Exploration and Optimisation of High-Salt Wastewater Defluorination Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Method
3. Results and Discussion
3.1. Effect of Sulphate Radical on Fluoride Removal in Water
3.2. Impact of Dosage on Water Quality Treatment Effect
3.3. Contrastive Experiment of Adding CaCl2 Treatment Effect
3.4. Effects of Different Reaction Times on Water Quality Treatment Efficiency
3.5. Effect of pH on the Defluorination
3.6. Influence and Optimisation of Process Pretreatment on Defluorination Effect
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Choudhary, N.; Yadav, V.K.; Yadav, K.K.; Almohana, A.I.; Almojil, S.F.; Gnanamoorthy, G.; Kim, D.H.; Islam, S.; Kumar, P.; Jeon, B.H. Application of green synthesized MMT/Ag nanocomposite for removal of methylene blue from aqueous solution. Water 2021, 13, 3206. [Google Scholar]
- Khan, S.H.; Pathak, B. Zinc oxide based photocatalytic degradation of persistent pesticides: A comprehensive review. Environ. Nanotechnol. Monit. Manag. 2020, 13, 100290. [Google Scholar]
- Yadav, V.K.; Khan, S.H.; Choudhary, N.; Tirth, V.; Kumar, P.; Ravi, R.K.; Modi, S.; Khayal, A.; Shah, M.P.; Sharma, P.; et al. Nanobioremediation: A sustainable approach towards the degradation of sodium dodecyl sulfate in the environment and simulated conditions. J. Basic Microbiol. 2022, 62, 348–360. [Google Scholar] [CrossRef] [PubMed]
- Mushtaq, F.; Zahid, M.; Bhatti, I.A.; Nasir, S.; Hussain, T. Possible applications of coal fly ash in wastewater treatment. J. Environ. Manag. 2019, 240, 27–46. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Satyawali, Y.; Batra, V.S.; Balakrishnan, M. Submerged membrane bioreactor using fly ash filters: Trials with distillery wastewater. Water Sci. Technol. 2008, 58, 1281–1284. [Google Scholar] [CrossRef]
- Liu, X. Online monitoring method of non-point source pollution of water resources in river scenic spots. Arab. J. Geosci. 2021, 14, 603. [Google Scholar] [CrossRef]
- León, L.F.; Soulis, E.D.; Kouwen, N.; Farquhar, G.J. Nonpoint source pollution: A distributed water quality modeling approach. Water Res. 2001, 35, 997–1007. [Google Scholar] [CrossRef]
- Boulkhessaim, S.; Gacem, A.; Khan, S.H.; Amari, A.; Yadav, V.K.; Harharah, H.N.; Elkhaleefa, A.M.; Yadav, K.K.; Rather, S.-U.; Ahn, H.-J.; et al. Emerging trends in the remediation of persistent organic pollutants using nanomaterials and related processes: A review. Nanomaterials 2022, 12, 2148. [Google Scholar]
- Sharma, B. Microbes as indicators of water quality and bioremediation of polluted waters: A novel approach. In Microbial Biotechnology in Environmental Monitoring and Cleanup; Pankaj, Sharma, A., Eds.; IGI Global: Hershey, PA, USA, 2018; pp. 44–60. [Google Scholar]
- Bilotta, G.S.; Brazier, R.E. Understanding the influence of suspended solids on water quality and aquatic biota. Water Res. 2008, 42, 2849–2861. [Google Scholar]
- Wang, B.; Zhou, Y.; Li, L.; Xu, H.; Sun, Y.; Wang, Y. Novel synthesis of cyano-functionalized mesoporous silica nanospheres (MSN) from coal fly ash for removal of toxic metals from wastewater. J. Hazard. Mater. 2018, 345, 76–86. [Google Scholar] [CrossRef]
