Temp-Spatial Heterogeneity of Water Recharge and Its Stable Mechanisms of the Mountainous Rice Terraces in East Asia Monsoon Region
Abstract
:1. Introduction
2. Study Area
3. Data Sources and Research Methods
3.1. Sample Collection and Testing
3.2. Analysis Methods
3.2.1. Statistical Methods
3.2.2. Two-Component Isotopic Mixing Model
3.2.3. Calibration Model
3.2.4. Assessment of Water Source Stability Based on Drought Index
4. Results and Analysis
4.1. Characteristic Oxygen Stable Isotope Variations in Precipitation, Groundwater, and Terrace Water
4.1.1. Characteristic Variations of δ18O Values in the Precipitation
4.1.2. Characteristics Variations of δ18O Values in Groundwater
4.1.3. Characteristic Variations of δ18O in Terrace Water
4.2. Analysis of Terrace Water Recharge Sources
4.2.1. Determination of Water Recharge Sources for Terraces Based on the δD-δ18O Relationship of Water Bodies
4.2.2. Analysis of the Proportion of Recharge to Terrace Water Based on a Binary Mixture Model
4.3. Mechanisms of Temp-Spatial Heterogeneity of Water Recharge
4.3.1. Heterogeneous Characteristics of Alternating Recharge of Terrace Water during Rain-Fed and Spring-Fed Periods on an Annual Scale
4.3.2. Interwoven Heterogeneous Characteristics of Rain-Fed and Spring-Fed Terrace Water at a Basin Scale
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Middleton, B.A.; Souter, N.J. Functional integrity of freshwater forested wetlands, hydrologic alteration, and climate change. Ecosyst. Health Sustain. 2016, 2, e01200. [Google Scholar] [CrossRef] [Green Version]
- Henry, R.C.; Arneth, A.; Jung, M.; Rabin, S.S.; Rounsevell, M.D.; Warren, F.; Alexander, P. Global and regional health and food security under strict conservation scenarios. Nat. Sustain. 2022, 5, 303–310. [Google Scholar] [CrossRef]
- Sterling, S.M.; Ducharne, A.; Polcher, J. The impact of global land-cover change on the terrestrial water cycle. Nat. Clim. Chang. 2013, 3, 385–390. [Google Scholar] [CrossRef]
- Steffen, W.; Rockström, J.; Richardson, K.; Lenton, T.M.; Folke, C.; Liverman, D.; Summerhayes, C.P.; Barnosky, A.D.; Cornell, S.E.; Crucifix, M.; et al. Trajectories of the Earth System in the Anthropocene. Proc. Natl. Acad. Sci. USA 2018, 115, 8252–8259. [Google Scholar] [CrossRef] [Green Version]
- Leimbach, M.; Giannousakis, A. Burden sharing of climate change mitigation: Global and regional challenges under shared socio-economic pathways. Clim. Chang. 2019, 155, 273–291. [Google Scholar] [CrossRef]
- Grover, V.I. Impact of Climate Change on the Water Cycle. In Managing Water Resources under Climate Uncertainty; Springer Water; Shrestha, S., Anal, A.K., Salam, P.A., van der Valk, M., Eds.; Springer: Cham, Switzerland, 2015; pp. 3–30. [Google Scholar]
- Zhang, H.; Huang, G.H.; Wang, D.; Zhang, X.; Li, G.; An, C.; Cui, Z.; Liao, R.; Nie, X. An integrated multi-level watershed-reservoir modeling system for examining hydrological and biogeochemical processes in small prairie watersheds. Water Res. 2012, 46, 1207–1224. [Google Scholar] [CrossRef] [PubMed]
- Zahn, R. Monsoon linkages. Nature 2003, 421, 324–325. [Google Scholar] [CrossRef]
- Turner, A.G.; Annamalai, H. Climate change and the South Asian summer monsoon. Nat. Clim. Chang. 2012, 2, 587–595. [Google Scholar] [CrossRef]
