Base Flow Variation and Attribution Analysis Based on the Budyko Theory in the Weihe River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Hydrometeorological Data
2.2. Digital Filtering
2.3. Mann-Kendall Inspection
2.4. Two-Stage Annual Precipitation Partitioning
2.5. The Nash-Sutcliffe Efficiency Coefficient
2.6. Determining the Contribution Rate of Climate Change and Human Activities
3. Results
3.1. Base Flow and Surface Runoff
3.2. Breakpoint Analysis
3.3. Model Calibration and Stream Flow Reconstruction
3.4. Attribution Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lipczynska-Kochany, E. Effect of climate change on humic substances and associated impacts on the quality of surface water and groundwater: A review. Total Environ. 2018, 640, 1548–1565. [Google Scholar] [CrossRef] [PubMed]
- Nistor, M.M. Climate change effect on groundwater resources in South East Europe during 21st century. Quat. Int. 2019, 504, 171–180. [Google Scholar] [CrossRef]
- Jin, X.; Jin, Y.; Mao, X.; Zhai, J.; Fu, D. Modelling the Impact of Vegetation Change on Hydrological Processes in Bayin River Basin, Northwest China. Water 2021, 13, 2787. [Google Scholar] [CrossRef]
- Wang, D.D.; Yu, X.X.; Jia, G.D.; Wang, H.N. Sensitivity analysis of runoff to climate, variability and land-use changes in the Haihe Basin mountainous area of north China. Agric. Ecosyst. Environ. 2019, 269, 193–203. [Google Scholar] [CrossRef]
- Wang, X.B.; He, K.N.; Dong, Z. Effects of climate change and human activities on runoff in the Beichuan River Basin in the northeastern Tibetan Plateau, China. Catena 2019, 176, 81–93. [Google Scholar] [CrossRef]
- Zheng, Y.T.; Huang, Y.F.; Zhou, S.; Wang, K.Y. Effect partition of climate and catchment changes on runoff variation at the headwater region of the Yellow River based on the Budyko complementary relationship. Total Environ. 2018, 643, 1166–1177. [Google Scholar] [CrossRef]
- Fang, Q.Q.; Wang, G.Q.; Liu, T.X.; Xue, B.L.; Yinglan, A. Controls of carbon flux in a semiarid grassland ecosystem experiencing wetland loss: Vegetation patterns and environmental variables. Agric. For. Meteorol. 2018, 259, 196–210. [Google Scholar] [CrossRef]
- Fang, Q.Q.; Wang, G.Q.; Xue, B.L.; Liu, T.X.; Kiem, A. How and to what extent doesprecipitation on multi-temporal scales and soil moisture at different depths determine carbon flux responses in a water-limited grassland ecosystem? Sci. Total Environ. 2018, 635, 1255–1266. [Google Scholar] [CrossRef]
- Shang, X.X.; Jiang, X.H.; Jia, R.N.; Wei, C. Land use and climate change effects on surface runoff variations in the upper Heihe River basin. Water 2019, 11, 344. [Google Scholar] [CrossRef] [Green Version]
- Vercruysse, K.; Grabowski, R.C. Human impact on river planform within the context of multi-timescale river channel dynamics in a Himalayan river system. Geomorphology 2021, 381. [Google Scholar] [CrossRef]
- Su, C.J.; Chen, X.H. Assessing the effects of reservoirs on extreme flows using nonstationary flood frequency models with the modified reservoir index as a covariate. Adv. Water Resour. 2019, 124, 29–40. [Google Scholar] [CrossRef]
- Wiekenkamp, I.; Huisman, J.A.; Bogena, H.R.; Vereecken, H. Effects of Deforestation on Water Flow in the Vadose Zone. Water 2020, 12, 35. [Google Scholar] [CrossRef] [Green Version]
