Develop a Smart Microclimate Control System for Greenhouses through System Dynamics and Machine Learning Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Materials
2.2. System Dynamics (SD) for Simulating Greenhouse Environment
2.2.1. Formulation of Greenhouse Internal Relative Humidity
2.2.2. Formulation of Greenhouse Internal Temperature
2.3. Machine Learning for Predicting Greenhouse Internal Environment
2.4. Construction of the Spray Mechanism
2.5. Evaluation of Model Performances
3. Results
3.1. Comparison of Model Accuracy and Reliability between the Physically Based and ANN Models
3.2. Comparison of the Spray Effect of Traditional and Smart Control Systems on Greenhouse Internal Environment
3.3. Comparison of Resource Consumption between Traditional and Smart Microclimate-Control Systems
4. Discussion
4.1. Evaluation of Hazard Mitigation by the SMCS
4.2. Conributions of the SMCS
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. The Sustainable Development Goals Report 2022; United Nations Publications: New York, NY, USA, 2022; pp. 6–25. [Google Scholar]
- Huang, A.; Chang, F.J. Using a self-organizing map to explore local weather features for smart urban agriculture in northern Taiwan. Water 2021, 13, 3457. [Google Scholar] [CrossRef]
- Walters, S.A.; Gajewski, C.; Sadeghpour, A.; Groninger, J.W. Mitigation of climate change for urban agriculture: Water management of culinary herbs grown in an extensive green roof environment. Climate 2022, 10, 180. [Google Scholar] [CrossRef]
- Holzkämper, A. Adapting agricultural production systems to climate change—What’s the use of models? Agriculture 2017, 7, 86. [Google Scholar] [CrossRef] [Green Version]
- Salpina, D.; Pagliacci, F. Are we adapting to climate change? Evidence from the high-quality agri-food sector in the Veneto region. Sustainability 2022, 14, 11482. [Google Scholar] [CrossRef]
- Shayanmehr, S.; Porhajašová, J.I.; Babošová, M.; Sabouhi Sabouni, M.; Mohammadi, H.; Rastegari Henneberry, S.; Shahnoushi Foroushani, N. The impacts of climate change on water resources and crop production in an arid region. Agriculture 2022, 12, 1056. [Google Scholar] [CrossRef]
- Xin, Y.; Tao, F. Developing climate-smart agricultural systems in the North China Plain. Agric. Ecosyst. Environ. 2020, 291, 106791. [Google Scholar] [CrossRef]
- Esmaili, M.; Aliniaeifard, S.; Mashal, M.; Vakilian, K.A.; Ghorbanzadeh, P.; Azadegan, B.; Seif, M.; Didaran, F. Assessment of adaptive neuro-fuzzy inference system (ANFIS) to predict production and water productivity of lettuce in response to different light intensities and CO2 concentrations. Agric. Water Manag. 2021, 258, 107201. [Google Scholar] [CrossRef]
- Kalkhajeh, Y.K.; Huang, B.; Hu, W.; Ma, C.; Gao, H.; Thompson, M.L.; Hansen, H.C.B. Environmental soil quality and vegetable safety under current greenhouse vegetable production management in China. Agric. Ecosyst. Environ. 2021, 307, 107230. [Google Scholar] [CrossRef]
- Li, M.; Chen, S.; Liu, F.; Zhao, L.; Xue, Q.; Wang, H.; Chen, M.; Lei, P.; Wen, D.; Sanchez-Molina, J.A.; et al. A risk management system for meteorological disasters of solar greenhouse vegetables. Precis. Agric. 2017, 18, 997–1010. [Google Scholar] [CrossRef]
- Hemming, S.; Zwart, F.D.; Elings, A.; Petropoulou, A.; Righini, I. Cherry tomato production in intelligent greenhouses—Sensors and AI for control of climate, irrigation, crop yield, and quality. Sensors 2020, 20, 6430. [Google Scholar] [CrossRef]
