Willingness to Pay for the Maintenance of Green Infrastructure in Six Chinese Pilot Sponge Cities
Abstract
:1. Introduction
2. Methodology
2.1. Data Collection
2.2. Data Analysis
2.2.1. Binary Logistic Regression
2.2.2. Multiordinal Logistic Regression
3. Results
3.1. Profiles of Respondents’ Sociodemographic Information and WTP
3.2. Factors Influencing Respondents’ WTP
3.3. Factors Influencing Amount Respondents’Are Willing to Pay
4. Discussion
4.1. The Influence of Demographic Information
4.1.1. Age
4.1.2. Gender
4.1.3. Education Level
4.2. The Influence of Perceptions on the Sponge Cities Concept
4.3. Potentials to Improve the Maintenance Situation of GI Facilities
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meng, T.; Hsu, D. Stated preferences for smart green infrastructure in stormwater management. Landsc. Urban Plan. 2019, 187, 1–10. [Google Scholar] [CrossRef]
- Moulds, S.; Buytaert, W.; Templeton, M.R.; Kanu, I. Modeling the Impacts of Urban Flood Risk Management on Social Inequality. Water Resour. Res. 2021, 57, e2020WR029024. [Google Scholar] [CrossRef]
- Ureta, J.; Motallebi, M.; Vassalos, M.; Alhassan, M.; Ureta, J.C. Valuing stakeholder preferences for environmental benefits of stormwater ponds: Evidence from choice experiment. J. Environ. Manag. 2021, 293, 112828. [Google Scholar] [CrossRef] [PubMed]
- Pauleit, S.; Zölch, T.; Hansen, R.; Randrup, T.B.; van den Bosch, C.K. Nature-Based Solutions and Climate Change—Four Shades of Green. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas; Springer: Cham, Switzerland, 2017; pp. 29–49. [Google Scholar]
- Piacentini, S.M.; Rossetto, R. Attitude and Actual Behaviour towards Water-Related Green Infrastructures and Sustainable Drainage Systems in Four North-Western Mediterranean Regions of Italy and France. Water 2020, 12, 1474. [Google Scholar] [CrossRef]
- Shafique, M.; Xue, X.; Luo, X. An overview of carbon sequestration of green roofs in urban areas. Urban For. Urban Green. 2020, 47, 126515. [Google Scholar] [CrossRef]
- Benedict, M.A. Green Infrastructure Linking Landscapes and Communities; McMahon, E., Ed.; Island Press: Washington, DC, USA, 2006. [Google Scholar]
- Turkelboom, F.; Demeyer, R.; Vranken, L.; De Becker, P.; Raymaekers, F.; De Smet, L. How does a nature-based solution for flood control compare to a technical solution? Case study evidence from Belgium. AMBIO 2021, 50, 1431–1445. [Google Scholar] [CrossRef]
- Chen, V.; Brenes JR, B.; Chapa, F.; Hack, J. Development and modelling of realistic retrofitted Nature-based Solution scenarios to reduce flood occurrence at the catchment scale. AMBIO 2021, 50, 1462–1476. [Google Scholar] [CrossRef]
- Shafique, M.; Kim, R. Recent Progress in Low-Impact Development in South Korea: Water-Management Policies, Challenges and Opportunities. Water 2018, 10, 435. [Google Scholar] [CrossRef] [Green Version]
- McFarland, A.R.; Larsen, L.; Yeshitela, K.; Engida, A.N.; Love, N.G. Guide for using green infrastructure in urban environments for stormwater management. Environ. Sci.-Water Res. Technol. 2019, 5, 643–659. [Google Scholar] [CrossRef]
- Rodak, C.M.; Moore, T.L.; David, R.; Jayakaran, A.D.; Vogel, J.R. Urban stormwater characterization, control, and treatment. Water Environ. Res. 2020, 92, 1552–1586. [Google Scholar] [CrossRef]