- Cecilio, R.A.; Pimentel, S.M.; Zanetti, S.S. Modeling the influence of forest cover on streamflows by different approaches. Catena 2019, 178, 49–58. [Google Scholar] [CrossRef]
- Hardie, S.A.; Bobbi, C.J. Compounding Effects of Agricultural Land Use and Water Use in Free-Flowing Rivers: Confounding Issues for Environmental Flows. Environ. Manag. 2018, 61, 421–431. [Google Scholar] [CrossRef]
- Ye, X.; Zhang, Q.; Liu, J.; Li, X.; Xu, C. Distinguishing the relative impacts of climate change and human activities on variation of streamflow in the Poyang Lake catchment, China. J. Hydrol. 2013, 494, 83–95. [Google Scholar] [CrossRef]
- Zolfagharpour, F.; Saghafian, B.; Delavar, M. The impacts of climate variability and human activities on streamflow change at basin scale. Water Supply 2020, 20, 889–899. [Google Scholar] [CrossRef]
- Kim, J.; Choi, J.; Choi, C.; Park, S. Impacts of changes in climate and land use/land cover under IPCC RCP scenarios on streamflow in the Hoeya River Basin, Korea. J. Hydrol. 2013, 452, 181–195. [Google Scholar] [CrossRef]
- Lee, C.H.; Yeh, H.F. Impact of Climate Change and Human Activities on Streamflow Variations Based on the Budyko Framework. Water 2019, 11, 2001. [Google Scholar] [CrossRef] [Green Version]
- Chien, H.; Yeh, J.P.; Knouft, H.J. Modeling the potential impacts of climate change on streamflow in agricultural watersheds of the Midwestern United States. J. Hydrol. 2013, 491, 73–88. [Google Scholar] [CrossRef]
- Deng, X.Y.; Long, A.H.; Ling, H.B.; Deng, M.J.; Zhang, S.P. Effects of Climate Change and Human Activities on Runoff in the Headstream Areas of Tarim River Basin. J. Environ. 2015, 3, 31–45. [Google Scholar] [CrossRef]
- Cheng, J.X.; Xu, L.G.; Fan, H.X.; Jiang, J.H. Changes in the flow regimes associated with climate change and human activities in the Yangtze River. River Res. Appl. 2019, 35, 1415–1427. [Google Scholar] [CrossRef]
- Ma, J.Z.; Chen, L.H.; Zhang, Y.R.; Li, X.H.; Edmunds, W.M. Trends and periodicities in observed temperature, precipitation and runoff in a desert catchment: Case study for the Shiyang River Basin in Northwestern China. Water Environ. J. 2013, 27, 86–98. [Google Scholar] [CrossRef]
- Githui, F.; Gitau, W.; Mutuab, F.; Bauwensa, W. Climate change impact on SWAT simulated streamflow in western Kenya. Int. J. Climatol. 2009, 29, 1823–1834. [Google Scholar] [CrossRef]
- Ghaderpour, E.; Vujadinovic, T.; Hassan, Q.K. Application of the Least-Squares Wavelet software in hydrology: Athabasca River Basin. J. Hydrol. Reg. Stud. 2021, 36, 100847. [Google Scholar] [CrossRef]
- Bao, Z.; Zhang, J.; Wang, G.; Fu, G.; He, R.; Yan, X.; Jin, J.; Liu, Y.; Zhang, A. Attribution for decreasing streamflow of the Haihe River basin, northern China: Climate variability or human activities? J. Hydrol. 2012, 460, 117–129. [Google Scholar] [CrossRef]
- Ma, H.; Yang, D.; Tan, S.K.; Gao, B.; Hua, Q. Impact of climate variability and human activity on streamflow decrease in the Miyun Reservoir catchment. J. Hydrol. 2010, 389, 317–324. [Google Scholar] [CrossRef]
- Zheng, J.K.; Sun, G.; Li, W.H.; Yu, X.X.; Zhang, C.; Gong, Y.B.; Tu, L.H. Impacts of land use change and climate variations on annual inflow into Miyun Reservoir, Beijing, China. Hydrol. Earth Syst. Sci. Discuss. 2016, 20, 1561–1572. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Hejazi, M. Quantifying the relative contribution of the climate and direct human impacts on mean annual streamflow in the contiguous United States. Water Resour. Res. 2011, 47, 16. [Google Scholar] [CrossRef] [Green Version]
