An Estimation of Virtual Trades of Embedded Water and Land through Sri Lankan Seasonal Crops’ Trades to Improve the Cropping Preferences
Abstract
:1. Introduction
- The concept can even be used by countries with ample land and water resources to increase the resource values further.
- The concept of virtual water and land trade helps in agricultural intensification and agricultural land expansion.
- The concept develops and interlinks between the physical quantities of agricultural products to sociological, economic, and anthropogenic domains [3].
1.1. Land and Water Resources of Sri Lanka
1.2. Problem Statement
1.3. Research Objectives
- An overview of land and water resources in Sri Lanka
- Trade balance of virtual water and land
- Identification of efficient crops
- Evaluation of major trade partners in terms of net flows
2. Literature Review
3. Methodology
3.1. Climatic Conditions
3.2. Trade Balance of Sri Lanka
3.3. Virtual Water Trade
3.3.1. Specific Water Demand
3.3.2. Virtual Water Estimation
3.4. Virtual Land Trade
3.4.1. Estimation of Virtual Land
3.4.2. External Land Dependency
4. Results and Discussion
4.1. Analysis of Significant Crops
4.1.1. Import Crops
4.1.2. Export Crops
4.2. Analysis of Virtual Trade Balances
4.2.1. Major Virtual Imports
4.2.2. Major Virtual Export
4.3. Trends in Water and Land Trade
4.4. Critical Crops and Trade Parners
5. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. Country Programming Framework for Sri Lanka. 2018. Available online: https://www.fao.org/3/i8778en/I8778EN.pdf (accessed on 4 January 2022).
- De Silva, C.; Weatherhead, E.; Knox, J.; Rodriguez-Diaz, J. Predicting the impacts of climate change—A case study of paddy irrigation water requirements in Sri Lanka. Agric. Water Manag. 2007, 93, 19–29. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, N.; Liu, X.; Liu, Y. Global virtual-land flow and saving through international cereal trade. J. Geogr. Sci. 2016, 26, 619–639. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Zhong, T.; Scott, S.; Tang, Y.; Xu, G.; He, Q. Links between China’s “virtual land use” and farmland loss. Can. J. Dev. Stud. 2018, 40, 29–47. [Google Scholar] [CrossRef]
- United Nations. World Population Policies, New York, 2013. Available online: https://www.un.org/en/development/desa/population/publications/pdf/policy/WPP2011/wpp2011.pdf (accessed on 4 January 2022).
- The Economics of Climate Change Mitigation: Policies and Options for Global Action Beyond 2012 OECD. Available online: https://www.oecd.org/env/cc/theeconomicsofclimatechangemitigationpoliciesandoptionsforglobalactionbeyond2012.htm (accessed on 10 January 2022).
- FAO. Agricultural Trade, Trade Policies and the Global Food System. 2000, pp. 232–264. Available online: https://www.fao.org/3/y4252e/y4252e09.pdf (accessed on 20 February 2022).
- Saji, S.; Umemoto, T.; Kida, H.; Sakata, K. Antitumor effect in peritoneal carcinomatosis of intraperitoneal administration of a streptococcal preparation, OK-432: I. Experimental study in the rat. J. Surg. Oncol. 1985, 30, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Booth, K. National security and international relations. Int. Aff. 1991, 67, 319. [Google Scholar] [CrossRef]
- Lucertini, G.; Di Giustino, G. Urban and Peri-Urban Agriculture as a Tool for Food Security and Climate Change Mitigation and Adaptation: The Case of Mestre. Sustainability 2021, 13, 5999. [Google Scholar] [CrossRef]
- Qiang, W.; Niu, S.; Liu, A.; Kastner, T.; Bie, Q.; Wang, X.; Cheng, S. Trends in global virtual land trade in relation to agricultural products. Land Use Policy 2020, 92, 104439. [Google Scholar] [CrossRef]