- Stessens, P.; Canters, F.; Huysmans, M.; Khan, A.Z. Urban green space qualities: An integrated approach towards GIS-based assessment reflecting user perception. Land Use Policy 2020, 91, 104319. [Google Scholar] [CrossRef]
- Dempsey, N.; Smith, H.; Burton, M. (Eds.) Place-Keeping: Open Space Management in Practice; Routledge: New York, NY, USA, 2014. [Google Scholar]
- Qiao, X.J.; Liao, K.H.; Randrup, T.B. Sustainable stormwater management: A qualitative case study of the Sponge Cities initiative in China. Sustain. Cities Soc. 2020, 53, 101963. [Google Scholar] [CrossRef]
- Drake, J.; Guo, Y. Maintenance of wet stormwater ponds in Ontario. Can. Water Resour. J. 2008, 33, 351–368. [Google Scholar] [CrossRef] [Green Version]
- Asleson, B.C.; Nestingen, R.S.; Gulliver, J.S.; Hozalski, R.M.; Nieber, J.L. Performance assessment of rain gardens. J. Am. Water Resour. Assoc. 2009, 45, 1019–1031. [Google Scholar] [CrossRef]
- Li, H. Green Infrastructure for Highway Stormwater Management: Field Investigation for Future Design, Maintenance, and Management Needs. J. Infrastruct. Syst. 2015, 21, 05015001. [Google Scholar] [CrossRef]
- Reyes NJ, D.G.; Geronimo FK, F.; Choi, H.S.; Kim, L.H. Performance assessment of an urban stormwater infiltration trench considering facility maintenance. J. Wetl. Res. 2018, 20, 424–431. [Google Scholar]
- Pour, S.H.; Abd Wahab, A.K.; Shahid, S.; Asaduzzaman, M.; Dewan, A. Low impact development techniques to mitigate the impacts of climate-change-induced urban floods: Current trends, issues and challenges. Sustain. Cities Soc. 2020, 62, 102373. [Google Scholar] [CrossRef]
- Tanellari, E.; Bosch, D.; Boyle, K.; Mykerezi, E. On consumers’ attitudes and willingness to pay for improved drinking water quality and infrastructure. Water Resour. Res. 2015, 51, 47–57. [Google Scholar] [CrossRef]
- Gao, Y.; Babin, N.; Turner, A.J.; Hoffa, C.R.; Peel, S.; Prokopy, L.S. Understanding urban-suburban adoption and maintenance of rain barrels. Landsc. Urban Plan. 2016, 153, 99–110. [Google Scholar] [CrossRef]
- Shafique, M.; Kim, R.; Rafiq, M. Green roof benefits, opportunities and challenges—A review. Renew. Sustain. Energy Rev. 2018, 90, 757–773. [Google Scholar] [CrossRef]
- Bixler, T.S.; Houle, J.; Ballestero, T.; Mo, W. A dynamic life cycle assessment of green infrastructures. Sci. Total Environ. 2019, 692, 1146–1154. [Google Scholar] [CrossRef] [PubMed]
- Bixler, T.S.; Houle, J.; Ballestero, T.P.; Mo, W. A spatial life cycle cost assessment of stormwater management systems. Sci. Total Environ. 2020, 728, 138787. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, E.C.; Thorne, C.R.; Yeakley, J.A.; Chan, F.K.S. Sustainable flood risk and stormwater management in Blue-Green Cities; an Interdisciplinary case study in Portland, Oregon. J. Am. Water Resour. Assoc. 2020, 56, 757–775. [Google Scholar] [CrossRef]
- Qiao, X.J.; Liu, L.; Kristoffersson, A.; Randrup, T.B. Governance factors of sustainable stormwater management: A study of case cities in China and Sweden. J. Environ. Manag. 2019, 248, 109249. [Google Scholar] [CrossRef] [PubMed]
- MHURD. Sponge City Technical Guideline-Low Impact Development. 2014. Available online: https://www.mohurd.gov.cn/gongkai/fdzdgknr/tzgg/201411/20141103_219465.html (accessed on 7 January 2022).
