J.; Zhu, Z. Characteristics and health risk assessment of heavy metals exposure via household dust from urban area in Chengdu, China. Sci. Total Environ. 2017, 619, 621–629. [Google Scholar] [CrossRef]
- EPA ABD. Risk Assessment Guidance for Superfund. In Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment). EPA/540/R/99, 2004. United States Environmental Protection Agency. Available online: https://www.epa.gov/sites/default/files/2015-11/documents/OSWERdirective9285.6-03.pdf (accessed on 18 November 2021).
- Chinese Ministry of Environment. Protection Exposure Factors Handbook of Chinese Population; China Environmental Science Press: Beijing, China, 2013.
- Cao, S.; Duan, X.; Zhao, X.; Wang, B.; Ma, J.; Fan, D.; Sun, C.; He, B.; Wei, F.; Jiang, G. Health risk assessment of various metal(loid)s via multiple exposure pathways on children living near a typical lead-acid battery plant, China. Environ. Pollut. 2015, 200, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, R. Risk assessment and seasonal variations of dissolved trace elements and heavy metals in the Upper Han River, China. J. Hazard. Mater. 2010, 181, 1051–1058. [Google Scholar] [CrossRef] [PubMed]
- Means, B. Risk-Assessment Guidance for Superfund. Volume 1. Human Health Evaluation Manual. Part A. Interim Report (Final) (No. PB-90-155581/XAB; EPA-540/1-89/002); Environmental Protection Agency: Washington, DC, USA, 1989; Office of Solid Waste and Emergency Response. [Google Scholar]
- Qian, D.; Yong, W.; Zhuang, D. Comparison of the common spatial interpolation methods used to analyze potentially toxic elements surrounding mining regions. J. Environ. Manag. 2018, 212, 23–31. [Google Scholar]
- Chen, G.; Wang, X.; Wang, R.; Liu, G. Health risk assessment of potentially harmful elements in subsidence water bodies using a Monte Carlo approach: An example from the Huainan coal mining area, China. Ecotoxicol. Environ. Saf. 2019, 171, 737–745. [Google Scholar] [CrossRef]
- Karunanidhi, D.; Aravinthasamy, P.; Subramani, T.; Kumar, D.; Venkatesan, G. Chromium contamination in groundwater and Sobol sensitivity model based human health risk evaluation from leather tanning industrial region of South India. Environ. Res. 2021, 199, 111238. [Google Scholar] [CrossRef]
- Stoeva, N.; Berova, M.; Zlatev, Z. Effect of arsenic on some physiological parameters in bean plants. Biol. Plant. 2005, 49, 293–296. [Google Scholar] [CrossRef]
- Huang, G.; Zhang, M.; Liu, C.; Li, L.; Chen, Z. Heavy metal(loid)s and organic contaminants in groundwater in the Pearl River Delta that has undergone three decades of urbanization and industrialization: Distributions, sources, and driving forces. Sci. Total Environ. 2018, 635, 913–925. [Google Scholar] [CrossRef]
- Kharazi, A.; Leili, M.; Khazaei, M.; Alikhani, M.Y.; Shokoohi, R. Human health risk assessment of heavy metals in agricultural soil and food crops in Hamadan, Iran. J. Food Compos. Anal. 2021, 100, 103890. [Google Scholar] [CrossRef]
- Bhutiani, R.; Kulkarni, D.B.; Khanna, D.R.; Gautam, A. Geochemical distribution and environmental risk assessment of heavy metals in groundwater of an industrial area and its surroundings, Haridwar, India. Energy Ecol. Environ. 2017, 2, 155–167. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Shen, C.; Chen, L.; Xiao, X.; Wu, J.; Khan, M.I.; Dou, C. and Chen, Y. Inorganic and organic pollution in agricultural soil from an emerging e-waste recycling town in Taizhou area, China. J. Soils Sediments 2010, 10, 895–906. [Google Scholar] [CrossRef]
