Simultaneous Removal of Metal Ions from Wastewater by a Greener Approach
Abstract
:1. Introduction
2. Experimental
2.1. Wastewater Sampling
2.2. Reagent, Biosorbent, Media, Culture Condition, and Drying Process
2.3. Biosorption Parameters Investigation
2.4. Laboratory Water Analyses
2.5. Biosorption Isotherm, Kinetics, and Thermodynamics Studies
2.6. Characterization Techniques
2.7. Yeast Cell Immobilization and Its Application for Simultaneous Treatment of Wastewater
2.8. Desorption Experiments from Loaded Cell Biosorbent
2.9. Storage of the Yeast Cells
2.10. Statistical Analyses
3. Results and Discussion
3.1. Optimum Conditions and Modeling Biosorption Processes by S. cerevisiae
3.1.1. Impact of pH on Biosorption Capacity
3.1.2. Impact of Biosorbent Dose
3.1.3. Impact of Initial Concentration and Biosorption Isotherms
3.1.4. Impact of Time on Biosorption and Kinetic Isotherms
3.1.5. Impact of Temperature on Biosorption and Thermodynamic Studies
3.2. Mechanism of S. cerevisiae
3.2.1. XRD of S. cerevisiae
3.2.2. FTIR of S. cerevisiae and Its Impact on Biosorption of Investigated Metal Ions
3.2.3. Surface Area of S. cerevisiae
3.2.4. TEM of S. cerevisiae
3.3. Biomass Regeneration (Desorption)
3.4. Corn Industrial Effluent Treatment
3.5. Storage of the Immobilized S. cerevisiae
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barrutia, O.; Garbisu, C.; Hernández-Allica, J.; Garcıá-Plazaola, J.I.; Becerril, J.M. Differences in EDTA-assisted metal phytoextraction between metallicolous and non-metallicolous accessions of Rumex acetosa L. Environ. Pollut. 2010, 158, 1710–1715. [Google Scholar] [CrossRef] [PubMed]
- Brunet, J.; Varrault, G.; Zuily-Fodil, Y.; Repellin, A. Accumulation of lead in the roots of grass pea (Lathyrus sativus L.), plants trigger systemic variation in gene expression in the shoots. Chemosphere 2009, 77, 1113–1120. [Google Scholar] [CrossRef] [PubMed]
- Atkovska, K.; Lisichkov, K.; Ruseska, G.; Dimitrov, A.T.; Grozdanov, A. Removal of heavy metal ions from wastewater using conventional and nanosorbents: A review. J. Chem. Technol. Metall. 2018, 53, 202–219. [Google Scholar]
- Burakov, A.E.; Galunin, E.V.; Burakova, I.V.; Kucherova, A.E.; Agarwal, S.; Tkachev, A.G.; Gupta, V.K. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicol. Environ. Saf. 2018, 148, 702–712. [Google Scholar] [CrossRef] [PubMed]
- Pei, W.; Zhang, J.; Tong, H.; Ding, M.; Shi, F.; Wang, R.; Huo, Y.; Li, H. Removal and reutilization of metal ions on ZIF-67/GO membrane via synergistic photocatalytic-photothermal route. Appl. Catal. B 2021, 282, 119575. [Google Scholar] [CrossRef]
- Le, V.G.; Vo, D.V.N.; Tran, H.T.; Dat, N.D.; Luu, S.D.N.; Rahman, M.M.; Huang, Y.H.; Vu, C.T. Recovery of Magnesium from Industrial Effluent and Its Implication on Carbon Capture and Storage. ACS Sustain. Chem. Eng. 2021, 9, 6732–6740. [Google Scholar] [CrossRef]
- Fu, W.; Ji, G.; Chen, H.; Yang, S.; Guo, B.; Yang, H.; Huang, Z. Molybdenum sulphide modified chelating resin for toxic metal adsorption from acid mine wastewater. Sep. Purif. Technol. 2020, 251, 117407. [Google Scholar] [CrossRef]