- Konar, M.; Dalin, C.; Suweis, S.; Hanasaki, N.; Rinaldo, A.; Rodriguez-Iturbe, I. Water for food: The global virtual water trade network. Water Resour. Res. 2011, 47, 4–11. [Google Scholar] [CrossRef] [Green Version]
- Ray, C.; McInnes, D.; Sanderson, M. Virtual water: Its implications on agriculture and trade. Water Int. 2018, 43, 717–730. [Google Scholar] [CrossRef] [Green Version]
- Gunatilaka, A. Water security and related issues in Sri Lanka: The need for integrated water resource management (IWRM). J. Natl. Sci. Found. Sri Lanka 2008, 36, 3. [Google Scholar] [CrossRef]
- Dalin, C.; Konar, M.; Hanasaki, N.; Rinaldo, A.; Rodriguez-Iturbe, I. Evolution of the global virtual water trade network. Proc. Natl. Acad. Sci. USA 2012, 109, 5989–5994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoekstra, A.Y.; Chapagain, A.K. Water footprints of nations: Water use by people as a function of their consumption pattern. Water Resour. Manag. 2006, 21, 35–48. [Google Scholar] [CrossRef]
- Huang, H.; von Lampe, M.; van Tongeren, F. Climate change and trade in agriculture. Food Policy 2011, 36, S9–S13. [Google Scholar] [CrossRef]
- Gkatsikos, A.; Mattas, K. The Paradox of the Virtual Water Trade Balance in the Mediterranean Region. Sustainability 2021, 13, 2978. [Google Scholar] [CrossRef]
- Ma, X.; Ma, Y. The spatiotemporal variation analysis of virtual water for agriculture and livestock husbandry: A study for Jilin Province in China. Sci. Total Environ. 2017, 586, 1150–1161. [Google Scholar] [CrossRef]
- Candido, L.A.; Coêlho, G.A.G.; de Moraes, M.M.G.A.; Florêncio, L. Review of Decision Support Systems and Allocation Models for Integrated Water Resources Management Focusing on Joint Water Quantity-Quality. J. Water Resour. Plan. Manag. 2022, 148, 03121001. [Google Scholar] [CrossRef]
- Würtenberger, L.; Koellner, T.; Binder, C.R. Virtual land use and agricultural trade: Estimating environmental and socio-economic impacts. Ecol. Econ. 2006, 57, 679–697. [Google Scholar] [CrossRef]
- Fader, M.; Gerten, D.; Thammer, M.; Heinke, J.; Lotze-Campen, H.; Lucht, W.; Cramer, W. Internal and external green-blue agricultural water footprints of nations, and related water and land savings through trade. Hydrol. Earth Syst. Sci. 2011, 15, 1641–1660. [Google Scholar] [CrossRef] [Green Version]
- Jayasiri, M.M.J.G.C.; Yadav, S.; Dayawansa, N.D.K.; Ingold, K. Managing agricultural water resources: Addressing the complexity of innovation, social perspectives, and water governance in Sri Lanka. Irrig. Drain. 2022, 71, 71–85. [Google Scholar] [CrossRef]
- Pawar, U.; Karunathilaka, P.; Rathnayake, U. Spatio-Temporal Rainfall Variability and Concentration over Sri Lanka. Adv. Meteorol. 2022, 2022, 6456761. [Google Scholar] [CrossRef]
- FAO; WFP. Special Report: FAO/WFP Crop and Food Security Assessment Mission to Sri Lanka, June 2017. Available online: https://www.fao.org/3/i7450e/i7450e.pdf (accessed on 3 March 2022).
- De Costa, W.J. Adaptation of agricultural crop production to climate change: A policy framework for Sri Lanka. J. Natl. Sci. Found. Sri Lanka 2010, 38, 79. [Google Scholar] [CrossRef]
- Evans, A.; Varma, S. Practicalities of participation in urban IWRM: Perspectives of wastewater management in two cities in Sri Lanka and Bangladesh. Nat. Resour. Forum 2009, 33, 19–28. [Google Scholar] [CrossRef]
- Gunaratne, M.S.; Firdaus, R.B.R.; Rathnasooriya, S.I. Climate change and food security in Sri Lanka: Towards food sovereignty. Humanit. Soc. Sci. Commun. 2021, 8, 229. [Google Scholar] [CrossRef]
- Tiseo, I. Water Stress Levels Globally by Country 2020. Statista, 5 September 2022. Available online: https://www.statista.com/statistics/1097524/water-stress-levels-by-country/#statisticContainer (accessed on 1 September 2022).
