Analysis of the Effect of Soil Remediation Processes Contaminated by Heavy Metals in Different Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Material
2.2. Soil Samples Processing
2.3. Characterization and Analysis
2.3.1. Characterization of Soils
2.3.2. Analytical Methods
3. Results and Discussion
3.1. Characterization of Soils
3.2. The Ability of WTF Stabilizing Cd in Different Texture Soils
3.3. Influence of Soil Conditions on the Restoration Process
3.4. Remediation Effect of Cd- and Pb-Contaminated Saline Soils
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mazurek, R.; Kowalska, J.; Gąsiorek, M.; Zadrożny, P.; Józefowska, A.; Zaleski, T.; Kępka, W.; Tymczuk, M.; Orłowska, K. Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution. Chemosphere 2017, 168, 839–850. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.K.; Agrawal, M.; Marshall, F.M. Atmospheric deposition of heavy metals (Cu, Zn, Cd and Pb) in Varanasi City, India. Environ. Monit. Assess. 2008, 142, 269–278. [Google Scholar] [CrossRef]
- Hu, W.; Huang, B.; Shi, X.; Chen, W.; Zhao, Y.; Jiao, W. Accumulation and health risk of heavy metals in a plot-scale vegetable production system in a peri-urban vegetable farm near Nanjing, China. Ecotoxicol. Environ. Saf. 2013, 98, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Hou, Q.; Yang, Z.; Ji, J.; Yu, T.; Chen, G.; Li, J.; Xia, X.; Yuan, X. Annual net input fluxes of heavy metals of the agro-ecosystem in the Yangtze River delta, China. J. Geochem. Explor. 2014, 139, 68–84. [Google Scholar] [CrossRef]
- Pan, Y.P.; Wang, Y.S. Atmospheric wet and dry deposition of trace elements at 10 sites in Northern China. Atmos. Chem. Phys. 2015, 15, 951–972. [Google Scholar] [CrossRef] [Green Version]
- Geebelen, W.; Sappin-Didier, V.; Ruttens, A.; Carleer, R.; Yperman, J.; Bongué-Boma, K.; Mench, M.; van der Lelie, N.; Vangronsveld, J. Evaluation of cyclonic ash, commercial Na-silicates, lime and phosphoric acid for metal immobilisation purposes in contaminated soils in Flanders (Belgium). Environ. Pollut. 2006, 144, 32–39. [Google Scholar] [CrossRef]
- Kushwaha, A.; Hans, N.; Kumar, S.; Rani, R. A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicol. Environ. Saf. 2018, 147, 1035–1045. [Google Scholar] [CrossRef]
- Kumar, S.; Rahman, M.A.; Islam, M.R.; Hashem, M.A.; Rahman, M.M. Lead and other elements-based pollution in soil, crops and water near a lead-acid battery recycling factory in Bangladesh. Chemosphere 2022, 290, 133288. [Google Scholar] [CrossRef]
- Goyer, R.A. Lead toxicity: Current concerns. Environ. Health Perspect. 1993, 100, 177–187. [Google Scholar] [CrossRef]
- Yao, Z.; Li, J.; Xie, H.; Yu, C. Review on Remediation Technologies of Soil Contaminated by Heavy Metals. Procedia Environ. Sci. 2012, 16, 722–729. [Google Scholar] [CrossRef]
- Rajput, V.D.; Minkina, T.; Upadhyay, S.K.; Kumari, A.; Ranjan, A.; Mandzhieva, S.; Sushkova, S.; Singh, R.K.; Verma, K.K. Nanotechnology in the Restoration of Polluted Soil. Nanomaterials 2022, 12, 769. [Google Scholar] [CrossRef]
- Liu, S.; Miao, C.; Yao, S.; Ding, H.; Zhang, K. Soil stabilization/solidification (S/S) agent—Water-soluble thiourea formaldehyde (WTF) resin: Mechanism and performance with cadmium (II). Environ. Pollut. 2021, 272, 116025. [Google Scholar] [CrossRef]
- Miao, C.; Yao, S.-S.; Liu, S.-J.; Zhang, K. Effect of water-soluble thiourea formaldehyde (WTF) on soil contaminated with high copper (II) concentration. J. Hazard. Mater. 2021, 409, 124929. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, D.; Ma, J.; Jin, B.; Peng, J.; He, X. Assessing the influence of immobilization remediation of heavy metal contaminated farmland on the physical properties of soil. Sci. Total Environ. 2021, 781, 146773. [Google Scholar] [CrossRef]