- Ezugbe, O.; Rathilal, S. Membrane Technologies in Wastewater Treatment: A Review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef]
- de Morais Nepel, T.C.; Landers, R.; Vieira, M.G.A.; de Almeida Neto, A.F. Metallic copper removal optimization from real wastewater using pulsed electrodeposition. J. Hazard. Mater. 2020, 384, 121416. [Google Scholar] [CrossRef]
- Chen, Z.; Wei, W.; Zou, W.; Li, J.; Zheng, R.; Wei, W.; Jie Ni, B.; Chen, H. Integrating electrodeposition with electrolysis for closed-loop resource utilization of battery industrial wastewater. Green Chem. 2022, 8, 3208–3217. [Google Scholar] [CrossRef]
- Ong, D.C.; de Luna, M.D.G.; Pingul-Ong, S.M.B.; Kan, C.C. Manganese and Iron Recovery from Groundwater Treatment Sludgeby Reductive Acid Leaching and Hydroxide Precipitation. J. Environ. Manag. 2018, 223, 723–730. [Google Scholar] [CrossRef] [PubMed]
- ElBastamy, E.; Ibrahim, L.A.; Ghandour, A.; Zelenakova, M.; Vranayova, Z.; Abu-Hashim, M. Efficiency of Natural Clay Mineral Adsorbent Filtration Systems in Wastewater Treatment for Potential Irrigation Purposes. Sustainability 2021, 13, 5738. [Google Scholar] [CrossRef]
- Abdelfattah, I.; Ismail, A.A.; Sayed, F.A.; Almedolab, A.; Aboelghait, K.M. Biosorption of heavy metals ions in real industrial wastewater using peanut husk as efficient and cost-effective adsorbent. Environ. Nanotechnol. Monit. Manag. 2016, 6, 176–183. [Google Scholar] [CrossRef]
- Tsai, W.C.; De Luna, M.D.G.; Bermillo-Arriesgado, H.L.P.; Futalan, C.M.; Colades, J.I.; Wan, M.W. Competitive Fixed-Bed Adsorption of Pb(II), Cu(II), and Ni(II) from Aqueous Solution Using Chitosan-Coated Bentonite. Int. J. Polym. Sci. 2016, 2016, 1608939. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, L.A.; El Gammal, H.A.A.; Mahran, B.N. In Vitro, Appraisal and abatement of drainage wastewater pollution in light of utilizing fly ash. Nat. Sci. 2017, 15, 2017. [Google Scholar]
- De Castro, M.L.F.A.; Abad, M.L.B.; Sumalinog, D.A.G.; Abarca, R.R.M.; Paoprasert, P.; de Luna, M.D.G. Adsorption of Methylene Blue Dye and Cu(II) Ions on EDTA-Modified Bentonite: Isotherm, Kinetic and Thermodynamic Studies. Sustain. Environ. Res. 2018, 28, 197–205. [Google Scholar] [CrossRef]
- Ibrahim, L.A.; Asaad, A.A.; Khalifa, E.A. Laboratory approach for wastewater treatment utilizing chemical addition case study: El-Rahway Drain, Egypt. Life Sci. J. 2019, 16, 56–67. [Google Scholar]
- Ibrahim, L.A.; Elsayed, E.E. Seawater Reinforces Synthesis of Mesoporous and Microporous Zeolites from Egyptian Fly Ash for Removal Ions of Cadmium, Iron, Nickel, and Lead from Artificially Contaminated Water. Egypt. J. Chem. 2021, 64, 3801–3816. [Google Scholar] [CrossRef]
- Tumampos, S.B.; Ensano, B.M.B.; Pingul-Ong, S.M.B.; Ong, D.C.; Kan, C.C.; Yee, J.J.; de Luna, M.D.G. Isotherm, Kinetics and Thermodynamics of Cu(II) and Pb(II) Adsorption on Groundwater Treatment Sludge-Derived Manganese Dioxide for Wastewater Treatment Applications. Int. J. Environ. Res. Public Health 2021, 18, 3050. [Google Scholar] [CrossRef]