- Rijsberman, F.R. Water scarcity: Fact or fiction? Agric. Water Manag. 2006, 80, 5–22. [Google Scholar] [CrossRef] [Green Version]
- Abayawardana, S. Water Scarcity in Sri Lanka: Fact or Fiction? 2007. Available online: https://www.iwmi.cgiar.org/News_Room/Newsletters/Water_Matters/PDFs/Water%20Matters_Issue2-Final.pdf (accessed on 11 October 2022).
- Amarasingha, R.; Punyawardena, R.; Herath, R.; Jayawardena, S.; Jayakody, P.; Vuolo, M.R.; Fujisawa, M.; Heureux, A.; Kanamaru, H.; Manzanas, R.; et al. Climate Change Impacts on Crops in Sri Lanka; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Yamane, A. Climate Change and Hazardscape of Sri Lanka. Environ. Plan. A Econ. Space 2009, 41, 2396–2416. [Google Scholar] [CrossRef]
- EL Bilali, H.; Bassole, I.H.N.; Dambo, L.; Berjan, S. Climate change and food security. J. Agric. For. 2020, 66, 197–210. [Google Scholar] [CrossRef]
- Barnett, J. Dangerous climate change in the Pacific Islands: Food production and food security. Reg. Environ. Change 2010, 11, 229–237. [Google Scholar] [CrossRef]
- Schmidhuber, J.; Tubiello, F.N. Global food security under climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19703–19708. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.-M.; Chen, G. Virtual water accounting for the globalized world economy: National water footprint and international virtual water trade. Ecol. Indic. 2012, 28, 142–149. [Google Scholar] [CrossRef]
- Hoekstra, A.; Hung, P. Globalisation of water resources: International virtual water flows in relation to crop trade. Glob. Environ. Change 2005, 15, 45–56. [Google Scholar] [CrossRef]
- Chapagain, A.K.; Hoekstra, A.Y.; Savenije, H.H.G. Water saving through international trade of agricultural products. Hydrol. Earth Syst. Sci. 2006, 10, 455–468. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, M.; Hoekstra, A. National Water Footprint Accounts: The Green, Blue and Grey Water Footprint of Production and Consumption. Volume 1: Main Report. Daugherty Water for Food Global Institute: Faculty Publications, May 2011. Available online: https://digitalcommons.unl.edu/wffdocs/85 (accessed on 4 January 2022).
- Mekonnen, M.M.; Hoekstra, A.Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, J.-H.; Tian, Q.; Liu, Z.-H.; Zhang, H.-L. Virtual water trade of agricultural products: A new perspective to explore the Belt and Road. Sci. Total. Environ. 2018, 622–623, 988–996. [Google Scholar] [CrossRef]
- Zeitoun, M.; Allan, J.; Mohieldeen, Y. Virtual water ‘flows’ of the Nile Basin, 1998–2004: A first approximation and implications for water security. Glob. Environ. Change 2010, 20, 229–242. [Google Scholar] [CrossRef]
- Selim, K.S.; Abdalbaki, S.M. On the relationship between virtual water network and crops intra-trade among Nile basin countries. Water Policy 2019, 21, 481–495. [Google Scholar] [CrossRef]
- El-Sadek, A. Virtual Water Trade as a Solution for Water Scarcity in Egypt. Water Resour. Manag. 2009, 24, 2437–2448. [Google Scholar] [CrossRef]
- Fu, T.; Xu, C.; Huang, X. Analysis of Virtual Water Trade Flow and Driving Factors in the European Union. Water 2021, 13, 1771. [Google Scholar] [CrossRef]
- Mohammadi-Kanigolzar, F.; Ameri, J.D.; Motee, N. Virtual Water Trade as a Strategy to Water Resource Management in Iran. J. Water Resour. Prot. 2014, 6, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Brindha, K. Virtual water flows, water footprint and water savings from the trade of crop and livestock products of Germany. Water Environ. J. 2020, 34, 656–668. [Google Scholar] [CrossRef]
- Qasemipour, E.; Tarahomi, F.; Pahlow, M.; Sadati, S.S.M.; Abbasi, A. Assessment of Virtual Water Flows in Iran Using a Multi-Regional Input-Output Analysis. Sustainability 2020, 12, 7424. [Google Scholar] [CrossRef]
- Faramarzi, M.; Yang, H.; Mousavi, J.; Schulin, R.; Binder, C.R.; Abbaspour, K.C. Analysis of intra-country virtual water trade strategy to alleviate water scarcity in Iran. Hydrol. Earth Syst. Sci. 2010, 14, 1417–1433. [Google Scholar] [CrossRef] [Green Version]
- Konar, M.; Caylor, K.K. Virtual water trade and development in Africa. Hydrol. Earth Syst. Sci. 2013, 17, 3969–3982. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, J.; Tang, G.; Chen, M.; Wang, L. Virtual water flows in the international trade of agricultural products of China. Sci. Total Environ. 2016, 557–558, 1–11. [Google Scholar] [CrossRef]