- Huang, Y.I. Study of fog and fan system for plastic greenhouse cooling in Taiwan. J. Agric. Mach. 1999, 8, 17–27. [Google Scholar]
- Joudi, K.A.; Farhan, A.A. A dynamic model and an experimental study for the internal air and soil temperatures in an innovative greenhouse. Energy Convers. Manag. 2015, 91, 76–82. [Google Scholar] [CrossRef]
- Pawlowski, A.; Sánchez-Molina, J.A.; Guzmán, J.L.; Rodríguez, F.; Dormido, S. Evaluation of event-based irrigation system control scheme for tomato crops in greenhouses. Agric. Water Manag. 2017, 183, 16–25. [Google Scholar] [CrossRef]
- Bwambale, E.; Abagale, F.K.; Anornu, G.J. Smart irrigation monitoring and control strategies for improving water use efficiency in precision agriculture: A review. Agric. Water Manag. 2022, 260, 107324. [Google Scholar] [CrossRef]
- Tona, E.; Calcante, A.; Oberti, R. The profitability of precision spraying on specialty crops: A technical–economic analysis of protection equipment at increasing technological levels. Precis. Agric. 2018, 19, 606–629. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.C.; Chang, C.Y.; Lee, W.S. The Study on Greenhouse Cooling Effect on Different Control Strategies for Fogging System. J. Agric. Mach. 2006, 15, 23–36. [Google Scholar]
- Chen, S.; Cai, L.; Zhang, H.; Zhang, Q.; Song, J.; Zhang, Z.; Deng, Y.; Liu, Y.; Wang, X.; Fang, H. Deposition distribution, metabolism characteristics, and reduced application dose of difenoconazole in the open field and greenhouse pepper ecosystem. Agric. Ecosyst. Environ. 2021, 313, 107370. [Google Scholar] [CrossRef]
- Hu, J.; Gettel, G.; Fan, Z.; Lv, H.; Zhao, Y.; Yu, Y.; Wang, J.; Butterbach-Bahl, K.; Li, G.; Lin, S. Drip fertigation promotes water and nitrogen use efficiency and yield stability through improved root growth for tomatoes in plastic greenhouse production. Agric. Ecosyst. Environ. 2021, 313, 107379. [Google Scholar] [CrossRef]
- Ding, J.T.; Tu, H.Y.; Zang, Z.L.; Huang, M.; Zhou, S.J. Precise control and prediction of the greenhouse growth environment of Dendrobium candidum. Comput. Electron. Agric. 2018, 151, 453–459. [Google Scholar] [CrossRef]
- Hamrani, A.; Akbarzadeh, A.; Madramootoo, C.A. Machine learning for predicting greenhouse gas emissions from agricultural soils. Sci. Total Environ. 2020, 741, 140338. [Google Scholar] [CrossRef]
- Jung, D.H.; Kim, H.S.; Jhin, C.; Kim, H.J.; Park, S.H. Time-serial analysis of deep neural network models for prediction of climatic conditions inside a greenhouse. Comput. Electron. Agric. 2020, 173, 105402. [Google Scholar] [CrossRef]
- Katzin, D.; van Henten, E.J.; van Mourik, S. Process-based greenhouse climate models: Genealogy, current status, and future directions. Agric. Syst. 2022, 198, 103388. [Google Scholar] [CrossRef]
- Rincón, V.J.; Grella, M.; Marucco, P.; Alcatrão0, A.E.; Sanchez-Hermosilla, J.; Balsari, P. Spray performance assessment of a remote-controlled vehicle prototype for pesticide application in greenhouse tomato crops. Sci. Total Environ. 2020, 726, 138509. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Ortega, W.M.; Martinez, V.; Rivero, R.M.; Camara-Zapata, J.M.; Mestre, T.; Garcia-Sanchez, F. Use of a smart irrigation system to study the effects of irrigation management on the agronomic and physiological responses of tomato plants grown under different temperatures regimes. Agric. Water Manag. 2017, 183, 158–168. [Google Scholar] [CrossRef]