- Johns, C.M. Understanding barriers to green infrastructure policy and stormwater management in the City of Toronto: A shift from grey to green or policy layering and conversion? J. Environ. Plan. Manag. 2019, 62, 1377–1401. [Google Scholar] [CrossRef]
- Tasca, F.A.; Finotti, A.R.; Goerl, R.F. A stormwater user fee model for operations and maintenance in small cities. Water Sci. Technol. 2019, 79, 278–290. [Google Scholar] [CrossRef] [PubMed]
- Cousins, J.J. Infrastructure and institutions: Stakeholder perspectives of stormwater governance in Chicago. Cities 2017, 66, 44–52. [Google Scholar] [CrossRef] [Green Version]
- William, R.; Garg, J.; Stillwell, A.S. A game theory analysis of green infrastructure stormwater management policies. Water Resour. Res. 2017, 53, 8003–8019. [Google Scholar] [CrossRef]
- Zhang, D.; Gersberg, R.M.; Ng, W.J.; Tan, S.K. Conventional and decentralized urban stormwater management: A comparison through case studies of Singapore and Berlin, Germany. Urban Water J. 2017, 14, 113–124. [Google Scholar] [CrossRef]
- Adegun, O. Developing Green Infrastructure in a Johannesburg Informal Settlement: Investigating Residents’ Willingness to Pay. Procedia Eng. 2017, 198, 176–186. [Google Scholar] [CrossRef]
- Manso, M.; Sousa, V.; Silva, C.M.; Cruz, C.O. The role of green roofs in post COVID-19 confinement: An analysis of willingness to pay. J. Build. Eng. 2022, 44, 103388. [Google Scholar] [CrossRef]
- Nawaz, S.; Gul, F. Cash transfer program and willingness to pay for environmental services among the ultra-poor in Pakistan. Environ. Sci. Pollut. Res. 2022, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Sabyrbekov, R.; Dallimer, M.; Navrud, S. Nature affinity and willingness to pay for urban green spaces in a developing country. Landsc. Urban Plan. 2020, 194, 103700. [Google Scholar] [CrossRef]
- Li, Q.; Wang, F.; Yu, Y.; Huang, Z.; Li, M.; Guan, Y. Comprehensive performance evaluation of LID practices for the sponge city construction: A case study in Guangxi, China. J. Environ. Manag. 2019, 231, 10–20. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Huang, M.; Zuo, J.; Rameezdeen, R. Received vs. given: Willingness to pay for sponge city program from a perceived value perspective. J. Clean. Prod. 2020, 256, 120479. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, M.; Song, B. Public perceptions of and willingness to pay for sponge city initiatives in China. Resour. Conserv. Recycl. 2017, 122, 11–20. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, X.; Xue, H. Identifying critical risks in Sponge City PPP projects using DEMATEL method: A case study of China. J. Clean. Prod. 2019, 226, 949–958. [Google Scholar] [CrossRef]
- Ding, L.; Ren, X.; Gu, R.; Che, Y. Implementation of the “sponge city” development plan in China: An evaluation of public willingness to pay for the life-cycle maintenance of its facilities. Cities 2019, 93, 13–30. [Google Scholar] [CrossRef]
- The Chinese Central Government. The Outline of the 14th Five-Year Plan (2021–2025) for National Economic and Social Development and the Long-Range Objectives through the Year 2035. 2021. Available online: https://www.12371.cn/special/ssw2035/ (accessed on 7 January 2022).