- Guan, D.; Hubacek, K. Assessment of regional trade and virtual water flows in China. Ecol. Econ. 2007, 61, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Brindha, K. International virtual water flows from agricultural and livestock products of India. J. Clean. Prod. 2017, 161, 922–930. [Google Scholar] [CrossRef]
- Chouchane, H.; Hoekstra, A.Y.; Krol, M.S.; Mekonnen, M.M. The water footprint of Tunisia from an economic perspective. Ecol. Indic. 2015, 52, 311–319. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.; Bruckner, M.; Geng, Y.; Bleischwitz, R. Trends and driving forces of China’s virtual land consumption and trade. Land Use Policy 2019, 89, 104194. [Google Scholar] [CrossRef]
- Wu, S.; Ben, P.; Chen, D.; Chen, J.; Tong, G.; Yuan, Y.; Xu, B. Virtual land, water, and carbon flow in the inter-province trade of staple crops in China. Resour. Conserv. Recycl. 2018, 136, 179–186. [Google Scholar] [CrossRef]
- Yawson, D.O. Estimating virtual land use under future conditions: Application of a food balance approach using the UK. Land Use Policy 2020, 101, 105132. [Google Scholar] [CrossRef]
- Allan, J.A. Global Systems Ameliorate Local Droughts: Water, Food and Trade. In Drought and Drought Mitigation in Europe; Springer: Berlin/Heidelberg, Germany, 2000; Volume 14, pp. 265–277. [Google Scholar] [CrossRef]
- Yang, H.; Zehnder, A.J. Water Scarcity and Food Import: A Case Study for Southern Mediterranean Countries. World Dev. 2002, 30, 1413–1430. [Google Scholar] [CrossRef]
- Wichelns, D. The role of ‘virtual water’ in efforts to achieve food security and other national goals, with an example from Egypt. Agric. Water Manag. 2001, 49, 131–151. [Google Scholar] [CrossRef]
- Rees, W.E. Ecological Footprints and Appropriated Carrying Capacity: What Urban Economics Leaves Out. Earthscan Read. Rural. Link. 2018, 4, 285–297. [Google Scholar] [CrossRef]
- Bell, E.W.; Borgstrom, G. The Hungry Planet, the Modern World at the Edge of Famine. J. Farm Econ. 1966, 48, 762–764. [Google Scholar] [CrossRef]
- Erb, K.-H. Actual land demand of Austria 1926–2000: A variation on Ecological Footprint assessments. Land Use Policy 2004, 21, 247–259. [Google Scholar] [CrossRef]
- Kastner, T.; Nonhebel, S. Changes in land requirements for food in the Philippines: A historical analysis. Land Use Policy 2010, 27, 853–863. [Google Scholar] [CrossRef]
- Kissinger, M.; Rees, W.E. Importing terrestrial biocapacity: The U.S. case and global implications. Land Use Policy 2010, 27, 589–599. [Google Scholar] [CrossRef]
- Gerten, D.; Heinke, J.; Hoff, H.; Biemans, H.; Fader, M.; Waha, K. Global Water Availability and Requirements for Future Food Production. J. Hydrometeorol. 2011, 12, 885–899. [Google Scholar] [CrossRef]
- Ferng, J.-J. Measuring and locating footprints: A case study of Taiwan's rice and wheat consumption footprint. Ecol. Econ. 2011, 71, 191–201. [Google Scholar] [CrossRef]
- Lo, M.-H.; Famiglietti, J.; Yeh, P.J.-F.; Syed, T. Improving parameter estimation and water table depth simulation in a land surface model using GRACE water storage and estimated base flow data. Water Resour. Res. 2010, 46, 5–11. [Google Scholar] [CrossRef]
- Kissinger, M.; Gottlieb, D. Place oriented ecological footprint analysis—The case of Israel's grain supply. Ecol. Econ. 2010, 69, 1639–1645. [Google Scholar] [CrossRef]
- Moran, D.D.; Wackernagel, M.C.; Kitzes, J.A.; Heumann, B.W.; Phan, D.; Goldfinger, S.H. Trading spaces: Calculating embodied Ecological Footprints in international trade using a Product Land Use Matrix (PLUM). Ecol. Econ. 2009, 68, 1938–1951. [Google Scholar] [CrossRef]
- Villholth, K.G.; Rajasooriyar, L.D. Groundwater Resources and Management Challenges in Sri Lanka—An Overview. Water Resour. Manag. 2009, 24, 1489–1513. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Hung, P.Q. Virtual water trade: A quantification of virtual water flows between nations in relation to international crop trade. In Proceedings of the International Expert Meeting on Virtual Water Trade, Delft, The Netherlands, 12–13 December 2002; pp. 25–47. Available online: https://ci.nii.ac.jp/naid/10029232667 (accessed on 5 May 2021).
