Sheep Dung Ash as a Low-Cost Adsorbent for the Reduction of COD of Highly Polluted Oilfield-Produced Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Sheep Dung Ash
2.2. Characterization of the Produced Ash
2.3. Adsorption Process
3. Results and Discussion
3.1. Adsorbent Characterization
3.2. Adsorption Process
3.2.1. Effect of Adsorbent Dosage
3.2.2. Effect of Contact Time
3.2.3. Effect of Initial pH Value
3.2.4. Effect of Initial COD Value
3.3. Adsorption Isotherms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ebadi, S.; Ghasemipanah, K.; Alaie, E.; Rashidi, A.; Khataee, A. COD removal from gasfield produced water using photoelectrocatalysis process on coil type microreactor. J. Ind. Eng. Chem. 2021, 98, 262–269. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Al-Kaabi, M.A.; Ashfaq, M.Y.; Da’na, D.A. Produced water characteristics, treatment and reuse: A review. J. Water Process Eng. 2019, 28, 222–239. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, H.; Li, Y.; Xu, H.; Pan, Z.; Dai, P.; Wang, H.; Yang, Q. A review of treatment technologies for produced water in offshore oil and gas fields. Sci. Total Environ. 2021, 775, 145485. [Google Scholar] [CrossRef] [PubMed]
- Khurshid, H.; Mustafa, M.R.U.; Rashid, U.; Isa, M.H.; Ho, Y.C.; Shah, M.M. Adsorptive removal of COD from produced water using tea waste biochar. Environ. Technol. Innov. 2021, 23, 101563. [Google Scholar] [CrossRef]
- Khader, E.H.; Mohammed, T.J.; Mirghaffari, N.; Salman, A.D.; Juzsakova, T.; Abdullah, T.A. Removal of organic pollutants from produced water by batch adsorption treatment. Clean Technol. Environ. Policy 2021, 1, 1–8. [Google Scholar] [CrossRef]
- Udeagbara, S.G.; Isehunwa, S.O.; Okereke, N.U.; Oguamah, I.U. Treatment of produced water from Niger Delta oil fields using simultaneous mixture of local materials. J. Pet. Explor. Prod. 2021, 11, 289–302. [Google Scholar] [CrossRef]
- Dos Santos, E.V.; Bezerra Rocha, J.H.; de Araújo, D.M.; de Moura, D.C.; Martínez-Huitle, C.A. Decontamination of produced water containing petroleum hydrocarbons by electrochemical methods: A minireview. Environ. Sci. Pollut. Res. 2014, 21, 8432–8441. [Google Scholar] [CrossRef] [PubMed]
- Abdelkader, A.; Hussien, B.M.; Fawzy, E.M.; Ibrahim, A.A. Boehmite nanopowder recovered from aluminum cans waste as a potential adsorbent for the treatment of oilfield produced water. Appl. Petrochem. Res. 2021, 11, 137–146. [Google Scholar] [CrossRef]
- Kaur, K.; Mor, S.; Ravindra, K. Removal of chemical oxygen demand from landfill leachate using cow-dung ash as a low-cost adsorbent. J. Colloid Interface Sci. 2016, 469, 338–343. [Google Scholar] [CrossRef]
- Dorge, S.; Jeguirim, M.; Trouvé, G. Thermal degradation of Miscanthus pellets: Kinetics and aerosols characterization. Waste Biomass Valorization 2011, 2, 149–155. [Google Scholar] [CrossRef]
- Ojeme, V.C.; Ayodele, O.; Oluwasina, O.O.; Okoronkwo, E.A. Adsorption of Pb(II) ions from aqueous solutions using chemically treated and untreated cow dung ash. BioResources 2019, 14, 2622–2641. [Google Scholar]
- Kalembkiewicz, J.; Galas, D.; Sitarz-Palczak, E. The physicochemical properties and composition of biomass ash and evaluating directions of its applications. Pol. J. Environ. Stud. 2018, 27, 2593–2604. [Google Scholar] [CrossRef]
- Parande, A.K.; Stalin, K.; Thangarajan, R.K.; Karthikeyan, M.S. Utilization of Agroresidual Waste in Effective Blending in Portland Cement. ISRN Civ. Eng. 2011, 2011, 1–12. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Liao, X.; Liao, L.; Shu, W. Low-cost adsorbent prepared from sewage sludge and corn stalk for the removal of COD in leachate. Environ. Sci. Pollut. Res. 2014, 21, 8157–8166. [Google Scholar] [CrossRef]
- Vaiciukyniene, D.; Nizeviciene, D.; Mikelioniene, A.; Radzevicius, A. Utilization of zeolitic waste in alkali-activated biomass bottom ash blends. Molecules 2020, 25, 3053. [Google Scholar] [CrossRef]