- O’Brien, P.L.; DeSutter, T.M.; Casey, F.X.M.; Khan, E.; Wick, A.F. Thermal remediation alters soil properties—A review. J. Environ. Manag. 2018, 206, 826–835. [Google Scholar] [CrossRef]
- Chen, D.; Liu, X.; Bian, R.; Cheng, K.; Zhang, X.; Zheng, J.; Joseph, S.; Crowley, D.; Pan, G.; Li, L. Effects of biochar on availability and plant uptake of heavy metals—A meta-analysis. J. Environ. Manag. 2018, 222, 76–85. [Google Scholar] [CrossRef]
- Li, J.; He, M.; Sun, S.; Han, W.; Zhang, Y.; Mao, X.; Gu, Y. Effect of the behavior and availability of heavy metals on the characteristics of the coastal soils developed from alluvial deposits. Environ. Monit. Assess. 2009, 156, 91–98. [Google Scholar] [CrossRef]
- Rehman, A.; Arif, M.S.; Tufail, M.A.; Shahzad, S.M.; Farooq, T.H.; Ahmed, W.; Mehmood, T.; Farooq, M.R.; Javed, Z.; Shakoor, A. Biochar potential to relegate metal toxicity effects is more soil driven than plant system: A global meta-analysis. J. Clean. Prod. 2021, 316, 128276. [Google Scholar] [CrossRef]
- Błońska, E.; Piaszczyk, W.; Staszel, K.; Lasota, J. Enzymatic activity of soils and soil organic matter stabilization as an effect of components released from the decomposition of litter. Appl. Soil Ecol. 2021, 157, 103723. [Google Scholar] [CrossRef]
- Błońska, E.; Lasota, J.; Gruba, P. Effect of temperate forest tree species on soil dehydrogenase and urease activities in relation to other properties of soil derived from loess and glaciofluvial sand. Ecol. Res. 2016, 31, 655–664. [Google Scholar] [CrossRef]
- Bessaim, M.M.; Missoum, H.; Bendani, K.; Laredj, N.; Bekkouche, M.S. Effect of processing time on removal of harmful emerging salt pollutants from saline-sodic soil during electrochemical remediation. Chemosphere 2020, 253, 126688. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Si, J.; Nikolic, M.; Peng, Y.; Chen, W.; Jiang, Y. Organic manure stimulates biological activity and barley growth in soil subject to secondary salinization. Soil Biol. Biochem. 2005, 37, 1185–1195. [Google Scholar] [CrossRef]
- Yang, Q.; Li, Z.; Lu, X.; Duan, Q.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 2018, 642, 690–700. [Google Scholar] [CrossRef]
- Liu, S.-J.; Guo, Y.-P.; Yang, H.-Y.; Wang, S.; Ding, H.; Qi, Y. Synthesis of a water-soluble thiourea-formaldehyde (WTF) resin and its application to immobilize the heavy metal in MSWI fly ash. J. Environ. Manag. 2016, 182, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Toxicity Characteristic Leaching Procedure.pdf. Available online: https://www.epa.gov/sites/production/files/2015-12/documents/1311.pdf (accessed on 6 November 2022).
- Chang, E.E.; Chiang, P.C.; Lu, P.H.; Ko, Y.W. Comparisons of metal leachability for various wastes by extraction and leaching methods. Chemosphere 2001, 45, 91–99. [Google Scholar] [CrossRef]
- Wan, J.; Zhang, C.; Zeng, G.; Huang, D.; Hu, L.; Huang, C.; Wu, H.; Wang, L. Synthesis and evaluation of a new class of stabilized nano-chlorapatite for Pb immobilization in sediment. J. Hazard. Mater. 2016, 320, 278–288. [Google Scholar] [CrossRef]
- Rauret, G.; López-Sánchez, J.F.; Sahuquillo, A.; Rubio, R.; Davidson, C.; Ure, A.; Quevauviller, P. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J. Environ. Monitor. 1999, 1, 57–61. [Google Scholar] [CrossRef]
- Gao, X.; Arthur Chen, C.-T.; Wang, G.; Xue, Q.; Tang, C.; Chen, S. Environmental status of Daya Bay surface sediments inferred from a sequential extraction technique. Estuar. Coast. Shelf Sci. 2010, 86, 369–378. [Google Scholar] [CrossRef]
- Soil–Determination of Organic Carbon–Potassium Dichromate Oxidation Spectrophotometric Method. Available online: http://english.mee.gov.cn/Resources/standards/Soil/Method_Standard4/201111/t20111101_219395.shtml (accessed on 6 November 2022).