- Dalea, J.; Zou, C.B.; Andrews, W.J.; Long, J.M.; Liang, Y.; Qiao, L. Climate, water use, and land surface transformation in an irrigation intensive watershed—Streamflow responses from 1950 through 2010. Agric. Water Manag. 2015, 160, 144–152. [Google Scholar] [CrossRef]
- Wang, H.; Chen, L.; Yu, X. Distinguishing human and climate influences on streamflow changes in Luan River basin in China. Catena 2016, 136, 182–188. [Google Scholar] [CrossRef]
- Yang, S.; Kang, T.T.; Bu, J.Y.; Chen, J.H.; Wang, Z.P.; Gao, Y.C. Detection and Attribution of Runoff Reduction of Weihe River over Different Periods during 1961–2016. Water 2020, 12, 1416. [Google Scholar] [CrossRef]
- Li, S.Y.; Yang, G.Y.; Wang, H. The Runoff Evolution and the Differences Analysis of the Causes of Runoff Change in Different Regions: A Case of the Weihe River Basin, Northern China. Sustainability 2019, 11, 5295. [Google Scholar] [CrossRef] [Green Version]
- Zuo, D.; Xu, Z.; Wu, W.; Zhao, J.; Zhao, F. Identification of Streamflow Response to Climate Change and Human Activities in the Wei River Basin, China. Water Resour. Manag. 2014, 28, 833–851. [Google Scholar] [CrossRef]
- Zhan, C.; Jiang, S.; Sun, F.; Jia, Y.; Niu, C.; Yue, W. Quantitative contribution of climate change and human activities to runoff changes in the Wei River basin, China. Hydrol. Earth Syst. Sci. 2014, 18, 3069–3077. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.; Xiong, L.; Wang, D.; Liu, P.; Guo, S.; Xu, C. Separating the impacts of climate change and human activities on runoff using the Budyko-type equations with time-varying parameters. J. Hydrol. 2015, 522, 326–338. [Google Scholar] [CrossRef]
- Chang, J.X.; Wang, Y.M.; Istanbulluoglu, E.; Bai, T.; Huang, Q.; Yang, D.W.; Huang, S.Z. Impact of climate change and human activities on runoff in the Weihe River basin, China. Quat. Int. 2015, 380, 169–179. [Google Scholar] [CrossRef]
- Monteith, J.L. Solar radiation and productivity in tropical ecosystem. J. Appl. Ecol. 1972, 9, 747–766. [Google Scholar] [CrossRef] [Green Version]
- Nathan, R.J.; McMahon, T.A. Evaluation of automated techniques for base flow and recession analyses. Water Resour. 1990, 26, 1465–1473. [Google Scholar] [CrossRef]
- Zhao, W.; Li, Z.L.; Wang, Y.H. Base flow segmentation and its variation in the upper reaches of Heihe River Basin. South-to-North Water Transf. Water Sci. Technol. 2016, 14, 26–31. (In Chinese) [Google Scholar]
- Cui, Y.H. Study on the Response of Mine Water Inflow to Precipitation in Pingdingshan. No.7 mine. Master’s Thesis, North China University of Science and Technology, Qinhuangdao, China, 2018; p. 78. (In Chinese). [Google Scholar]
- Dong, X. Trend change analysis of precipitation and runoff in Hejiang River Basin based on Mann-Kendall test. Guangdong Water Resour. Hydropower 2021, 4, 73–78. (In Chinese) [Google Scholar]
- Chen, Z.R. Application Research of Mann-Kendall Test Method in the Analysis of Eutrophication Trend of Xinxihe Reservoir, Anhui Agricultural Science Bulletin. Anhui Agric. Sci. Bull. 2019, 25, 99–100+145. (In Chinese) [Google Scholar]
- Mann, B. Non-parametric test against trend. Econometricn 1945, 13, 245–259. [Google Scholar] [CrossRef]
- L’vovich, M.I.; Nace, R.L., Translators; World Water Resources and Their Future; Wiley: Hoboken, NJ, USA, 1979; p. 415.