- Nagalakshmi, T.V.; Emmanuel, K.A.; Suresh Babu, C.; Chakrapani, C.; Divakar, P.P. Preparation of Mesoporous Activated Carbon from Jackfruit PPI-1 Waste and Development of Different Surface Functional Groups. Int. Lett. Chem. Phys. Astron. 2015, 54, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Galhotra, P.; Navea, J.G.; Larsen, S.C.; Grassian, V.H. Carbon dioxide (C16O2 and C18O2) adsorption in zeolite y materials: Effect of cation, adsorbed water and particle size. Energy Environ. Sci. 2009, 2, 401–409. [Google Scholar] [CrossRef]
- Pasela, B.R.; Castillo, A.P.; Simon, R.; Pulido, M.T.; Mana-ay, H.; Abiquibil, M.R.; Montecillo, R.; Thumanu, K.; von Tumacder, D.; Taaca, K.L. Synthesis and characterization of acetic acid-doped polyaniline and polyaniline-chitosan composite. Biomimetics 2019, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Jin, Y.; He, M.; Niyungeko, C.; Zhang, J.; Liu, C.; Tian, G.; Arai, Y. Phosphorus speciation and release kinetics of swine manure biochar under various pyrolysis temperatures. Environ. Sci. Pollut. Res. 2018, 25, 25780–25788. [Google Scholar] [CrossRef]
- Baseri, H.; Tizro, S. Treatment of nickel ions from contaminated water by magnetite based nanocomposite adsorbents: Effects of thermodynamic and kinetic parameters and modeling with Langmuir and Freundlich isotherms. Process Saf. Environ. Prot. 2017, 109, 465–477. [Google Scholar] [CrossRef]
- Nayl, A.A.; Elkhashab, R.A.; El Malah, T.; Sobhy, M.; Yakout, S.M.; El-Khateeb, M.A.; Ali, M.M.S.; Ali, H.M. Adsorption studies on the removal of COD and BOD from treated sewage using activated carbon prepared from date palm waste. Environ. Sci. Pollut. Res. 2017, 24, 22284–22293. [Google Scholar] [CrossRef]
- Jamil, N.; Khan, S.M.; Ahsan, N.; Anwar, J.; Abdul, Q.; Zameer, M.; Shafique, U. Removal of Direct Red 16 (Textile Dye) from Industrial Effluent by using Feldspar. J. Chem. Soc. Pak. 2014, 36, 191–197. [Google Scholar]
- Bhatnagar, A.; Jain, A.K.; Mukul, M.K. Removal of congo red dye from water using carbon slurry waste. Environ. Chem. Lett. 2005, 2, 199–202. [Google Scholar] [CrossRef] [Green Version]
- Gallo-Cordova, A.; Silva-Gordillo, M.D.M.; Muñoz, G.A.; Arboleda-Faini, X.; Almeida Streitwieser, D. Comparison of the adsorption capacity of organic compounds present in produced water with commercially obtained walnut shell and residual biomass. J. Environ. Chem. Eng. 2017, 5, 4041–4050. [Google Scholar] [CrossRef]
- Wang, W.; Wang, J. Comparative evaluation of sorption kinetics and isotherms of pyrene onto microplastics. Chemosphere 2018, 193, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Veli, S.; Arslan, A.; Isgoren, M.; Bingöl, D.; Demiral, D. Experimental design approach to COD and color removal of landfill leachate by the electrooxidation process. Environ. Chall. 2021, 5, 100369. [Google Scholar] [CrossRef]
- Bajpai, M.; Katoch, S.S. Reduction of COD from real graywater by electro-coagulation using Fe electrode: Optimization through box-behnken design. Mater. Today Proc. 2020, 43, 303–307. [Google Scholar] [CrossRef]
- Oladipo, A.A. CuCr2O4@CaFe–LDO photocatalyst for remarkable removal of COD from high-strength olive mill wastewater. J. Colloid Interface Sci. 2021, 591, 193–202. [Google Scholar] [CrossRef]
- Potivichayanon, S.; Toensakes, R.; Supromin, N.; Seaung, K. Removal of High Levels of Cyanide and COD from Cassava Industrial Wastewater by a Fixed-Film Sequencing Batch Reactor. Water Air. Soil Pollut. 2020, 231, 301. [Google Scholar] [CrossRef]
- Myburgh, D.P.; Aziz, M.; Roman, F.; Jardim, J.; Chakawa, S. Removal of COD from Industrial Biodiesel Wastewater Using an Integrated Process: Electrochemical-Oxidation with IrO2-Ta2O5/Ti Anodes and Chitosan Powder as an Adsorbent. Environ. Process. 2019, 6, 819–840. [Google Scholar] [CrossRef]
- Kong, X.; Zhou, Y.; Xu, T.; Hu, B.; Lei, X.; Chen, H.; Yu, G. A novel technique of COD removal from electroplating wastewater by Fenton—alternating current electrocoagulation. Environ. Sci. Pollut. Res. 2020, 27, 15198–15210. [Google Scholar] [CrossRef]