- Seo, S.-N.N.; Mendelsohn, R.; Munasinghe, M. Climate change and agriculture in Sri Lanka: A Ricardian valuation. Environ. Dev. Econ. 2005, 10, 581–596. [Google Scholar] [CrossRef] [Green Version]
- Nandasena, W.D.K.V.; Brabyn, L.; Serrao-Neumann, S. Using Google Earth Engine to classify unique forest and agroforest classes using a mix of Sentinel 2a spectral data and topographical features: A Sri Lanka case study. Geocarto Int. 2021, 1–16. [Google Scholar] [CrossRef]
- Peiris, H.M.P.; Gunarathne, N. The Changing Landscape of the Plantation Sector in the Central Highlands of Sri Lanka; Springer: Berlin/Heidelberg, Germany, 2021; pp. 539–554. [Google Scholar] [CrossRef]
- Kodikara, A.G.K.S.; Attanayake, C.P.; Vitharana, U.W.A. Spatial Variability of Cadmium and Lead in Surface Soils in-relation to Landuse and Topography. In Proceedings of the International Forestry and Environment Symposium, Negambo, Sri Lanka, 10–12 October 2019. [Google Scholar] [CrossRef]
- Shelton, S.; Pushpawela, B. Observed southwest monsoon rainfall changes in Sri Lanka and possible mechanisms. Model. Earth Syst. Environ. 2022, 8, 4165–4175. [Google Scholar] [CrossRef]
- Abeysingha, N.S. A Review of Recent Changes in Rainfall Trend in Sri Lanka. Trop. Agric. Res. Ext. 2022, 25, 4–8. [Google Scholar] [CrossRef]
- Centre for Climate Change Studies. Climate of Sri Lanka, Department of Meteorology. Available online: https://www.meteo.gov.lk/index.php?option=com_content&view=article&id=94&Itemid=310&lang=en (accessed on 23 June 2022).
- Senanayake, S.; Pradhan, B.; Huete, A.; Brennan, J. Spatial modeling of soil erosion hazards and crop diversity change with rainfall variation in the Central Highlands of Sri Lanka. Sci. Total Environ. 2022, 806, 150405. [Google Scholar] [CrossRef]
- Jayawardena, I.M.S.P.; Darshika, D.W.T.T.; Herath, H.M.R.C. Recent Trends in Climate Extreme Indices over Sri Lanka. Am. J. Clim. Change 2018, 07, 586–599. [Google Scholar] [CrossRef] [Green Version]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Tank, A.M.G.K.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 2006, 111, 1042–1063. [Google Scholar] [CrossRef] [Green Version]
- Shelton, S.; Pushpawela, B.; Liyanage, G. The long-term trend in the diurnal temperature range over Sri Lanka from 1985 to 2017 and its association with total cloud cover and rainfall. J. Atmos. Solar-Terr. Phys. 2021, 227, 105810. [Google Scholar] [CrossRef]
- Trading Economics. Sri Lanka Balance of Trade. 2022. Available online: https://tradingeconomics.com/sri-lanka/balance-of-trade (accessed on 22 August 2022).
- Central Bank of Sri Lanka. Monthly Trade Bulletin. 2022. Available online: https://www.cbsl.gov.lk/en/monthly-trade-bulletin (accessed on 22 August 2022).