- Chen, Z.; Wei, W.; Ni, B.-J.; Chen, H. Plastic wastes derived carbon materials for green energy and sustainable environmental applications. Environ. Funct. Mater. 2022, 1, 34–48. [Google Scholar] [CrossRef]
- Fu, W.; Huang, Z. Magnetic dithiocarbamate functionalized reduced graphene oxide for the removal of Cu(II), Cd(II), Pb(II), and Hg(II) ions from aqueous solution: Synthesis, adsorption, and regeneration. Chemosphere 2018, 209, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.Y.; Show, P.L.; Lau, B.F.; Chang, J.S.; Ling, T.C. New Prospects for Modified Algae in Heavy Metal Adsorption. Trends Biotechnol. 2019, 37, 1255–1268. [Google Scholar] [CrossRef] [PubMed]
- Thirunavukkarasu, A.; Nithya, R.; Sivashankar, R. Continuous fixed-bed biosorption process: A review. Chem. Eng. J. Adv. 2021, 8, 1–13. [Google Scholar] [CrossRef]
- Saravanan, A.; Kumar, P.S.; Yaashikaa, P.R.; Karishma, S.; Jeevanantham, S.; Swetha, S. Mixed biosorbent of agro waste and bacterial biomass for the separation of Pb(II) ions from water system. Chemosphere 2021, 277, 130236. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, S.; Hyun-Seog, R.; Subhabrata, D.; Moonis, A.K.; Abou-Shanab, R.A.I.; Chang, S.W.; Jeon, B.H. Algae as a green technology for heavy metals removal from various wastewater. World J. Microbiol. Biotechnol. 2019, 35, 75–94. [Google Scholar]
- Andreu, C.; lídel Olmo, M. Yeast arming systems: Pros and cons of different protein anchors and other elements required for display. Appl. Microbiol. Biotechnol. 2018, 102, 2543–2561. [Google Scholar] [CrossRef]
- Negm, N.A.; Abd El Wahed, M.G.; Hassan, A.R.A.; Abou Kana, T.H.A. Feasibility of metal adsorption using brown algae and fungi: Effect of biosorbents structure on adsorption isotherm and kinetics. J. Mol. Liq. 2018, 264, 292–305. [Google Scholar] [CrossRef]
- Farhan, S.N.; Khadom, A.A. Biosorption of heavy metals from aqueous solutions by Saccharomyces cerevisiae. Int. J. Ind. Chem. 2015, 6, 119–130. [Google Scholar] [CrossRef] [Green Version]
- Savastru, E.; Bulgariu, D.; Zamfir, C.I.; Bulgariu, L. Application of Saccharomyces cerevisiae in the Biosorption of Co(II), Zn(II) and Cu(II) Ions from Aqueous Media. Water 2022, 14, 976. [Google Scholar] [CrossRef]
- Malairuang, K.; Krajang, M.; Sukna, J.; Rattanapradit, K.; Chamsart, S. High Cell Density Cultivation of Saccharomyces cerevisiae with Intensive Multiple Sequential Batches Together with a Novel Technique of Fed-Batch at Cell Level (FBC). Processes 2020, 8, 1321. [Google Scholar] [CrossRef]
- Zhu, W.L.; Yang, H.; He, C.; Yang, J.; Yu, X.; Wu, G.; Zeng, S.; Tarre, M. Green, Preparation, performances and mechanisms of magnetic Saccharomyces cerevisiae bionanocomposites for atrazine removal. Chemosphere 2018, 200, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Farbo, M.G.; Urgeghe, P.P.; Fiori, S.; Marceddu, S.; Jaoua, S.; Migheli, Q. Adsorption of ochratoxin A from grape juice by yeast cells immobilised in calcium alginate beads. Int. J. Food Microbiol. 