- US Department of Agriculture Soil Conservation Service (USDA SCS). National Engineering Handbook; Section 4: Hydrology; SCS: Washington, DC, USA, 1985.
- Ponce, V.M.; Shetty, A.V. A conceptual model of catchment water balance. 1. Formulation and calibration. J. Hydrol. 1995, 173, 27–40. [Google Scholar] [CrossRef]
- Chen, X.; Wang, D. Modeling seasonal surface runoff and base flow based on the generalized proportionality hypothesis. J. Hydrol. 2015, 527, 367–379. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River forcasting using conceptual models. 1: A discussion of principles. J. Hydrol. 1970, 10, 280–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Liew, M.V.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, J.; He, R. Impacts of environmental change on runoff in Fenhe river basin of the middle Yellow River. Adv. Water Sci. 2006, 17, 853–858. (In Chinese) [Google Scholar]
- Zhang, A.; Zhang, C.; Fu, G.; Wang, B.; Bao, Z.; Zheng, H. Assessments of impacts of climate change and human activities on runoff with SWAT for the Huifa River Basin, Northeast China. Water Resour. Manag. 2012, 26, 2199–2217. [Google Scholar] [CrossRef]
- Rawshan, A.; Alban, K.; Shadan, A.; Shadan, A.; Ozgur, K. Long-Term Trends and Seasonality Detection of the Observed Flow in Yangtze River Using Mann-Kendall and Sen’s Innovative Trend Method. Water 2019, 9, 1855. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y. Study on the Impact of Baseflow on Watershed Water Balance; Northwest A&F University: Yangling, China, 2014. (In Chinese) [Google Scholar]
- Chang, J.X.; Jiang, J. Water dispatch of the south to north water transfer project in Shaanxi province. J. Nat. Resour. 2011, 26.1, 110–118. (In Chinese) [Google Scholar]
- Xiao, G.; Wang, J. Research on progress of rainwater harvesting agriculture on the Loess Plateau of China. Acta Ecol. Sin. 2003, 23, 1003–1011. (In Chinese) [Google Scholar]
- Su, X.L.; Kang, S.Z.; Wei, X.M.; Xing, D.W.; Cao, H.X. Impact of climate change and human activity on the runoff of Wei River basin to the Yellow River. J. Northwest Sci.-Tech. Univ. Agric. For. 2007, 35, 153–159. (In Chinese) [Google Scholar]
Station | α | Z | Breakpoint | ||
---|---|---|---|---|---|
Total Streamflow | Base Flow | Surface Runoff | |||
Linjiacun | 0.05 | ±1.96 | 1990 | 1977 | 1986 |
Xianyang | 0.05 | ±1.96 | 1986 | 1986 | 1989 |
Huaxian | 0.05 | ±1.96 | 1987 | 1974 | 1991 |
Site | Wp | Vp | ||
---|---|---|---|---|
Linjiacun | 8645 | 3000 | 0.01 | 0.01 |
Xianyang | 8645 | 2616 | 0.01 | 0.02 |
Huaxian | 4543 | 3983 | 0.06 | 0.02 |
Site | Base Flow (mm) | Surface Runoff (mm) | ||
---|---|---|---|---|
R2 | NSE | R2 | NSE | |
Linjiacun | 0.90 | 0.89 | 0.96 | 0.92 |
Xianyang | 0.96 | 0.96 | 0.97 | 0.90 |
Huaxian | 0.98 | 0.98 | 0.91 | 0.90 |