- Astegiano, P.; Fermi, F.; Martino, A. Investigating the impact of e-bikes on modal share and greenhouse emissions: A system dynamic approach. Transp. Res. Procedia 2019, 37, 163–170. [Google Scholar] [CrossRef]
- Forrester, J.W. System dynamics and the lessons of 35 years. In A Systems-Based Approach to Policymaking; Springer: Boston, MA, USA, 1993; pp. 199–240. [Google Scholar]
- Li, J.W.; Cao, Y.C.; Zhu, Y.Q.; Xu, C.; Wang, L.X. System dynamic analysis of greenhouse effect based on carbon cycle and prediction of carbon emissions. Appl. Ecol. Environ. Res. 2019, 17, 5067–5080. [Google Scholar] [CrossRef]
- Forrester, J.W. Industrial dynamics. J. Oper. Res. Soc. 1997, 48, 1037–1041. [Google Scholar] [CrossRef]
- Château, P.A.; Wunderlich, R.F.; Wang, T.W.; Lai, H.T.; Chen, C.C.; Chang, F.J. Mathematical modeling suggests high potential for the deployment of floating photovoltaic on fish ponds. Sci. Total Environ. 2019, 687, 654–666. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Iqbal, A.; Zan, F.; Liu, X.; Chen, G. Life-cycle-based rgeenhouse gas, energy, and economic analysis of municipal solid wastemanagement using system dynamics model. Sustainability 2021, 13, 1641. [Google Scholar] [CrossRef]
- Stasinopoulos, P.; Shiwakoti, N.; Beining, M. Use-stage life cycle greenhouse gas emissions of the transition to an autonomous vehicle fleet: A system dynamics approach. J. Clean. Prod. 2021, 278, 123447. [Google Scholar] [CrossRef]
- Huang, A.; Chang, F.J. Prospects for rooftop farming system dynamics: An action to stimulate water-energy-food nexus synergies toward green cities of tomorrow. Sustainability 2021, 13, 9042. [Google Scholar] [CrossRef]
- Amadei, B. A Systems Approach to Modeling the Water-Energy-Land-Food Nexus: System Dynamics MODELING and dynamic Scenario Planning, 1st ed.; Momentum Press: New York, NY, USA, 2019; Volume I, II. [Google Scholar]
- Gary, I.E.; Grigg, N.; Reagan, W. Dynamic behavior of the water-food-energy nexus: Focus on crop production and consumption. Irrig. Drain. 2017, 66, 19–33. [Google Scholar]
- Fang, W. Quantitative measures of the effectiveness of evaporative cooling systems in greenhouse. J. Agric. Mach. 1995, 4, 15–25. [Google Scholar]
- Chang, F.J.; Tsai, M.J. A nonlinear spatio-temporal lumping of radar rainfall for modeling multi-step-ahead inflow forecasts by data-driven techniques. J. Hydrol. 2016, 535, 256–269. [Google Scholar] [CrossRef]
- Mirabbasi, R.; Kisi, O.; Sanikhani, H.; Gajbhiye Meshram, S. Monthly long-term rainfall estimation in Central India using M5Tree, MARS, LSSVR, ANN and GEP models. Neural Comput. Appl. 2019, 31, 6843–6862. [Google Scholar] [CrossRef]
- Arya Azar, N.; Kardan, N.; Ghordoyee Milan, S. Developing the artificial neural network–evolutionary algorithms hybrid models (ANN–EA) to predict the daily evaporation from dam reservoirs. Eng. Comput. 2021, 37, 1–19. [Google Scholar] [CrossRef]
- Chang, F.J.; Chang, L.C.; Kao, H.S.; Wu, G.R. Assessing the effort of meteorological variables for evaporation estimation by self-organizing map neural network. J. Hydrol. 2010, 384, 118–129. [Google Scholar] [CrossRef]
- Chang, L.C.; Amin, M.; Yang, S.N.; Chang, F.J. Building ANN-based regional multi-step-ahead flood inundation forecast models. Water 2018, 10, 1283. [Google Scholar] [CrossRef] [Green Version]
- Chang, L.C.; Chang, F.J.; Yang, S.N.; Tsai, F.H.; Chang, T.H.; Herricks, E.E. Self-organizing maps of typhoon tracks allow for flood forecasts up to two days in advance. Nat. Commun. 2020, 11, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Chang, L.C.; Liou, C.Y.; Chang, F.J. Explore training self-organizing map methods for clustering high-dimensional flood inundation maps. J. Hydrol. 2022, 595, 125655. [Google Scholar] [CrossRef]