2016, 217, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Özer, A.; Özer, D. Comparative study of the biosorption of Pb(II), Ni(II) and Cr(VI) ions onto S. cerevisiae: Determination of biosorption heats. J. Hazard. Mater. 2003, 100, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Mirmahdia, R.S.; Mofida, V.; Zoghib, A.; Daranib, K.K.; Mortazavian, A.M. Risk of low stability Saccharomyces cerevisiae ATCC 9763-heavy metals complex in gastrointestinal simulated conditions. Heliyon 2022, 8, e09452. [Google Scholar] [CrossRef] [PubMed]
- Massoud, R.; Khosravi-Darani, K.; Sharifan, A.; Asadi, G.H.; Younesi, H. The Biosorption Capacity of Saccharomyces Cerevisiae for Cadmium in Milk. Dairy 2020, 1, 169–176. [Google Scholar] [CrossRef]
- Wang, J.; Chen, C. Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnol. Adv. 2006, 24, 427–451. [Google Scholar] [CrossRef]
- Marques, P.; Pinheiro, H.M.; Rosa, M.F. Cd(II) removal from aqueous solution by immobilised waste brewery yeast in fixed-bed and airlift reactors. Desalination 2007, 214, 343–351. [Google Scholar] [CrossRef]
- Machado, M.D.; Soares, E.V.; Soares, H.M.V.M. Selective recovery of copper, nickel and zinc from ashes produced from Saccharomyces cerevisiae contaminated biomass used in the treatment of real electroplating effluents. J. Hazard. Mater. 2010, 184, 357–363. [Google Scholar] [CrossRef]
- Machado, M.D.; Soares, E.V.; Soares, H.M.V.M. Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: Chemical speciation as a tool in the prediction and improving of treatment efficiency of real electroplating effluents. J. Hazard. Mater. 2010, 180, 347–353. [Google Scholar] [CrossRef] [Green Version]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Jiang, W.; Xu, Y.; Li, C.; Lv, X.; Wang, D. Biosorption of cadmium(II) from aqueous solution by chitosan encapsulated Zygosaccharomyces rouxii. Environ. Prog. Sustain. Energy 2013, 32, 1101–1110. [Google Scholar] [CrossRef]
- Amirnia, S.; Ray, M.B.; Margaritis, A. Heavy metals removal from aqueous solutions using Saccharomyces cerevisiae in a novel continuous bioreactor-biosorption system. Chem. Eng. J. 2015, 264, 863–872. [Google Scholar] [CrossRef]
- De Rossi, A.; Rigueto, C.V.T.; Dettmer, A.; Colla, L.M.; Piccin, J.S. Synthesis, characterization, and application of Saccharomyces cerevisiae/alginate composites beads for adsorption of heavy metals. J. Environ. Chem. Eng. 2020, 8, 104009. [Google Scholar] [CrossRef]
- De Rossi, M.R.; Rigon, M.; Zaparoli, R.D.; Braido, L.M.; Colla, G.L.; Dotto, J.S.; Piccin, J.S. Chromium (VI) biosorption by Saccharomyces cerevisiae subjected to chemical and thermal treatments. Environ. Sci. Pollut. Res. 2018, 25, 19179–19186. [Google Scholar] [CrossRef] [PubMed]
- Rusu, L.; Grigoraș, C.G.; Simion, A.I.; Suceveanu, E.M.; Șuteu, D.; Harja, M. Application of Saccharomyces cerevisiae/Calcium Alginate Composite Beads for Cephalexin Antibiotic Biosorption from Aqueous Solutions. Materials 2021, 14, 4728. [Google Scholar] [CrossRef]