Site | Period | Total (mm) | Reconstructed (mm) | Total Change (mm) | Human | Climate | ||
---|---|---|---|---|---|---|---|---|
Values | % | Values | % | |||||
Linjiacun | 1960–1970 | 103.17 | 102.38 | 39.63 | 64 | 21.92 | 36 | |
1971–2005 | 41.63 | 81.26 | 61.55 | |||||
Xianyang | 1960–1970 | 132.06 | 125.54 | 37.59 | 60 | 24.91 | 40 | |
1971–2005 | 69.55 | 107.15 | 62.50 | |||||
Huaxian | 1960–1970 | 90.07 | 90.83 | 17.73 | 49 | 18.20 | 51 | |
1971–2005 | 54.14 | 71.87 | 35.92 |
Site | Period | Surfacel (mm) | Reconstructed (mm) | Surface Change (mm) | Human | Climate | ||
---|---|---|---|---|---|---|---|---|
Values | % | Values | % | |||||
Linjiacun | 1960–1970 | 27.75 | 27.40 | |||||
1971–2005 | 18.62 | 20.81 | 9.13 | 2.19 | 24 | 6.94 | 76 | |
Xianyang | 1960–1970 | 40.17 | 33.79 | |||||
1971–2005 | 23.72 | 27.49 | 16.45 | 3.77 | 23 | 12.68 | 77 | |
Huaxian | 1960–1970 | 28.13 | 28.95 | |||||
1971–2005 | 18.54 | 20.64 | 9.59 | 2.10 | 22 | 7.49 | 78 |
Site | Period | Base (mm) | Reconstructed (mm) | Base Change (mm) | Human | Climate | ||
---|---|---|---|---|---|---|---|---|
Values | % | Values | % | |||||
Linjiacun | 1960–1970 | 75.42 | 74.98 | |||||
1971–2005 | 23.02 | 60.22 | 52.40 | 37.20 | 71 | 15.20 | 29 | |
Xianyang | 1960–1970 | 91.89 | 91.75 | |||||
1971–2005 | 45.79 | 79.44 | 46.10 | 33.65 | 73 | 12.45 | 27 | |
Huaxian | 1960–1970 | 61.94 | 28.95 | |||||
1971–2005 | 35.64 | 51.16 | 26.30 | 15.52 | 59 | 10.78 | 41 |
Index | Linjiacun | Xianyang | Huaxian | |||
---|---|---|---|---|---|---|
Change (mm) | Percentage (%) | Change (mm) | Percentage (%) | Change (mm) | Percentage (%) | |
Total streamflow | 63.73 | 61 | 62.50 | 47 | 35.92 | 40 |
Surface flow | 9.85 | 35 | 16.45 | 41 | 9.59 | 34 |
Base flow | 52.88 | 70 | 46.05 | 50 | 26.34 | 43 |
Precipitation | 63.91 | 11 | 55.98 | 9 | 58.94 | 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, Z.; Liu, G.; Lin, S.; Fan, J.; Qin, T.; Li, Y.; Cheng, Y.; Zhou, B. Base Flow Variation and Attribution Analysis Based on the Budyko Theory in the Weihe River Basin. Water 2022, 14, 334. https://doi.org/10.3390/w14030334
Mu Z, Liu G, Lin S, Fan J, Qin T, Li Y, Cheng Y, Zhou B. Base Flow Variation and Attribution Analysis Based on the Budyko Theory in the Weihe River Basin. Water. 2022; 14(3):334. https://doi.org/10.3390/w14030334
Chicago/Turabian StyleMu, Zheng, Guanpeng Liu, Shuai Lin, Jingjing Fan, Tianling Qin, Yunyun Li, Yao Cheng, and Bin Zhou. 2022. "Base Flow Variation and Attribution Analysis Based on the Budyko Theory in the Weihe River Basin" Water 14, no. 3: 334. https://doi.org/10.3390/w14030334
APA StyleMu, Z., Liu, G., Lin, S., Fan, J., Qin, T., Li, Y., Cheng, Y., & Zhou, B. (2022). Base Flow Variation and Attribution Analysis Based on the Budyko Theory in the Weihe River Basin. Water, 14(3), 334. https://doi.org/10.3390/w14030334