- Kao, I.F.; Zhou, Y.; Chang, L.C.; Chang, F.J. Exploring a long short-term memory based encoder-decoder framework for multi-step-ahead flood forecasting. J. Hydrol. 2020, 583, 124631. [Google Scholar] [CrossRef]
- Zhou, Y.; Chang, L.C.; Uen, T.S.; Guo, S.; Xu, C.Y.; Chang, F.J. Prospect for small-hydropower installation settled upon optimal water allocation: An action to stimulate synergies of water-food-energy nexus. Appl. Energy 2019, 238, 668–682. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, S.; Xu, C.Y.; Chang, F.J.; Yin, J. Improving the reliability of probabilistic multi-step-ahead flood forecasting by fusing unscented Kalman filter with recurrent neural network. Water 2020, 12, 578. [Google Scholar] [CrossRef] [Green Version]
- Chang, F.J.; Guo, S. Advances in hydrologic forecasts and water resources management. Water 2020, 12, 1819. [Google Scholar] [CrossRef]
- Bai, T.; Tsai, W.P.; Chiang, Y.M.; Chang, F.J.; Chang, W.Y.; Chang, L.C.; Chang, K.C. Modeling and investigating the mechanisms of groundwater level variation in the Jhuoshui River Basin of Central Taiwan. Water 2019, 11, 1554. [Google Scholar] [CrossRef] [Green Version]
- Chen, I.T.; Chang, L.C.; Chang, F.J. Exploring the spatio-temporal interrelation between groundwater and surface water by using the self-organizing maps. J. Hydrol. 2018, 556, 131–142. [Google Scholar] [CrossRef]
- Ghimire, S.; Deo, R.C.; Downs, N.J.; Raj, N. Global solar radiation prediction by ANN integrated with European Centre for medium range weather forecast fields in solar rich cities of Queensland Australia. J. Clean. Prod. 2019, 216, 288–310. [Google Scholar] [CrossRef]
- Pradhan, P.; Tingsanchali, T.; Shrestha, S. Evaluation of soil and water assessment tool and artificial neural network models for hydrologic simulation in different climatic regions of Asia. Sci. Total Environ. 2020, 701, 134308. [Google Scholar] [CrossRef]
- Cheng, S.T.; Tsai, W.P.; Yu, T.C.; Herricks, E.E.; Chang, F.J. Signals of stream fish homogenization revealed by AI-based clusters. Sci. Rep. 2018, 8, 15960. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.H.; Tsai, W.P.; Cheng, S.T.; Chang, F.J. Explore the relationship between fish community and environmental factors by machine learning techniques. Environ. Res. 2020, 184, 109262. [Google Scholar] [CrossRef]
- Kow, P.Y.; Wang, Y.S.; Zhou, Y.; Kao, I.F.; Issermann, M.; Chang, L.C.; Chang, F.J. Seamless integration of convolutional and back-propagation neural networks for regional multi-step-ahead PM2.5 forecasting. J. Clean. Prod. 2020, 261, 121285. [Google Scholar] [CrossRef]
- Saleem, M.H.; Potgieter, J.; Arif, K.M. Automation in agriculture by machine and deep learning techniques: A review of recent developments. Precis. Agric. 2021, 22, 2053–2091. [Google Scholar] [CrossRef]
- Nicolosi, G.; Volpe, R.; Messineo, A. An innovative adaptive control system to regulate microclimatic conditions in a greenhouse. Energies 2017, 10, 722. [Google Scholar] [CrossRef] [Green Version]
- Riahi, J.; Vergura, S.; Mezghani, D.; Mami, A. Intelligent control of the microclimate of an agricultural greenhouse powered by a supporting PV system. Appl. Sci. 2020, 10, 1350. [Google Scholar] [CrossRef]
- Xue, Y.X.; Li, Y.L.; Wen, X.Z. Effects of air humidity on the photosynthesis and fruit-set of yomato under high Temperature. Acta Hortic. Sin. 2010, 37, 397–404. [Google Scholar]