- Lee, S.B.; Choi, W.S.; Jo, H.J.; Yeo, S.-H.; Park, H.-D. Optimization of air-blast drying process for manufacturing Saccharomyces cerevisiae and non-Saccharomyces yeast as industrial wine starters. AMB Express 2016, 6, 105. [Google Scholar] [CrossRef] [Green Version]
- Göksungur, Y.; Üren, S.; Güvenç, U. Biosorption of cadmium and lead ions by ethanol treated waste baker’s yeast biomass. Bioresour. Technol. 2005, 96, 103–109. [Google Scholar] [CrossRef]
- El-Sayed, M.T. Removal of Lead(II) by Saccharomyces cerevisiae AUMC 3875. Ann. Microbiol. 2016, 63, 1459–1470. [Google Scholar] [CrossRef]
- Araujo, L.G.; de Borba, T.R.; de Ferreira, R.V.; de P. Canevesi, R.L.S.; Silva, E.A.; da Dellamano, J.C.; Marumo, J.T. Use of calcium alginate beads and Saccharomyces cerevisiae for biosorption of 241Am. J. Environ. Radioact. 2020, 223–224, 106399. [Google Scholar] [CrossRef]
- Moreno Rivas, S.C.; Armenta Corral, R.I.; Frasquillo Félix, M.D.C.; Islas Rubio, A.R.; Vázquez Moreno, L.; Ramos-Clamont Montfort, G. Removal of Cadmium from Aqueous Solutions by Saccharomyces cerevisiae—Alginate System. Materials 2019, 12, 4128. [Google Scholar] [CrossRef] [Green Version]
- Elgarhy, A.H.; Mahran, B.N.A.; Liu, G.; Salem, T.A.; ElSayed, E.E.; Ibrahim, L.A. Comparative study for removal of phosphorus from aqueous solution by natural and activated bentonite. Sci. Rep. 2022, 12, 19433. [Google Scholar] [CrossRef] [PubMed]
- Clesceri, L.S.; Rice, E.W.; Baird, R.B.; Eaton, A.D. (Eds.) Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association (APHA), American Water Works Association (AWWA) and Water Environment Federation (WEF): Washington DC, USA, 2017. [Google Scholar]
- Das, N.; Vimala, R.; Karthika, P. Biosorption of heavy metals—An overview. Indian J. Biotechnol. 2008, 7, 159–169. [Google Scholar]
- Zinicovscaia, I.; Grozdov, D.; Yushin, N.; Abdusamadzoda, D.; Gundorin, S.; Rodlovskaya, E.; Kristavchuk, O. Metal removal from chromium containing synthetic effluents by Saccharomyces cerevisiae. Desalin. Water Treat. 2000, 178, 254–270. [Google Scholar] [CrossRef]
- Martins, R.J.E.; Vilar, V.J.P.; Boaventura, R.A.R. Kinetic Modelling of Cadmium and Lead Removal by Aquatic Mosses. Braz. J. Chem. Eng. 2014, 31, 229–242. [Google Scholar]
- Xiong, Y.; Xu, J.; Shan, W.; Lou, Z.; Fang, D.; Zang, S.; Han, G. A new approach for rhenium(VII) recovery by using modified brown algae Laminaria japonica adsorbent. Bioresour. Technol. 2013, 127, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Dada, A.O.; Olalekan, A.P.; Olatunya, A.M.; Dada, O. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR J. Appl. Chem. 2012, 3, 38–45. [Google Scholar]
- Oves, M.; Khan, M.S.; Zaidi, A. Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil. Saudi Sci. J. Biol. Sci. 2013, 20, 121–129. [Google Scholar] [CrossRef]
- Say, R. Biosorption of cadmium(II), lead(II) and copper(II) with the filamentous fungus Phanerochaete chrysosporium. Bioresour. Technol. 2001, 76, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Dutta, A.; Zhou, L.; Castillo-Araiza, C.O.; De Herdt, E. Cadmium(II), Lead(II), and Copper(II) Biosorption on Baker’s Yeast (Saccharomyces cerevesiae). J. Environ. Eng. 2016, 142, C6015002. [Google Scholar] [CrossRef]