- Mandal, S. Sustainable Land-Use and Water Management in Mountain Ecosystems. In Modelling Land-Use Change; Koomen, E., Stillwell, J., Bakema, A., Scholten, H.J., Eds.; Springer: Dordrecht, The Netherland, 2007. [Google Scholar] [CrossRef]
- Annamalai, H.; Slingo, J.M. Active/break cycles: Diagnosis of the intraseasonal variability of the Asian Summer Monsoon. Clim. Dyn. 2001, 18, 85–102. [Google Scholar] [CrossRef]
- Wang, B.; Lin, H. Rainy season of the Asian-Pacific summer monsoon. J. Clim. 2022, 15, 386–398. [Google Scholar] [CrossRef]
- Singh, D.; Tsiang, M.; Rajaratnam, B.; Diffenbaugh, N.S. Observed changes in extreme wet and dry spells during the South Asian summer monsoon season. Nat. Clim. Chang. 2014, 4, 456–461. [Google Scholar] [CrossRef]
- Maclean, J.; Dawe, D.; Hardy, B.; Hettel, G. Rice Almanac: Source Book for the Most Important Economic Activity on Earth; CABI Publishing: Wallingford, UK; International Rice Research Institute (IRRI): Metro Manila, Philippines, 2002. [Google Scholar]
- Bouman, B.; Humphreys, E.; Tuong, T.P.; Barker, R. Rice and water. Adv. Agron. 2007, 92, 187–237. [Google Scholar]
- Büntgen, U.; Urban, O.; Krusic, P.J.; Rybníček, M.; Kolář, T.; Kyncl, T.; Ač, A.; Koňasová, E.; Čáslavský, J.; Esper, J.; et al. Recent European drought extremes beyond Common Era background variability. Nat. Geosci. 2021, 14, 190–196. [Google Scholar] [CrossRef]
- Ceola, S.; Laio, F.; Montanari, A. Global-scale human pressure evolution imprints on sustainability of river systems. Hydrol. Earth Syst. Sci. 2019, 23, 3933–3944. [Google Scholar] [CrossRef] [Green Version]
- Penny, G.; Srinivasan, V.; Apoorva, R.; Jeremiah, K.; Peschel, J.; Young, S.; Thompson, S. A process-based approach to attribution of historical streamflow decline in a data-scarce and human-dominated watershed. Hydrol. Process. 2020, 34, 1971–1995. [Google Scholar] [CrossRef]
- Vrsmarty, C.J.; Lettenmaier, D.; Leveque, C.; Meybeck, M.; Lawford, R. Human transforming the global water system. Eos Trans. Am. Geophys. Union 2004, 85, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Boltz, F.; LeRoy, P.N.; Folke, C.; Kete, N.; Brown, C.M.; St. George, F.S.; Matthews, J.H.; Martinez, A.; Rockström, J. Water is a master variable: Solving for resilience in the modern era. Water Secur. 2018, 8, 100018. [Google Scholar]
- Gleick, P.H. Global freshwater resources: Soft-path solutions for the 21st century. Global freshwater resources: Soft-path solutions for the 21st century. Science 2003, 302, 1524–1528. [Google Scholar] [CrossRef] [Green Version]
- Hao, S.; Li, F.; Li, Y.; Gu, C.; Zhang, Q.; Qiao, Y.; Jiao, L.; Zhu, N. Stable isotope evidence for identifying the recharge mechanisms of precipitation, surface water, and groundwater in the Ebinur Lake Basin. Sci. Total Environ. 2019, 657, 1041–1050. [Google Scholar] [CrossRef]
- Gat, J.R. Oxygen and hydrogen isotopes in the hydrologic cycle. Annu. Rev. Earth Planet. Sci. 1996, 24, 225–262. [Google Scholar] [CrossRef] [Green Version]
- Brock, B.E.; Yi, Y.; Clogg-Wright, K.P.; Edwards, T.W.; Wolfe, B.B. Multi-year landscape-scale assessment of lakewater balances in the Slave River Delta, NWT, using water isotope tracers. J. Hydrol. 2009, 379, 81–91. [Google Scholar] [CrossRef]
- Turner, K.W.; Wolfe, B.B.; Edwards, T.W. Characterizing the role of hydrological processes on lake water balances in the Old Crow Flats, Yukon Territory, Canada, using water isotope tracers. J. Hydrol. 2010, 386, 103–117. [Google Scholar] [CrossRef]