- Yadav, V.K.; Yadav, K.K.; Gacem, A.; Gnanamoorthy, G.; Ali, I.H.; Khan, S.H.; Jeon, B.-H.; Kamyab, H.; Inwati, G.K.; Choudhary, N. A novel approach for the synthesis of vaterite and calcite from incense sticks ash waste and their potential for remediation of dyes from aqueous solution. Sustain. Chem. Pharm. 2022, 29, 100756. [Google Scholar] [CrossRef]
- Dash, S.; Chaudhuri, H.; Gupta, R.; Nair, U.G. Adsorption study of modified coal fly ash with sulfonic acid as a potential adsorbent for the removal of toxic reactive dyes from aqueous solution: Kinetics and thermodynamics. J. Environ. Chem. Eng. 2018, 6, 5897–5905. [Google Scholar]
- Cisneros, B.J. Safe sanitation in low economic development areas. Treatise Water Sci. 2011, 4, 147–200. [Google Scholar]
- Adegoke, K.A.; Oyewole, R.O.; Lasisi, B.M.; Bello, O.S. Abatement of organic pollutants using fly ash based adsorbents. Water Sci. Technol. 2017, 76, 2580–2592. [Google Scholar] [CrossRef]
- Inwati, G.K.; Kumar, P.; Roos, W.D.; Swart, H.C.; Singh, M. UV-irradiation effects on tuning LSPR of Cu/Ag nanoclusters in ion exchanged glass matrix and its thermodynamic behaviour. J. Alloys Compd. 2020, 823, 153820. [Google Scholar]
- Malik, P.; Inwati, G.K.; Mukherjee, T.K.; Singh, S.; Singh, M. Green silver nanoparticle and Tween-20 modulated pro-oxidant to antioxidant curcumin transformation in aqueous CTAB stabilized peanut oil emulsions. J. Mol. Liq. 2019, 291, 111252. [Google Scholar]
- Montes-Grajales, D.; Fennix-Agudelo, M.; Miranda-Castro, W. Occurrence of personal care products as emerging chemicals of concern in water resources: A review. Sci. Total Environ. 2017, 595, 601–614. [Google Scholar]
- Daughton, C.G.; Ternes, T.A. Pharmaceuticals and personal care products in the environment: Agents of subtle change? Environ. Health Perspect. 1999, 107, 907–938. [Google Scholar] [CrossRef]
- Geissen, V.; Mol, H.; Klumpp, E.; Umlauf, G.; Nadal, M.; van der Ploeg, M.; van de Zee, S.E.A.T.M.; Ritsema, C.J. Emerging pollutants in the environment: A challenge for water resource management. Int. Soil Water Conserv. Res. 2015, 3, 57–65. [Google Scholar] [CrossRef]
- Chaukura, N.; Gwenzi, W.; Tavengwa, N.; Manyuchi, M.M. Biosorbents for the removal of synthetic organics and emerging pollutants: Opportunities and challenges for developing countries. Environ. Dev. 2016, 19, 84–89. [Google Scholar] [CrossRef]
- Khan, M.; Khan, A.U.; Hasan, M.A.; Yadav, K.K.; Pinto, M.M.C.; Malik, N.; Yadav, V.K.; Khan, A.H.; Islam, S.; Sharma, G.K. Agro-Nanotechnology as an Emerging Field: A Novel Sustainable Approach for Improving Plant Growth by Reducing Biotic Stress. Appl. Sci. 2021, 11, 2282. [Google Scholar]
- Gaur, N.; Flora, G.; Yadav, M.; Tiwari, A. A review with recent advancements on bioremediation-based abolition of heavy metals. Environ. Sci. Process. Impacts 2014, 16, 180–193. [Google Scholar] [CrossRef] [PubMed]
- Bondi, C.A.M.; Marks, J.L.; Wroblewski, L.B.; Raatikainen, H.S.; Lenox, S.R.; Gebhardt, K.E. Human and environmental toxicity of sodium lauryl sulfate (SLS): Evidence for safe use in household cleaning products. Environ. Health Insights. 2015, 9, 27–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, R.G.; Kopfler, F.C.; Kelty, K.C.; Stober, J.A.; Ulmer, N.S. The occurrence of aluminum in drinking water. J. Am. Water Works Assoc. 1984, 76, 84–91. [Google Scholar]