- Guler, U.A.; Ersan, M. S. cerevisiae cells modified with nZVI: A novel magnetic biosorbent for nickel removal from aqueous solutions. Desalin. Water Treat. 2015, 23, 1–13. [Google Scholar]
- Guler, U.A.; Sarioglu, M. Mono and binary component biosorption of Cu(II), Ni(II), and methylene blue onto raw and pretreated, S. cerevisiae: Equilibrium and kinetics. Desalin. Water Treat. 2014, 52, 4871–4888. [Google Scholar] [CrossRef]
- Asgari, G.; Roshani, B.; Ghanizadeh, G. The investigation of kinetic and isotherm of fluoride adsorption onto functionalize pumice stone. J. Hazard. Mater. 2012, 17, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Gialamouidis, D.; Mitrakas, M.; Liakopoulou-Kyriakides, M. Equilibrium, thermodynamic and kinetic studies on biosorption of Mn(II) from aqueous solution by Pseudomonas sp., Staphylococcus xylosus and Blakeslea trispora cells. J. Hazard. Mater. 2010, 182, 672–680. [Google Scholar] [CrossRef] [PubMed]
- Stathatou, P.M.; Athanasiou, C.E.; Tsezos, M.; Goss, J.W.; Blackburn, L.C.; Tourlomousis, F.; Mershin, A.; Sheldon, B.W.; Padture, N.P.; Darling, E.M.; et al. Lead removal at trace concentrations from water by inactive yeast cells. Commun. Earth Environ. 2022, 3, 132. [Google Scholar] [CrossRef]
- El-Naggar, N.E.A.; Hamouda, R.A.; Mousa, I.E.; Abdel-Hamid, M.S.; Rabei, N.H. Statistical optimization for cadmium removal using Ulva fasciata biomass: Characterization, immobilization and application for almost-complete cadmium removal from aqueous solutions. Sci. Rep. 2018, 8, 12456. [Google Scholar] [CrossRef] [Green Version]
- Sundararaju, S.; Manjula, A.; Kumaravel, V.; Muneeswaran, T.; Vennila, T. Biosorption of nickel ions using fungal biomass Penicillium sp. MRF1 for the treatment of nickel electroplating industrial effluent. Biomass. Convers. Biorefinery 2022, 12, 1059–1068. [Google Scholar] [CrossRef]
- Xu, P.; Liu, L.; Zeng, G.; Huang, D.; Lai, C.; Zhao, M.; Huang, C.; Li, N.; Wei, Z.; Wu, H.; et al. Heavy metal-induced glutathione accumulation and its role in heavy metal detoxification in Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 2014, 98, 6409–6418. [Google Scholar] [CrossRef]
- Zhang, S.; Zang, X.; Chang, C.; Yuanm, Z.; Wang, T.; Zhao, Y.; Yang, X.; Zhang, Y.; La, G.; Wu, K.; et al. Improvement of tolerance to lead by filamentous fungus Pleurotus ostreatus HAU-2 and its oxidative responses. Chemosphere 2016, 150, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Gu, X.; Gao, S.; Geng, J.; Wang, X. Adsorption of tetracycline (TC) onto montmorillonite: Cations and humic acid effects. Geoderma 2012, 183, 12–18. [Google Scholar] [CrossRef]
- Bahafid, W.; Joutey, N.T.; Sayel, H.; Iraqui-Houssaini, M.; El Ghachtouli, N. Chromium adsorption by three yeast strains isolated from sediments in Morocco. Geomicrobiol. J. 2013, 30, 422–429. [Google Scholar] [CrossRef]
- Cabras, P.; Meloni, M.; Pirisi, F.M.; Farris, G.A.; Fatichenti, F. Yeast and pesticide interaction during aerobic fermentation. Appl. Microbiol. Biotechnol. 1988, 29, 298–301. [Google Scholar] [CrossRef]