- Mullen, J.D.; Calhoun, K.C.; Colson, G.J. Preferences for policy attributes and willingness to pay for water quality improvements under uncertainty. Water Resour. Res. 2017, 53, 2627–2642. [Google Scholar] [CrossRef]
- Ali MA, S.; Khan, S.U.; Khan, A.; Khan, A.A.; Zhao, M. Ranking of ecosystem services on the basis of willingness to pay: Monetary assessment of a subset of ecosystem services in the Heihe River basin. Sci. Total Environ. 2020, 734, 139447. [Google Scholar] [CrossRef]
- Deely, J.; Hynes, S. Blue-green or grey, how much is the public willing to pay? Landsc. Urban Plan. 2020, 203, 103909. [Google Scholar] [CrossRef]
- Lehtoranta, V.; Louhi, P. Does conservation in Natura 2000 areas promote water quality improvement? Findings from a contingent valuation study on environmental benefits and residents’ preferences. Environ. Sci. Policy 2021, 124, 226–234. [Google Scholar] [CrossRef]
- Brent, D.A.; Gangadharan, L.; Lassiter, A.; Leroux, A.; Raschky, P.A. Valuing environmental services provided by local stormwatermanagement. Water Resour. Res. 2017, 23, 4907–4921. [Google Scholar] [CrossRef]
- Vasquez, W.F. Willingness to pay and willingness to work for improvements of municipal and community-managed water services. Water Resour. Res. 2014, 50, 8002–8014. [Google Scholar] [CrossRef] [Green Version]
- Chui, T.F.M.; Ngai, W.Y. Willingness to pay for sustainable drainage systems in a highly urbanised city: A contingent valuation study in Hong Kong. Water Environ. J. 2016, 30, 62–69. [Google Scholar] [CrossRef]
- Robson, E.; van Kerkhoff, L.; Cork, S. Understanding citizen perceptions of the Eastern Hills of Bogota: A participatory place-based ecosystem service assessment. Urban Ecosyst. 2019, 22, 19–35. [Google Scholar] [CrossRef]
- Bilgic, A. Measuring willingness to pay to improve municipal water in southeast Anatolia, Turkey. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.; Qin, S.; Gou, Z.; Yi, M. Engaging professionals in urban stormwater management: The case of China’s Sponge City. Build. Res. Inf. 2020, 48, 719–730. [Google Scholar] [CrossRef]
- Soto Montes de Oca, G.; Bateman, I.J. Scope sensitivity in households’ willingness to pay for maintained and improved water supplies in a developing world urban area: Investigating the influence of baseline supply quality and income distribution upon stated preferences in Mexico City. Water Resour. Res. 2006, 42, 1–15. [Google Scholar] [CrossRef]
- Exposito, A.; Espinosa, M.; Villa-Damas, A. Valuing Visitor Willingness to Pay for Urban Green Space Conservation: Case of Maria Luisa Park in Seville, Spain. J. Urban Plan. Dev. 2021, 147, 05021020. [Google Scholar] [CrossRef]
- Rashid, M.; Pandit, D. Rural communities’ perception of and willingness to pay for wastewater and stormwater management infrastructure in Bihar, India. J. Water Sanit. Hyg. Dev. 2020, 10, 36–47. [Google Scholar] [CrossRef]
- King, A.; Shackleton, C.M. Maintenance of public and private urban green infrastructure provides significant employment in Eastern Cape towns, South Africa. Urban For. Urban Green. 2020, 54, 126740. [Google Scholar] [CrossRef]
Items | Status | Frequency | Percentage |
---|---|---|---|
Gender | Female | 582 | 52.90% |
Male | 519 | 47.10% | |
Age | 18 | 5 | 0.40% |
19–25 | 147 | 13.40% | |
26–35 | 361 | 32.80% | |
36–45 | 253 | 23.00% | |
46–55 | 173 | 15.70% | |
56–65 | 76 | 6.90% | |
>65 | 86 | 7.80% | |
Education level | Primary school | 86 | 7.80% |
Middle school | 180 | 16.30% | |
High school | 201 | 18.30% | |
Vocational-technical college | 272 | 24.70% | |
Bachelor’s | 321 | 29.20% | |
Master’s and PhD | 41 | 3.70% | |
Family’s monthly income (RMB/month) | 1500–5000 | 219 | 20% |