- Liou, Y.C.; Huang, R.J.; Cai, M.L.; Huang, S.W. Facility cultivation and health management techniques of grape tomato. Tech. Issue Tainan Dist. Agric. Res. Ext. Stn. 2016, 164, 3–47. (In Chinese) [Google Scholar]
Item | Notation | SI Unit |
---|---|---|
External temperature | To | °C |
External relative humidity | RHo | % |
External insolation | paro | W/m2 |
Wind speed | WS | m/s |
Wind direction | WD | ° |
Internal temperature | Ti | °C |
Internal relative humidity | RHi | % |
Item | BPNN |
---|---|
Number of hidden neurons | 10, 20, 40 |
Number of epochs | 200 |
Early stopping | 20 |
Batch size | 8, 16, 32, 64 |
Learning rate | 0.001 |
Activation function | Scaled exponential linear unit (SELU) |
Optimizer | Adam |
Number of Hidden Neurons | Temperature | Relative Humidity | ||
---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |
10 | 0.80 | 1.61 °C | 0.87 | 4.45% |
20 1 | 0.82 | 1.55 °C | 0.88 | 4.19% |
40 | 0.81 | 2.42 °C | 0.87 | 4.40% |
Batch Number | Temperature | Relative Humidity | ||
---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |
8 | 0.83 | 2.08 °C | 0.88 | 4.28% |
16 | 0.81 | 1.56 °C | 0.87 | 4.53% |
32 | 0.82 | 1.67 °C | 0.88 | 4.35% |
64 1 | 0.83 | 1.55 °C | 0.88 | 4.19% |
Indicators | Temperature | Relative Humidity | ||
---|---|---|---|---|
Physically Based | BPNN | Physically Based | BPNN | |
R2 | 0.80 | 0.83 | 0.79 | 0.88 |
RMSE | 1.89 °C | 1.37 °C | 8.17% | 3.9% |
Indicators | Temperature | Relative Humidity | ||
---|---|---|---|---|
Before | After | Before | After | |
Max | 38.8 °C | 28.1 °C | 100% | 100% |
Min | 23.8 °C | 23.8 °C | 37% | 56% |
Average | 29.6 °C | 27.0 °C | 72% | 86% |
Standard deviation | 3.6 °C | 1.3 °C | 16% | 7% |
Indicators | Temperature | Relative Humidity | ||
---|---|---|---|---|
Before | After | Before | After | |
Max | 34.3 °C | 32.9 °C | 91% | 100% |
Min | 21.3 °C | 22.1 °C | 48% | 69% |
Average | 28.0 °C | 26.6 °C | 74% | 89% |
Standard deviation | 2.9 °C | 1.5 °C | 12% | 4% |
Item | Water (kg) | Electric Power (kWh) | Number of On/Off Switch of Sprayers |
---|---|---|---|
Traditional spraying system | 129,478 | 90.0 | 736/1488 |
Smart spraying system | 42,962 | 29.8 | 726/1488 |
Resource-saving amount 1 | 86,516 | 60.2 | 10/- |
Resource-saving rate 2 | 66.8% | 66.8% | 1.4%/- |
Traditional spraying system | 129,478 | 90.0 | 736/1488 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.-H.; Lee, M.-H.; Hsia, I.-W.; Hsu, C.-H.; Yao, M.-H.; Chang, F.-J. Develop a Smart Microclimate Control System for Greenhouses through System Dynamics and Machine Learning Techniques. Water 2022, 14, 3941. https://doi.org/10.3390/w14233941
Chen T-H, Lee M-H, Hsia I-W, Hsu C-H, Yao M-H, Chang F-J. Develop a Smart Microclimate Control System for Greenhouses through System Dynamics and Machine Learning Techniques. Water. 2022; 14(23):3941. https://doi.org/10.3390/w14233941
Chicago/Turabian StyleChen, Ting-Hsuan, Meng-Hsin Lee, I-Wen Hsia, Chia-Hui Hsu, Ming-Hwi Yao, and Fi-John Chang. 2022. "Develop a Smart Microclimate Control System for Greenhouses through System Dynamics and Machine Learning Techniques" Water 14, no. 23: 3941. https://doi.org/10.3390/w14233941
APA StyleChen, T. -H., Lee, M. -H., Hsia, I. -W., Hsu, C. -H., Yao, M. -H., & Chang, F. -J. (2022). Develop a Smart Microclimate Control System for Greenhouses through System Dynamics and Machine Learning Techniques. Water, 14(23), 3941. https://doi.org/10.3390/w14233941