Model | Equation | Notations | |
---|---|---|---|
Isotherm models | Langmuir | where Ce is the equilibrium (final) metal ions concentration (mg/L), Kd is an apparent dissociation constant, n indicates the intensity of the process, qemax represents the capacity for metal ion uptake when the surface is completely covered with metal ions, Kf is a biosorption equilibrium constant, qe and qt (mg/g) are the amounts of Cd(II), Pb(II), and Ni(II) ions adsorbed on the adsorbent at equilibrium and time t (min), respectively. I is the intercept and k1 (1/min), k2 (g/mg min), υ1 (g/mg min), and Kd (mg/g min0.5) are the rate constant of pseudo-1st-order, pseudo-2nd-order, initial sorption rate, and intraparticle diffusion, respectively. | |
Freundlich | |||
Kinetic models | Pseudo-first (1st)-order | ||
Pseudo-second (2nd)-order | |||
Intraparticle diffusion | |||
Thermodynamic | Thermodynamic parameters | ΔG0, ΔH0, and ΔS0 are the free energy change, enthalpy changes, and entropy change, respectively. R (8.314 J/mol K) is the universal gas constant, T is the absolute temperature (K), and K is the equilibrium constant. |
Parameters | Langmuir Model | Freundlich Model | |||||
---|---|---|---|---|---|---|---|
qemax (mg/g) | b = (1/Kd) | R2 | RL | Kf(L/g) | n | R2 | |
Cd(II) | 65.36 | 0.032 | 0.98 | 0.11–0.56 | 4.95 | 1.98 | 0.94 |
Pb(II) | 90.09 | 0.193 | 0.99 | 0.02–0.17 | 23.69 | 3.14 | 0.94 |
Ni(II) | 51.55 | 0.020 | 0.95 | 0.17–0.67 | 2.50 | 1.77 | 0.90 |
Metal Ions | Biomass | qmax (mg/g) | Reference |
---|---|---|---|
Cd(II) | B. thuringiensis | 59.17 | [58] |
S. cerevisiae | 31.75 | [47] | |
P. chrysosporium | 27.79 | [59] | |
S. cerevisiae | 32.26 | [60] | |
S. cerevisiae | 65.36 | This study | |
Pb(II) | S. cerevisiae | 72.46 | [42] |
B. thuringiensis | 30.76 | [58] | |
P. chrysosporium | 85.57 | [59] | |
S. cerevisiae | 60.24 | [47] | |
EDTA-treated S. cerevisiae | 200 | [60] | |
S. cerevisiae | 90.09 | This study | |
Ni(II) | S. cerevisiae nZVI | 54.23 | [61] |
S. cerevisiae | 21.39 | [62] | |
S. cerevisiae | 46.30 | [33] | |
S. cerevisiae | 51.55 | This study |
Ions | Pseudo-First-Order | Pseudo-Second-Order | Intraparticle | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
qe mg/g | K1 (min−1) | R2 | υ2 (mg/gmin) | qe (mg/g) | k2 (g/mg min) | R2 | Zone I | Zone II | |||||
Kd (mg/g/min0.5) | I | R2 | Kd (mg/g/min0.5) | I | R2 | ||||||||
Pb(II) | 40.9 | 0.0001 | 0.88 | 99.0 | 45.05 | 0.049 | 1.00 | 0.05 | 43.93 | 0.99 | 0.08 | 43.16 | 0.96 |
Cd(II) | 22.8 | 0.0007 | 0.84 | 30.7 | 38.5 | 0.021 | 0.99 | 0.26 | 35.24 | 0.99 | 0.21 | 35.61 | 0.91 |
Ni(II) | 13.9 | 0.0021 | 0.54 | 17.5 | 36.2 | 0.013 | 0.99 | 0.32 | 29.49 | 0.96 | 0.15 | 33.80 | 0.85 |
Temperature T (K) | 288 | 293 | 298 | 303 | 313 |
Pb(II) | |||||
Gibbs free energy ΔG° (kJ mol−1) | −2.62 | −2.99 | −3.36 | −3.73 | −4.47 |
Entropy ΔS° (kJ mol−1 K−1) | 0.073 | ||||
Enthalpy ΔH° (kJ mol−1) | 18.64 | ||||
Cd(II) | |||||