- Ren, S.; Song, C.; Ye, S.; Cheng, C.; Gao, P. The spatiotemporal variation in heavy metals in China’s farmland soil over the past 20 years: A meta-analysis. Sci. Total Environ. 2022, 806, 150322. [Google Scholar] [CrossRef] [PubMed]
- Abeer, N.; Khan, S.A.; Muhammad, S.; Rasool, A.; Ahmad, I. Health risk assessment and provenance of arsenic and heavy metal in drinking water in Islamabad, Pakistan. Environ. Technol. Innov. 2020, 20, 101171. [Google Scholar] [CrossRef]
- Nag, R.; O’Rourke, S.M.; Cummins, E. Risk factors and assessment strategies for the evaluation of human or environmental risk from metal(loid)s—A focus on Ireland. Sci. Total Environ. 2021, 802, 149839. [Google Scholar] [CrossRef]
- Li, Y.; Ji, L.; Mi, W.; Xie, S.; Bi, Y. Health risks from groundwater arsenic on residents in northern China coal-rich region. Sci. Total Environ. 2021, 773, 145003. [Google Scholar] [CrossRef]
- Naseri, K.; Salmani, F.; Zeinali, M.; Zeinali, T. Health risk assessment of Cd, Cr, Cu, Ni and Pb in the muscle, liver and gizzard of hen’s marketed in East of Iran. Toxicol. Rep. 2021, 8, 53–59. [Google Scholar] [CrossRef]
- Ravindra, K.; Thind, P.S.; Mor, S.; Singh, T.; Mor, S. Evaluation of groundwater contamination in Chandigarh: Source identification and health risk assessment. Environ. Pollut. 2019, 255, 113062. [Google Scholar] [CrossRef]
- Cao, L.; Lin, C.; Gao, Y.; Sun, C.; Zhang, Z. Health risk assessment of trace elements exposure through the soil-plant (maize)-human contamination pathway near a petrochemical industry complex, Northeast China. Environ. Pollut. 2020, 263, 114414. [Google Scholar] [CrossRef]
- Belkhiri, L.; Mouni, L.; Narany, T.S.; Tiri, A. Evaluation of potential health risk of heavy metals in groundwater using the integration of indicator kriging and multivariate statistical methods. Groundw. Sustain. Dev. 2017, 4, 12–22. [Google Scholar] [CrossRef]
- Islam, A.R.M.T.; Bodrud-Doza, M.; Rahman, M.S.; Amin, S.B.; Chu, R.; Al Mamun, H. Sources of trace elements identification in drinking water of Rangpur district, Bangladesh and their potential health risk following multivariate techniques and Monte-Carlo simulation. Groundw. Sustain. Dev. 2019, 9, 100275. [Google Scholar]
- Xu, Z.; Li, J.; Pan, Y.; Chai, X. Human health risk assessment of heavy metals in a replaced urban industrial area of Qingdao, China. Environ. Monit. Assess. 2016, 188, 229. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Nagpal, A.K.; Kaur, I. Appraisal of heavy metal contents in groundwater and associated health hazards posed to human population of Ropar wetland, Punjab, India and its environs. Chemosphere 2019, 227, 179–190. [Google Scholar] [CrossRef]
Range of Pi or NI | Extent of Contamination |
---|---|
≤1 | safe |
(1, 2] | slight contamination |
(2, 3] | moderate contamination |
>3 | severe contamination |
Parameter | Significance | Unit | Adult | Child |
---|---|---|---|---|
ADDi | daily intake via drinking water | mg/(kg·d) | - | - |
ADDd | daily intake via dermal exposure | mg/(kg·d) | - | - |