- FAO. Global Information and Early Warning System. 2022. Available online: https://www.fao.org/giews/countrybrief/country.jsp?code=LKA&lang=en (accessed on 22 August 2022).
- Khan, H.; Weili, L.; Khan, I. Environmental innovation, trade openness and quality institutions: An integrated investigation about environmental sustainability. Environ. Dev. Sustain. 2021, 24, 3832–3862. [Google Scholar] [CrossRef]
- Miglietta, P.P.; Fischer, C.; De Leo, F. Virtual water flows and economic water productivity of Italian fair-trade: The case of bananas, cocoa and coffee. Br. Food J. 2021, 124, 4009–4023. [Google Scholar] [CrossRef]
- Nishad, S.N.; Kumar, N. Virtual water trade and its implications on water sustainability. Water Supply 2021, 22, 1704–1715. [Google Scholar] [CrossRef]
- Sun, J.; Yin, Y.; Sun, S.; Wang, Y.; Yu, X.; Yan, K. Review on research status of virtual water: The perspective of accounting methods, impact assessment and limitations. Agric. Water Manag. 2021, 243, 106407. [Google Scholar] [CrossRef]
- FAO. “CropWat|”, Food ang Agriculture Organization of the United Nations. 2022. Available online: https://www.fao.org/land-water/databases-and-software/cropwat/en/ (accessed on 20 November 2022).
- McNaughton, K.; Jarvis, P. Using the Penman-Monteith equation predictively. Agric. Water Manag. 1984, 8, 263–278. [Google Scholar] [CrossRef]
- Biemans, H.; Siderius, C.; Mishra, A.; Ahmad, B. Crop-specific seasonal estimates of irrigation-water demand in South Asia. Hydrol. Earth Syst. Sci. 2016, 20, 1971–1982. [Google Scholar] [CrossRef]
- Smith, M. Expert Consultation on Revision of FAO Methodologies for Crop Water Requirements; Food and Agriculture Organization: Roma, Italy, 1992. [Google Scholar] [CrossRef]
- Weisz, R.N.; Day, J.C. A regional planning approach to the floodplain management problem. Ann. Reg. Sci. 1975, 9, 80–92. [Google Scholar] [CrossRef]
- EUROSTAT. Eurostat Database. 2021. Available online: https://ec.europa.eu/eurostat/web/main/data/database (accessed on 4 December 2021).
- USDA. Global Agricultural Trade System, United Stares Department of Agriculture. 2022. Available online: https://apps.fas.usda.gov/gats/default.aspx (accessed on 16 November 2022).
- FAOSTAT. Statistical Databases of the Food and Agriculture Organization of the United Nations. 2020. Available online: http://www.fao.org/faostat/en/#home (accessed on 18 November 2022).
- United Nations. International Merchandise Trade. UNCTAD STAT. 2022. Available online: https://unctadstat.unctad.org/wds/ReportFolders/reportFolders.aspx?sCS_ChosenLang=en (accessed on 16 November 2019).
- Chatham House. Resource Trade Earth, The Royal Institute of International Affairs. 2020. Available online: https://resourcetrade.earth/ (accessed on 20 November 2022).
- World Bank International Cooperation on Trade. 2019, pp. 214–237. Available online: https://elibrary.worldbank.org/doi/10.1596/978-1-4648-1457-0_ch9 (accessed on 23 November 2022).
- World Bank. Arable Land (Hectares per Person)|Data. 2022. Available online: https://data.worldbank.org/indicator/AG.LND.ARBL.HA.PC (accessed on 25 November 2022).
- Kaatrud, M.D.; Country, M.B.B. Focal Points: Sri Lanka Country Strategic Plan (2018–2022). World Food Program. 2017. Available online: http://executiveboard.wfp.org (accessed on 9 August 2022).
- Dayananda, N.R. A Contemporary Approach for an Updated Food Safety and Security Strategy for Sri Lanka. Natl. Sci. Technol. Comm. 2022. Available online: https://www.researchgate.net/publication/362303035 (accessed on 9 August 2022).