Gibbs free energy ΔG° (kJ mol−1) | −0.66 | -0.96 | −1.25 | −1.55 | −2.14 |
Entropy ΔS° (kJ mol−1 K−1) | 0.059 | ||||
Enthalpy ΔH° (kJ mol−1) | 16.39 | ||||
Ni(II) | |||||
Gibbs free energy ΔG° (kJ mol−1) | −0.05 | −0.33 | −0.61 | −0.89 | −1.45 |
Entropy ΔS° (kJ mol−1 K−1) | 0.056 | ||||
Enthalpy ΔH° (kJ mol−1) | 16.16 |
Surface Area | Average Particle Size | Total Pore Volume | |
---|---|---|---|
S. cerevisiae | 252.6 m2/g | 4.60667 nm | 0.581792 cc/g (cm3/g) |
Pb(II)-loaded S. cerevisiae | 221.97 m2/g | 4.60667 nm | 0.511272 cc/g (cm3/g) |
Parameters * | Raw Wastewater | Treated Water with S. cerevisiae (AP1) | Treated Water with S. cerevisiae Uploaded on Calcium Alginate (AP2) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Average | p | Min | Max | Average | p | RE (%) | Min | Max | Average | p | RE (%) | |
pH | 6.7 | 6.9 | 6.8 ± 0.11 B | Less than 0.05 | 7.5 | 7.7 | 7.6 ± 0.10 A | Less than 0.05 | −11.8 | 8.1 | 8.2 | 8.2 ± 0.01 A | Less than 0.05 | −11.6 |
Ca2+ | 400.5 | 483.8 | 453.3 ± 45 A | 11.6 | 13.9 | 13.1 ± 1.27 B | 97.1 | 12.6 | 25.5 | 20.5 ± 6.9 B | 95.5 | |||
Mg2+ | 1148.6 | 1332.8 | 1255.0 ± 49 A | 112.5 | 131.3 | 120.5 ± 9.73 B | 90.4 | 118.9 | 152.3 | 139.3 ± 17.9 B | 88.9 | |||
Na+ | 1740.0 | 1918.5 | 1803.6 ± 99 A | 54.3 | 59.6 | 56.1 ± 3.06 B | 96.9 | 54.3 | 105.8 | 85.8 ± 27.6 B | 95.2 | |||
K+ | 763.9 | 1527.8 | 1085.5 ± 395 A | 17.5 | 35.1 | 25.0 ± 9.11 B | 97.7 | 22.0 | 50.9 | 39.7 ± 15.5 B | 96.3 | |||
BOD | 8800.0 | 9220.0 | 9006 ± 210 A | 179.9 | 360.3 | 240.1 ± 104 B | 98.0 | 105.3 | 244.9 | 190.7 ± 355 B | 93.8 | |||
COD | 11,200 | 12,100 | 11,766 ± 493 A | 400.0 | 435.8 | 423.9 ± 20 B | 96.6 | 171.3 | 772.0 | 558.0 ± 324 B | 93.5 | |||
Cd2+ | 13.50 | 16.70 | 15 ± 1.5 A | 0.151 | 0.184 | 0.167 ± 0.02 B | 98.9 | 0.152 | 0.591 | 0.420 ± 0.24 B | 97.2 | |||
Pb2+ | 2.87 | 3.33 | 3.04 ± 0.2 A | 0.029 | 0.035 | 0.031 ± 0.002 B | 99.0 | 0.2 | 0.6 | 0.4 ± 0.05 B | 97.3 | |||
Ni2+ | 12.00 | 24.00 | 18.3 ± 6 A | 0.253 | 0.509 | 0.387 ± 0.1 B | 97.9 | <DL | 0.1 | 0.1 ± 0.280 B | 96.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, L.A.; El-Sesy, M.E.; ElSayed, E.E.; Zelenakova, M.; Hlinkova, M.; Mohamed, E.S.; Abu-Hashim, M. Simultaneous Removal of Metal Ions from Wastewater by a Greener Approach. Water 2022, 14, 4049. https://doi.org/10.3390/w14244049
Ibrahim LA, El-Sesy ME, ElSayed EE, Zelenakova M, Hlinkova M, Mohamed ES, Abu-Hashim M. Simultaneous Removal of Metal Ions from Wastewater by a Greener Approach. Water. 2022; 14(24):4049. https://doi.org/10.3390/w14244049
Chicago/Turabian StyleIbrahim, Lubna A., Marwa E. El-Sesy, ElSayed ElBastamy ElSayed, Martina Zelenakova, Maria Hlinkova, Essam Sh. Mohamed, and Mohamed Abu-Hashim. 2022. "Simultaneous Removal of Metal Ions from Wastewater by a Greener Approach" Water 14, no. 24: 4049. https://doi.org/10.3390/w14244049
APA StyleIbrahim, L. A., El-Sesy, M. E., ElSayed, E. E., Zelenakova, M., Hlinkova, M., Mohamed, E. S., & Abu-Hashim, M. (2022). Simultaneous Removal of Metal Ions from Wastewater by a Greener Approach. Water, 14(24), 4049. https://doi.org/10.3390/w14244049