- Taylor, K.M.; Weisskopf, M.; Shine, J. Human exposure to nitro musks and the evaluation of their potential toxicity: An overview. Environ. Health 2014, 13, 14. [Google Scholar] [CrossRef] [Green Version]
- Liyanage, C.P.; Yamada, K. Impact of population growth on the water quality of natural water bodies. Sustainability 2017, 9, 1405. [Google Scholar]
- Shabir, M.; Muhammad, Y.; Hussain, M.; Shafiq, I.; Parveen, A.; Nizami, A.S.; Jeon, B.H.; Park, Y.K. A review on recent advances in the treatment of dye-polluted wastewater. J. Ind. Eng. Chem. 2022, 112, 1–19. [Google Scholar] [CrossRef]
- Song, G.; Qin, F.; Yu, J.; Tang, L.; Pang, Y.; Zhang, C.; Wang, J.; Deng, L. Tailoring biochar for persulfate-based environmental catalysis: Impact of biomass feedstocks. J. Hazard. Mater. 2021, 424, 127663. [Google Scholar] [CrossRef]
- Gnanamoorthy, G.; Ramar, K.; Ali, D.; Yadav, V.K.; Jafar ahamed, A.; Kumar, G. Synthesis and effective performance of Photocatalytic and Antimicrobial activities of Bauhinia tomentosa Linn plants using of gold nanoparticles. Opt. Mater. 2022, 123, 111945. [Google Scholar] [CrossRef]
- Moussa, D.T.; El-Naas, M.H.; Nasser, M.; Al-Marri, M.J. A comprehensive review of electrocoagulation for water treatment: Potentials and challenges. J. Environ. Manag. 2017, 186, 24–41. [Google Scholar] [CrossRef]
- Zyłka, R.; Dabrowski, W.; Gogina, E.; Yancen, O. Trickling filter for high efficiency treatment of dairy sewage. J. Ecol. Eng. 2018, 19, 269–275. [Google Scholar]
- Han, B.; Kyu Kim, J.; Kim, Y.; Seung Choi, J.; Young Jeong, K. Operation of industrial-scale electron beam wastewater treatment plant. Radiat. Phys. Chem. 2012, 81, 1475–1478. [Google Scholar] [CrossRef]
- Xiong, J.Q.; Cui, P.; Ru, S.; Kurade, M.B.; Patil, S.M.; Yadav, K.K.; Fallatah, A.M.; Cabral-Pinto, M.M.S.; Jeon, B.H. A comprehensive review on the effects of engineered nanoparticles on microalgal treatment of pollutants from wastewater. J. Clean. Prod. 2022, 344, 131121. [Google Scholar] [CrossRef]
- Yuan, P.; Wang, J.; Pan, Y.; Shen, B.; Wu, C. Review of biochar for the management of contaminated soil: Preparation, application, and prospect. Sci. Total Environ. 2019, 659, 473–490. [Google Scholar] [CrossRef]
- Gul, E.; Alrawashdeh, K.A.B.; Masek, O.; Skreiberg, Ø.; Corona, A.; Zampilli, M.; Wang, L.; Samaras, P.; Yang, Q.; Zhou, H.; et al. Production and use of biochar from lignin and lignin-rich residues (such as digestate and olive stones) for wastewater treatment. J. Anal. Appl. Pyrolysis 2021, 158, 105263. [Google Scholar]
- Guo, F.; Jia, X.; Liang, S.; Zhou, N.; Chen, P.; Ruan, R. Development of biochar-based nanocatalysts for tar cracking/reforming during biomass pyrolysis and gasification. Bioresour. Technol. 2020, 298, 122263. [Google Scholar] [CrossRef]
- Gan, Y.Y.; Ong, H.C.; Show, P.L.; Ling, T.C.; Chen, W.H.; Yu, K.L.; Abdullah, R. Torrefaction of microalgal biochar as potential coal fuel and application as bio-adsorbent. Energy Convers. Manag. 2018, 165, 152–162. [Google Scholar] [CrossRef]
- Sbizzaro, M.; Sampaio, S.C.; dos Reis, R.R.; de Assis Beraldi, F.; Rosa, D.M.; de Freitas Maia, C.M.B.; de Carvalho, C.; do Nascimento, C.T.; da Silva, E.A.; Borba, C.E. Effect of production temperature in biochar properties from bamboo culm and its influences on atrazine adsorption from aqueous systems. J. Mol. Liq. 2021, 343, 117667. [Google Scholar]