C | concentration | mg·L−1 | - | - |
IR | ingestion rates | L/d | 1.8 | 0.7 |
EF | exposure frequency | d/a | 350 | 350 |
ED | exposure duration | a | 24 | 6 |
BW | body weight | kg | 60 | 15 |
AT (Non-carcinogens) | average time | d | 24 × 365 | 6 × 365 |
AT (Carcinogens) | average time | d | 70 × 365 | 70 × 365 |
SA | skin surface area | cm2 | 16,600 | 12,000 |
ET | exposure time | h/d | 0.33 | 0.33 |
PC | dermal permeability constant | 10−3 cm/h | - | - |
CF | unit conversion factor | l/cm3 | 0.001 | 0.001 |
Extent of Risk | HQ or HI | CR or TCR |
---|---|---|
safe | ≤1 | ≤1 × 10−6 |
acceptable risk | 1 × 10−6–1 × 10−4 | |
significant risk | >1 | >1 × 10−4 |
Parameter | As | Cd | Cr | Ni | Hg | Pb | Cu | Zn | |
---|---|---|---|---|---|---|---|---|---|
PC | 1.8 | 1 | 2 | 0.1 | 1.8 | 0.004 | 0.6 | 0.6 | |
RfD | drinking water | 0.0003 | 0.0005 | 0.003 | 0.02 | 0.0003 | 0.0014 | 0.04 | 0.3 |
dermal exposure | 0.0003 | 0.0005 | 0.003 | 0.0054 | 0.0003 | 0.00042 | 0.012 | 0.01 | |
SF | drinking water | 1.5 | 6.1 | 41 | |||||
dermal exposure | 3.66 | 6.1 | 41 |
Element | Unit | Min. | Max. | Avg. | S.D | C.V | Standard Value * |
---|---|---|---|---|---|---|---|
pH | - | 4.1 | 12.3 | 7.9 | 1.01 | 0.13 | 6.5–8.5 |
As | mg/L | 0.002 | 0.399 | 0.014 | 0.03 | 2.23 | 0.01 |
Cd | mg/L | 0.00005 | 0.022 | 0.0003 | 0.002 | 6.76 | 0.005 |
Cr | mg/L | 0.005 | 0.127 | 0.007 | 0.01 | 1.64 | 0.05 |
Ni | mg/L | 0.005 | 0.591 | 0.014 | 0.04 | 3.03 | 0.02 |
Hg | mg/L | 0.0001 | 0.4679 | 0.003 | 0.03 | 11.60 | 0.001 |
Pb | mg/L | 0.0005 | 0.153 | 0.002 | 0.01 | 4.94 | 0.01 |
Cu | mg/L | 0.002 | 0.922 | 0.013 | 0.06 | 4.60 | 1.0 |
Zn | mg/L | 0.001 | 2.52 | 0.035 | 0.16 | 4.66 | 1.0 |
Groups | Range | Area Proportion | |||
---|---|---|---|---|---|
CR (As) | CR (Cd) | CR (Cr) | TCR | ||
Child | <10−6 | 0.0% | 95.7% | 0.0% | 0.0% |
10−6–10−4 | 91.0% | 4.3% | 0.0% | 0.0% | |
>10−4 | 9.0% | 0.1% | 100.0% | 100.0% | |
Adult | <10−6 | 0.0% | 0.0% | 0.0% | 0.0% |
10−6–10−4 | 0.1% | 99.5% | 0.0% | 0.0% | |
>10−4 | 99.9% | 0.5% | 100.0% | 100.0% |
Groups | Range | Area Proportion | ||
---|---|---|---|---|
HQ (As) | HQ (Hg) | HI | ||
Child | <1 | 0.1% | 92.5% | 0.02% |
>1 | 99.9% | 7.5% | 99.98% | |
Adult | <1 | 74.0% | 93.7% | 52.3% |
>1 | 26.0% | 6.3% | 47.7% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, C.-Z.; Wang, X.-R. Identify Priority Control Pollutants and Areas of Groundwater in an Old Metropolitan Industrial Area—A Case Study of Putuo, Shanghai, China. Water 2022, 14, 459. https://doi.org/10.3390/w14030459
Yuan C-Z, Wang X-R. Identify Priority Control Pollutants and Areas of Groundwater in an Old Metropolitan Industrial Area—A Case Study of Putuo, Shanghai, China. Water. 2022; 14(3):459. https://doi.org/10.3390/w14030459
Chicago/Turabian StyleYuan, Chuan-Zheng, and Xiang-Rong Wang. 2022. "Identify Priority Control Pollutants and Areas of Groundwater in an Old Metropolitan Industrial Area—A Case Study of Putuo, Shanghai, China" Water 14, no. 3: 459. https://doi.org/10.3390/w14030459
APA StyleYuan, C.-Z., & Wang, X.-R. (2022). Identify Priority Control Pollutants and Areas of Groundwater in an Old Metropolitan Industrial Area—A Case Study of Putuo, Shanghai, China. Water, 14(3), 459. https://doi.org/10.3390/w14030459