- Devi, R.; Dahiya, R.P. Chemical oxygen demand (COD) reduction in domestic wastewater by fly ash and brick kiln ash. Water Air Soil Pollut. 2006, 174, 33–46. [Google Scholar] [CrossRef]
- Uysal, A.; Boyacioglu, E. Evaluation of the performance of titanium and zirconium salts as coagulants in industrial wastewater treatment: Pollutant removal, sludge production, and sludge characteristics. Appl. Water Sci. 2021, 11, 78. [Google Scholar] [CrossRef]
- Ebba, M.; Asaithambi, P.; Alemayehu, E. Investigation on operating parameters and cost using an electrocoagulation process for wastewater treatment. Appl. Water Sci. 2021, 11, 175. [Google Scholar] [CrossRef]
- Akinapally, S.; Dheeravath, B.; Panga, K.K.; Vurimindi, H.; Sanaga, S. Treatment of pesticide intermediate industrial wastewater using hybrid methodologies. Appl. Water Sci. 2021, 11, 56. [Google Scholar] [CrossRef]
- Kermani, M.; Shahsavani, A.; Ghaderi, P.; Kasaee, P.; Mehralipour, J. Optimization of UV-Electroproxone procedure for treatment of landfill leachate: The study of energy consumption. J. Environ. Health Sci. Eng. 2021, 19, 81–93. [Google Scholar] [CrossRef]
Parameter | Unit | Value |
---|---|---|
pH | - | 7.0 |
Salinity | mg/L | 205,335 |
Hardness | mg/L | 51,440 |
Total Dissolved Solids | mg/L | 227,400 |
Chemical Oxygen Demand | mg/L | 21,600 |
Magnesium | mg/L | 6676 |
Calcium | mg/L | 9620 |
Chloride | mg/L | 124,605 |
Bicarbonate | mg/L | 60 |
Langmuir Model | Freundlich Model | ||||
---|---|---|---|---|---|
KL (L/mg) | qm (mg/g) | R2 | n | Kf | R2 |
0.00066 | 500 | 0.946 | 1.8 | 3.8 | 0.982 |
Technique Used for COD Adsorption | Initial COD Value (mg/L) | % COD Removal | References |
---|---|---|---|
Adsorption on sheep dung ash | 21,600 | 75 | This study |
Photoelectrocatalysis on a coil-type microreactor | 9500 | 81 | [1] |
Adsorption on tea waste biochar | 2400 | 89.4 | [4] |
Adsorption on powdered activated carbon | 2508 | 95.9 | [5] |
Adsorption on clinoptilolite natural zeolite | 2508 | 63.7 | [5] |
Adsorption on boehmite nanopowder | 1150 | 69.6 | [8] |
Adsorption on commercial activated carbon | 1150 | 83.5 | [8] |
Activated cow dung ash | 2600 | 79 | [8] |
Electro-oxidation | 7150 | 97 | [26] |
Electro-coagulation using an Fe electrode | 355 | 70.09 | [27] |
Photoelectrocatalysis using a hybrid Ca-Fe–LDH catalyst | 1830 | 99 | [28] |
Fixed-film sequencing batch reactor | 26,133 | 74.43 | [29] |
Electrochemical oxidation with IrO2-Ta2O5/Ti anodes and chitosan powder | 55,000 | 94 | [30] |
Fenton–alternating current electro-coagulation | 1000 | 94.21 | [31] |
Adsorption on fly ash | 1080 | 87.84 | [32] |
Coagulation using titanium and zirconium salts | 3020 | 69.33 | [33] |
Electro-coagulation | 448 | 97.02 | [34] |
Hybrid methodology (i.e., combined rotavapor distillation, Fenton, and anerobic biological treatment) | 90,000 | 95 | [35] |
UV-electroproxone procedure | 9433 | 83 | [36] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, A.M.; Abboudy, S.M.; Abdelkader, A. Sheep Dung Ash as a Low-Cost Adsorbent for the Reduction of COD of Highly Polluted Oilfield-Produced Water. Water 2022, 14, 434. https://doi.org/10.3390/w14030434
Abbas AM, Abboudy SM, Abdelkader A. Sheep Dung Ash as a Low-Cost Adsorbent for the Reduction of COD of Highly Polluted Oilfield-Produced Water. Water. 2022; 14(3):434. https://doi.org/10.3390/w14030434
Chicago/Turabian StyleAbbas, Ahmed M., Sayed M. Abboudy, and Adel Abdelkader. 2022. "Sheep Dung Ash as a Low-Cost Adsorbent for the Reduction of COD of Highly Polluted Oilfield-Produced Water" Water 14, no. 3: 434. https://doi.org/10.3390/w14030434
APA StyleAbbas, A. M., Abboudy, S. M., & Abdelkader, A. (2022). Sheep Dung Ash as a Low-Cost Adsorbent for the Reduction of COD of Highly Polluted Oilfield-Produced Water. Water, 14(3), 434. https://doi.org/10.3390/w14030434