- Dharmaratne, T.A. Tural Statistics: The Sri Lankan Experiences of Developing Agricultural Marketing Information Service for Small Farmers. In Proceedings of the Fourth International Conference on Agricultural Statistics (ICAS-4): Advancing Statistical Integration and Analysis (ASIA), Beijing, China, 22–24 October 2007. [Google Scholar]
- FAO Publications Catalogue. 2022. Available online: https://www.fao.org/documents/card/en/c/cc2323en (accessed on 25 November 2022).
Sr# | Crops | Quantity (kt) | 2010–2020 Fluctuations | Change |
---|---|---|---|---|
1 | Wheat | 11,692.85 | ▲17.85% | |
2 | Potatoes | 1414.57 | ▲9.81% | |
3 | Maize | 602.24 | ▲49.27% | |
4 | Peas | 415.87 | ▲34.27% | |
5 | Grapes | 44.27 | ▲34.42% | |
6 | Oranges | 28.06 | ▼261.49% | |
7 | Onions | 22.45 | ▲94.75% | |
8 | Tobacco | 12.70 | ▲52.36% | |
9 | Beans | 7.05 | ▲78.33% | |
10 | Chilies and peppers | 0.79 | ▲59.90% |
Sr# | Country | Quantity (kt) | 2010–2020 Fluctuations | Change |
---|---|---|---|---|
1 | Canada | 6318 | ▼77.93% | |
2 | Pakistan | 1976 | ▲10.08% | |
3 | Russia | 1937 | ▲99.53% | |
4 | United States | 1191 | ▲43.33% | |
5 | Australia | 1054 | ▼976.32% | |
6 | India | 997 | ▲52.82% | |
7 | Ukraine | 349 | ▲97.45% | |
8 | China | 317 | ▲80.24% | |
9 | Bangladesh | 65 | ▲74.39% | |
10 | Netherlands | 36 | ▲90.13% |
Sr# | Crops | Quantity (kt) | 2010–2020 Fluctuations | Change |
---|---|---|---|---|
1 | Wheat | 1337.28 | ▼30.21% | |
2 | Bananas | 164.99 | ▲60.97% | |
3 | Pepper | 78.71 | ▲7.39% | |
4 | Pineapples | 23.64 | ▼576.80% | |
5 | Lemon and limes | 6.01 | ▼139.57% | |
6 | Onions | 3.52 | ▲88.75% | |
7 | Peas | 2.10 | ▼117.59% | |
8 | Beans | 1.18 | ▼84.00% | |
9 | Tobacco | 0.16 | ▲25.93% |
Sr# | Country | Quantity (kt) | 2010–2020 Fluctuations | Change |
---|---|---|---|---|
1 | Vietnam | 739 | ▲55.02% | |
2 | Japan | 500 | ▲65.66% | |
3 | Malaysia | 321 | ▼346.62% | |
4 | Saudi Arabia | 217 | ▼28.06% | |
5 | Singapore | 211 | ▼37.51% | |
6 | India | 94 | ▼1.26% | |
7 | Maldives | 88 | ▲65.23% | |
8 | United Arab Emirates | 67 | ▼23.32% | |
9 | Qatar | 41 | ▲77.46% | |
10 | Kuwait | 11 | ▲93.78% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajabi, Z.; Tariq, M.A.U.R.; Muttil, N. An Estimation of Virtual Trades of Embedded Water and Land through Sri Lankan Seasonal Crops’ Trades to Improve the Cropping Preferences. Water 2022, 14, 4101. https://doi.org/10.3390/w14244101
Rajabi Z, Tariq MAUR, Muttil N. An Estimation of Virtual Trades of Embedded Water and Land through Sri Lankan Seasonal Crops’ Trades to Improve the Cropping Preferences. Water. 2022; 14(24):4101. https://doi.org/10.3390/w14244101
Chicago/Turabian StyleRajabi, Zohreh, Muhammad Atiq Ur Rehman Tariq, and Nitin Muttil. 2022. "An Estimation of Virtual Trades of Embedded Water and Land through Sri Lankan Seasonal Crops’ Trades to Improve the Cropping Preferences" Water 14, no. 24: 4101. https://doi.org/10.3390/w14244101
APA StyleRajabi, Z., Tariq, M. A. U. R., & Muttil, N. (2022). An Estimation of Virtual Trades of Embedded Water and Land through Sri Lankan Seasonal Crops’ Trades to Improve the Cropping Preferences. Water, 14(24), 4101. https://doi.org/10.3390/w14244101