- Xie, X.; Wu, T.; Zhu, M.; Jiang, G.; Xu, Y.; Wang, X.; Pu, L. Comparison of random forest and multiple linear regression models for estimation of soil extracellular enzyme activities in agricultural reclaimed coastal saline land. Ecol. Indic. 2021, 120, 106925. [Google Scholar] [CrossRef]
- Adetunji, A.T.; Lewu, F.B.; Mulidzi, R.; Ncube, B. The biological activities of β-glucosidase, phosphatase and urease as soil quality indicators: A review. J. Soil Sci. Plant Nutr. 2017, 17, 794–807. [Google Scholar]
- Ge, Y.; Wang, Q.; Wang, L.; Liu, W.; Liu, X.; Huang, Y.; Christie, P. Response of soil enzymes and microbial communities to root extracts of the alien Alternanthera philoxeroides. Arch. Agron. Soil Sci. 2018, 64, 708–717. [Google Scholar] [CrossRef]
- Pearson, M.A.; Michel, L.O.; Hausinger, R.P.; Karplus, P.A. Structures of Cys319 Variants and Acetohydroxamate-Inhibited Klebsiella aerogenes Urease. Biochemistry 1997, 36, 8164–8172. [Google Scholar] [CrossRef]
- Gambill, D.R.; Wall, W.A.; Fulton, A.J.; Howard, H.R. Predicting USCS soil classification from soil property variables using Random Forest. J. Terramech. 2016, 65, 85–92. [Google Scholar] [CrossRef]
- Lee, S.K.; Stebbins, J.F. Disorder and the extent of polymerization in calcium silicate and aluminosilicate glasses: O-17 NMR results and quantum chemical molecular orbital calculations. Geochim. Cosmochim. Acta 2006, 70, 4275–4286. [Google Scholar] [CrossRef]
- Fiege, K.; Trieloff, M.; Hillier, J.K.; Guglielmino, M.; Postberg, F.; Srama, R.; Kempf, S.; Blum, J. Calibration of relative sensitivity factors for impact ionization detectors with high-velocity silicate microparticles. Icarus 2014, 241, 336–345. [Google Scholar] [CrossRef]
- Burachevskaya, M.; Minkina, T.; Mandzhieva, S.; Bauer, T.; Chaplygin, V.; Zamulina, I.; Sushkova, S.; Fedorenko, A.; Ghazaryan, K.; Movsesyan, H.; et al. Study of copper, lead, and zinc speciation in the Haplic Chernozem surrounding coal-fired power plant. Appl. Geochem. 2019, 104, 102–108. [Google Scholar] [CrossRef]
- Zhang, L.D.; Feng, S.Y. Simulation of soil particle size composition on adsorption capacity of heavy metal Cd. Chin. Rural Water Hydr. 2014, 7, 81–84. (In Chinese) [Google Scholar]
- Wang, L.; Wang, Y.P.; Xu, C.X.; Li, Y.Y.; An, Z.Y.; Wang, S.M. Adsorption characteristics of cadmium, lead and mercury in different sized soils. Rock Miner. Anal. 2009, 28, 119–124. (In Chinese) [Google Scholar]
- Pinskii, D.L.; Minkina, T.M.; Bauer, T.V.; Nevidomskaya, D.G.; Shuvaeva, V.A.; Mandzhieva, S.S.; Tsitsuashvili, V.S.; Burachevskaya, M.V.; Chaplygin, V.A.; Barakhov, A.V.; et al. Identification of Heavy Metal Compounds in Technogenically Transformed Soils Using Sequential Fractionation, XAFS Spectroscopy, and XRD Powder Diffraction. Eurasian Soil Sci. 2022, 55, 613–626. [Google Scholar] [CrossRef]
- Rashid, M.I.; Mujawar, L.H.; Shahzad, T.; Almeelbi, T.; Ismail, I.M.I.; Oves, M. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol. Res. 2016, 183, 26–41. [Google Scholar] [CrossRef]
- Plekhanova, I.O.; Bambusheva, V.A. Extraction methods for studying the fractional composition of heavy metals in soils and their comparative assessment. Eurasian Soil Sci. 2010, 43, 1004–1010. [Google Scholar] [CrossRef]
- Nevidomskaya, D.G.; Minkina, T.M.; Soldatov, A.V.; Shuvaeva, V.A.; Zubavichus, Y.V.; Podkovyrina, Y.S. Comprehensive study of Pb (II) speciation in soil by X-ray absorption spectroscopy (XANES and EXAFS) and sequential fractionation. J. Soils Sediments 2016, 16, 1183–1192. [Google Scholar] [CrossRef]
- Minkina, T.M.; Linnik, V.G.; Nevidomskaya, D.G.; Bauer, T.V.; Mandzhieva, S.S.; Khoroshavin, V.Y. Forms of Cu (II), Zn (II), and Pb (II) compounds in technogenically transformed soils adjacent to the Karabashmed copper smelter. J. Soils Sediments 2018, 18, 2217–2228. [Google Scholar] [CrossRef]