- Dai, Y.; Zhang, N.; Xing, C.; Cui, Q.; Sun, Q. The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: A review. Chemosphere 2019, 223, 12–27. [Google Scholar] [CrossRef]
- Zhou, X.; Zhu, Y.; Niu, Q.; Zeng, G.; Lai, C.; Liu, S.; Huang, D.; Qin, L.; Liu, X.; Li, B.; et al. New notion of biochar: A review on the mechanism of biochar applications in advanced oxidation processes. Chem. Eng. J. 2021, 416, 129027. [Google Scholar] [CrossRef]
- To-Hung, T.; Zhang, L.; Zhang, J.; Dai, Y.; WahTong, Y. Methodological framework for wastewater treatment plants delivering expanded service: Economic tradeoffs and technological decisions. Sci. Total Environ. 2022, 823, 153616. [Google Scholar]
- To-Hung, T.; Zhang, L.; Zhang, J.; Dai, Y.; WahTong, Y. Engineering interface between bioenergy recovery and biogas desulfurization: Sustainability interplays of biochar application. Renew. Sust. Energy Rev. 2022, 157, 112053. [Google Scholar]
Number | Water Sample | pH | COD (mg/L) | NH3-N (mg/L) | TN (mg/L) | TP (mg/L) | Inorganic Phosphorus (mg/L) | Conductivity (μs/cm) | Fluoride (mg/L) | Chloride (mg/L) |
---|---|---|---|---|---|---|---|---|---|---|
1 | Regulation pool | 9.8 | 451 | 29 | 50.3 | 29.4 | 28.8 | 37,120 | 308.5 | 7072.9 |
2 | Intermediate pool | 9.6 | 592 | 46.4 | 62.5 | 67.4 | 62.48 | 56,200 | 446.6 | 9787.8 |
3 | Domestic sewage pool | 8.6 | 114 | 7.1 | 11 | 3.94 | 3 | 10,620 | 113.2 | 2178.3 |
5 | Neutralisation reaction tank A | 10.8 | 575 | 1.9 | 19 | 24.5 | 21.8 | 68,400 | 236 | 4880.3 |
6 | Neutralisation reaction tank B | 10.9 | 542 | 2 | 19.6 | 23.5 | 21.2 | 65,600 | 242 | 5064.8 |
Number | Water Sample | pH | TP (mg/L) | Inorganic Phosphorus (mg/L) | Fluoride (mg/L) | Chloride (mg/L) |
---|---|---|---|---|---|---|
1 | neutralisation tank + 860 mg/L Ca(OH)2 + 200 mg/L PAC | 10.9 | 20.9 | 19.8 | 231.8 | 6343 |
2 | neutralisation tank + 1160 mg/L Ca(OH)2 + 600 mg/L PAC | 11.1 | 16.2 | 15.7 | 232 | 6327 |
3 | neutralisation tank + 2320 mg/L Ca(OH)2 + 600 mg/L PAC | 12.2 | 14.1 | 13.3 | 214 | 6316 |
4 | neutralisation tank + 3440 mg/L Ca(OH)2 + 200 mg/L PAC | 12.5 | 8.6 | 8.3 | 205 | 6057 |
Number | Water Sample | pH | COD (mg/L) | TP (mg/L) | Inorganic Phosphorus (mg/L) | Fluoride (mg/L) | Conductivity (μs/cm) |
---|---|---|---|---|---|---|---|
1 | 2000 mg/L Ca(OH)2 + 600 mg/L PAC | 8.3 | 1248 | 14.6 | 13.7 | 60.4 | 44,600 |
2 | 2800 mg/L CaCl2 + 600 mg/L PAC | 8.2 | 3121 | 15.5 | 15 | 89.3 | 45,600 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D.; Zhao, M.; Tao, X.; Ma, J.; Liu, A.; Wang, M. Exploration and Optimisation of High-Salt Wastewater Defluorination Process. Water 2022, 14, 3974. https://doi.org/10.3390/w14233974
Chen D, Zhao M, Tao X, Ma J, Liu A, Wang M. Exploration and Optimisation of High-Salt Wastewater Defluorination Process. Water. 2022; 14(23):3974. https://doi.org/10.3390/w14233974
Chicago/Turabian StyleChen, Dianhua, Minyan Zhao, Xinyuan Tao, Jing Ma, Ankang Liu, and Mingxiu Wang. 2022. "Exploration and Optimisation of High-Salt Wastewater Defluorination Process" Water 14, no. 23: 3974. https://doi.org/10.3390/w14233974
APA StyleChen, D., Zhao, M., Tao, X., Ma, J., Liu, A., & Wang, M. (2022). Exploration and Optimisation of High-Salt Wastewater Defluorination Process. Water, 14(23), 3974. https://doi.org/10.3390/w14233974