5001–10,000 | 620 | 56.30% | |
10,001–15,000 | 154 | 14.00% | |
15,001–20,000 | 61 | 5.50% | |
>20,000 | 39 | 3.50% | |
Missing value | 8 | 0.70% | |
Previous knowledge of the sponge city concept | No | 476 | 43.20% |
Yes | 625 | 56.80% | |
Willingness to pay (WTP) | No | 367 | 33.30% |
Yes | 734 | 66.70% | |
Amount willing to pay (RMB/month) | Wouldn’t like to pay | 367 | 33.30% |
1–5 | 151 | 13.70% | |
6–10 | 187 | 17.00% | |
11–15 | 120 | 10.90% | |
16–20 | 80 | 7.30% | |
21–30 | 53 | 4.80% | |
31–50 | 70 | 6.40% | |
51–100 | 55 | 5.00% | |
>100 | 18 | 1.60% |
Variables | B | Standard Error | Wald Statistics | Significance | EXP(B) |
---|---|---|---|---|---|
Age | −0.20 | 0.006 | 12.919 | 0.000 | 0.980 |
Gender | 0.266 | 0.137 | 3.781 | 0.052 | 1.304 |
Previous knowledge of the sponge city concept | 0.291 | 0.139 | 4.368 | 0.037 | 1.337 |
Education level (Primary School) | 24.440 | 0.000 | |||
Education level (Middle School) | 0.604 | 0.277 | 4.743 | 0.029 | 1.829 |
Education level (High School) | 0.502 | 0.284 | 3.122 | 0.077 | 1.652 |
Education level (Vocational-Technical College) | 0.660 | 0.289 | 5.231 | 0.022 | 1.935 |
Education level (Bachelor’s) | 1.308 | 0.305 | 18.428 | 0.000 | 3.699 |
Education level (Master’s and PhD) | 1.196 | 0.481 | 6.174 | 0.013 | 3.307 |
Constant | 0.513 | 0.394 | 1.689 | 0.194 | 1.670 |
Willing to Pay Amount a (RMB/Month) | Factors | B | Standard Error | Wald Statistics | Significance | EXP(B) |
---|---|---|---|---|---|---|
6–10 | Age | −0.22 | 0.009 | 5.759 | 0.016 | 0.978 |
11–15 | Age | −0.54 | 0.012 | 19.858 | 0.000 | 0.948 |
16–20 | Age | −0.048 | 0.014 | 11.318 | 0.001 | 0.953 |
Education level (Middle School) | −3.939 | 1.323 | 8.870 | 0.003 | 0.019 | |
Education level (High School) | −2.723 | 1.153 | 5.578 | 0.018 | 0.066 | |
Education level (Vocational-Technical College) | −2.141 | 1.111 | 3.710 | 0.054 | 0.118 | |
Education level (Bachelor’s) | −1.422 | 1.111 | 1.639 | 0.200 | 0.241 | |
Education level (Master’s and PhD) | 0 b | |||||
21–30 | Age | −0.050 | 0.017 | 9.062 | 0.003 | 0.951 |
31–50 | Age | −0.024 | 0.013 | 3.147 | 0.076 | 0.976 |
51–100 | Age | −0.084 | 0.018 | 21.684 | 0.000 | 0.919 |
Education level (Middle School) | −2.142 | 1.211 | 3.128 | 0.077 | 0.117 | |
Education level (High School) | −2.358 | 1.178 | 4.009 | 0.045 | 0.095 | |
Education level (Vocational-Technical College) | −2.372 | 1.144 | 4.296 | 0.038 | 0.093 | |
Education level (Bachelor’s) | −1.749 | 1.138 | 2.362 | 0.124 | 0.174 | |
Education level (Master’s and PhD) | 0 b | |||||
>100 | Age | −0.072 | 0.026 | 7.512 | 0.006 | 0.930 |
Family month income | 0.042 | 0.020 | 4.282 | 0.039 | 1.043 | |
Education level (Vocational-Technical College) | −2.970 | 1.262 | 5.533 | 0.019 | 0.051 | |
Education level (Bachelor’s) | −2.867 | 1.272 | 5.081 | 0.024 | 0.057 | |
Education level (Master’s and PhD) | 0 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, X.-J.; Randrup, T.B. Willingness to Pay for the Maintenance of Green Infrastructure in Six Chinese Pilot Sponge Cities. Water 2022, 14, 428. https://doi.org/10.3390/w14030428
Qiao X-J, Randrup TB. Willingness to Pay for the Maintenance of Green Infrastructure in Six Chinese Pilot Sponge Cities. Water. 2022; 14(3):428. https://doi.org/10.3390/w14030428
Chicago/Turabian StyleQiao, Xiu-Juan, and Thomas B. Randrup. 2022. "Willingness to Pay for the Maintenance of Green Infrastructure in Six Chinese Pilot Sponge Cities" Water 14, no. 3: 428. https://doi.org/10.3390/w14030428
APA StyleQiao, X.-J., & Randrup, T. B. (2022). Willingness to Pay for the Maintenance of Green Infrastructure in Six Chinese Pilot Sponge Cities. Water, 14(3), 428. https://doi.org/10.3390/w14030428