- Lapworth, D.; Dochartaigh, B.; Nair, T.; O’Keeffe, J.; Krishan, G.; MacDonald, A.; Khan, M.; Kelkar, N.; Choudhary, S.; Krishnaswamy, J.; et al. Characterising groundwater-surface water connectivity in the lower Gandak catchment, a barrage regulated biodiversity hotspot in the mid-Gangetic basin. J. Hydrol. 2020, 594, 125923. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, G.; Meng, Y.; Xia, C.; Chen, K.; Chen, Y. Using stable isotopes as tracer to investigate hydrological condition and estimate water residence time in a plain region, Chengdu, China. Sci. Rep. 2021, 11, 2812. [Google Scholar] [CrossRef] [PubMed]
- Ayenew, T.; Kebede, S.; Alemyahu, T. Environmental isotopes and hydrochemical study applied to surface water and groundwater interaction in the Awash River basin. Hydrol. Process. 2007, 22, 1548–1563. [Google Scholar] [CrossRef]
- Liu, C.; Jiao, Y.; Zhao, D.; Ding, Y.; Liu, Z.; Xu, Q. Effects of Farming Activities on the Temporal and Spatial Changes of Hydrogen and Oxygen Isotopes Present in Groundwater in the Hani Rice Terraces, Southwest China. Water 2020, 12, 265. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Xiao, H.; Wei, Y.; Zhao, L.; Zou, S.; Yang, Q.; Yin, Z. Hydrological processes in the different landscape zones of alpine cold regions in the wet season, combining isotopic and hydrochemical tracers. Hydrol. Process. 2011, 26, 1457–1466. [Google Scholar] [CrossRef]
- Miller, S.A.; Mercer, J.J.; Lyon, S.W.; Williams, D.G.; Miller, S.N. Stable isotopes of water and specific conductance reveal complimentary information on streamflow generation in snowmelt-dominated, seasonally arid watersheds. J. Hydrol. 2021, 596, 126075. [Google Scholar] [CrossRef]
- Yang, N.; Zhou, P.; Wang, G.; Zhang, B.; Shi, Z.; Liao, F.; Li, B.; Chen, X.; Guo, L.; Dang, X.; et al. Hydrochemical and isotopic interpretation of interactions between surface water and groundwater in Delingha, Northwest China. J. Hydrol. 2021, 598, 126243. [Google Scholar] [CrossRef]
- Sklash, M.G.; Farvolden, R.N. The role of groundwater in storm runoff. J. Hydrol. 1979, 43, 45–65. [Google Scholar] [CrossRef]
- Gui, J.; Li, Z.; Yuan, R.; Xue, J. Hydrograph separation and the influence from climate warming on runoff in the north-eastern Tibetan Plateau. Quat. Int. 2019, 525, 45–53. [Google Scholar] [CrossRef]
- Buytaert, W.; Vuille, M.; Dewulf, A.; Urrutia, R.; Karmalkar, A.; Célleri, R. Uncertainties in climate change projections and regional downscaling in the tropical Andes: Implications for water resources management. Hydrol. Earth Syst. Sci. 2010, 14, 1247–1258. [Google Scholar] [CrossRef] [Green Version]
- Jiao, Y.; Liu, C.; Liu, Z.; Ding, Y.; Xu, Q. Impacts of moisture sources on the temporal and spatial heterogeneity of monsoon precipitation isotopic altitude effects. J. Hydrol. 2020, 583, 124576. [Google Scholar] [CrossRef]
- Gao, X.; Roder, G.; Jiao, Y.; Ding, Y.; Tarolli, P. Farmers’ landslide risk perceptions and willingness for restoration and conservation of world heritage site of Honghe Hani Rice Terraces, China. Landslides 2020, 17, 1915–1924. [Google Scholar] [CrossRef] [Green Version]
- Brooks, J.R. Water, bound and mobile. Science 2015, 349, 138–139. [Google Scholar] [CrossRef]
- Yunnan Geological Survey Bureau. 1:200,000 Regional Geological Report of the Yuanyang Areas; Yunnan Geological Survey Bureau: Kunming, China, 1971; pp. 20–31.