Technology | Process | Advantages | Limitations |
---|---|---|---|
Soil replacement | Digging up contaminated soil and replacing it with non-contaminated soil | It effectively isolates heavy metals from contaminated sites and is effective on highly contaminated soils. | It is heavy and costly, generates hazardous waste, and has a negative impact on the soil. |
Electrochemical remediation | Removal of heavy metals from the soil by electrophoresis or application of DC voltage | It is cost-effective, easy to operate and does not damage the soil properties. | It requires soil with low permeability and pH control. |
Stabilization | Application of sorbents to reduce heavy metal mobility and bioavailability, forming stable and immobilized complexes | It is quick and easy to operate, relatively low cost and covers a wide range of inorganic pollutants. | To prevent secondary release, it requires prolonged monitoring. |
Drenching | Removal of heavy metals from soils by extractants and formation of stable and mobile complexes | It completely removes heavy metals, complies with specific standards and reduces long-term liability. | Washing extractants can cause environmental problems and the effectiveness of treatment varies depending on the soil, the metal and the type of extractant. |
Plant extract | Using super-enriched plants to uptake, transfer and concentrate heavy metals from the soil to the above-ground harvestable plant fraction | Highly economical, environmentally friendly and less disruptive | The effectiveness depends on the growing conditions, the tolerance of the plant and the bioavailability of the metal in the soil. |
Depth (cm) | Sand (%) | Powder (%) | Clay (%) | Cd (mg/kg) | Soil Texture | Source |
---|---|---|---|---|---|---|
0–20 | 80.53 | 17.9 | 1.55 | 0.776 | Loamy sand 1 | Shanxi |
0–20 | 77.65 | 21.34 | 1.01 | 2.61 | Loamy sand 2 | Henan |
0–20 | 59.37 | 19.27 | 21.37 | 4.32 | Sand clay loam | Hunan |
0–20 | 41.70 | 34.90 | 23.40 | 1.29 | Loam | Tianjin |
0–20 | 9.00 | 48.00 | 43.00 | 2.49 | Silty clay | Tianjin |
Organic Content | pH | Sand (%) | Powder (%) | Clay (%) | XRD 1 | |
---|---|---|---|---|---|---|
Stabilization rate | −0.195 | 0.878 * | −0.011 | 0.272 | −0.182 | 0.677 |
BCR-F1 | 0.213 | 0.635 | −0.181 | 0.421 | −0.008 | 0.698 |
BCR-F2 | 0.973 ** | −0.451 | −0.686 | 0.619 | 0.696 | −0.694 |
BCR-F3 | −0.464 | −0.497 | 0.636 | −0.804 | −0.475 | −0.469 |
BCR-F4 | −0.899 ** | 0.051 | 0.520 | −0.607 | −0.426 | 0.122 |
Samples | SO42− (mg/L) |
---|---|
Not add WTF-Pb | 5.42 ± 0.04 |
Add WTF-Pb | 4.20 ± 0.03 |
pH | Zeta Potential (mV) |
---|---|
6.74 | 47.4 ± 1.1 |
7.23 | 49.1 ± 1.3 |
7.59 | 48.3 ± 1.1 |
8.37 | 46.5 ± 0.9 |
Soil Samples | NO3−-N (mg/kg) |
---|---|
Cd-CK | 54.31 |
Cd-2% | 743.7 |
Pb-CK | 66.05 |
Pb-7% | 2698 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, K.; Teng, F.; Liu, S.; Liu, X. Analysis of the Effect of Soil Remediation Processes Contaminated by Heavy Metals in Different Soils. Water 2022, 14, 4004. https://doi.org/10.3390/w14244004
Ren K, Teng F, Liu S, Liu X. Analysis of the Effect of Soil Remediation Processes Contaminated by Heavy Metals in Different Soils. Water. 2022; 14(24):4004. https://doi.org/10.3390/w14244004
Chicago/Turabian StyleRen, Ke, Fangyuan Teng, Shejiang Liu, and Xiuli Liu. 2022. "Analysis of the Effect of Soil Remediation Processes Contaminated by Heavy Metals in Different Soils" Water 14, no. 24: 4004. https://doi.org/10.3390/w14244004
APA StyleRen, K., Teng, F., Liu, S., & Liu, X. (2022). Analysis of the Effect of Soil Remediation Processes Contaminated by Heavy Metals in Different Soils. Water, 14(24), 4004. https://doi.org/10.3390/w14244004