- Jiao, Y.M. Natural and Cultural Landscape Ecology of Hani Terraces; Chinese Environmental Science Press: Beijing, China, 2009; pp. 75–112. [Google Scholar]
- Masaya, Y. Environmental isotopes in groundwater. In Hydrogen and Oxygen Isotopes in Hydrology; Yoshida, N., Ed.; IHP, UNESCO: New York, NY, USA, 2022; pp. 109–132. [Google Scholar]
- Skrzypek, G.; Mydłowski, A.; Dogramaci, S.; Hedley, P.; Gibson, J.J.; Grierson, P.F. Estimation of evaporative loss based on the stable isotope composition of water using Hydrocalculator. J. Hydrol. 2015, 523, 781–789. [Google Scholar] [CrossRef] [Green Version]
- Penman, H.L. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1948, 193, 120–145. [Google Scholar]
- Yin, Y.; Ma, D.; Wu, S. Enlargement of the semi-arid region in China from 1961 to 2010. Clim. Dyn. 2018, 52, 509–521. [Google Scholar] [CrossRef]
- Craig, H. Isotopic Variations in Meteoric Waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef]
- Huang, Y.; Evaristo, J.; Li, Z. Multiple tracers reveal different groundwater recharge mechanisms in deep loess deposits. Geoderma 2019, 353, 204–212. [Google Scholar] [CrossRef]
- Wang, D.; Jiao, Y.; He, L.; Zong, L.; Xiang, D.; Hu, Z. Assessment on water source stability of the Hani Terrace landscape based on river-ditch connectivity. Chin. J. Ecol. 2014, 33, 2865–2872. [Google Scholar]
- Sintayehu, D.W. Impact of climate change on biodiversity and associated key ecosystem services in Africa: A systematic review. Ecosyst. Health Sustain. 2018, 4, 225–239. [Google Scholar] [CrossRef] [Green Version]
- Dang, K.B.; Burkhard, B.; Windhorst, W.; Müller, F. Application of a hybrid neural-fuzzy inference system for mapping crop suitability areas and predicting rice yields. Environ. Model. Softw. 2019, 114, 166–180. [Google Scholar] [CrossRef]
Date | Correlation Coefficient | Date | Correlation Coefficient |
---|---|---|---|
May | −0.70 * | November | −0.56 |
June | −0.77 * | December | −0.66 * |
July | −0.75 * | January | −0.58 |
August | −0.85 * | February | −0.70 * |
September | −0.66 * | March | −0.76 * |
October | −0.76 * | April | −0.83 * |
Rainy season | −0.87 * | Dry season | −0.70 * |
Annual | −0.80 * |
Time | Recharge Ratio | Time | Recharge Ratio | ||
---|---|---|---|---|---|
fp | fg | fp | fg | ||
May | 38% | 62% | November | 83% | 17% |
June | 82% | 18 % | December | 91% | 9% |
July | 96 % | 4% | January | 56% | 44% |
August | 84% | 16% | February | 77% | 23% |
September | 69% | 31% | March | 48% | 52% |
October | 56% | 44% | April | 22% | 78% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Jiao, Y.; Xu, Q.; Liu, Z.; Ding, Y. Temp-Spatial Heterogeneity of Water Recharge and Its Stable Mechanisms of the Mountainous Rice Terraces in East Asia Monsoon Region. Water 2022, 14, 4110. https://doi.org/10.3390/w14244110
Liu C, Jiao Y, Xu Q, Liu Z, Ding Y. Temp-Spatial Heterogeneity of Water Recharge and Its Stable Mechanisms of the Mountainous Rice Terraces in East Asia Monsoon Region. Water. 2022; 14(24):4110. https://doi.org/10.3390/w14244110
Chicago/Turabian StyleLiu, Chengjing, Yuanmei Jiao, Qiue Xu, Zhilin Liu, and Yinping Ding. 2022. "Temp-Spatial Heterogeneity of Water Recharge and Its Stable Mechanisms of the Mountainous Rice Terraces in East Asia Monsoon Region" Water 14, no. 24: 4110. https://doi.org/10.3390/w14244110