Partially Saturated Vertical Constructed Wetlands and Free-Flow Vertical Constructed Wetlands for Pilot-Scale Municipal/Swine Wastewater Treatment Using Heliconia latispatha
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location of the Study Area
2.2. System Description
2.3. Physical and Chemical Parameters
2.4. Plant Development
2.5. Statistical Analysis
3. Results and Discussion
3.1. pH in the Influent and Effluents of the Systems
3.2. Ambient Temperature and Total Suspended Solids (TSS) in the Influent and Effluents of the Systems
3.3. Contaminant Concentrations and Removal
3.3.1. Chemical Oxygen Demand (COD)
3.3.2. Total Phosphorus (TP)
3.3.3. Total Nitrogen (TN), Ammoniacal Nitrogen (N-NH4), and Nitrate (N-NO3)
3.3.4. Biomass and Vegetative Development
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CONAGUA. Estadísticas del Agua en México. 2014. Available online: http://www.conagua.gob.mx/conagua07/publicaciones/publicaciones/eam2014.pdf (accessed on 30 October 2022).
- CONAGUA. Numeragua México. 2016. Available online: http://201.116.60.25/publicaciones/Numeragua_2016.pdf (accessed on 30 October 2022).
- Crîstiu, D.; Simon-Várhelyi, M.; Luca, A.V.; Brehar, M.A.; Vasile Mircea, V.C. Augmenting Heat Balance of the Wastewater Treatment Plant Model and Improving Plant Control by Counteracting Temperature Disturbances. Comput. Aided Chem. Eng. 2020, 48, 1141–1146. [Google Scholar]
- Preisner, M. Surface Water. Pollution by Untreated Municipal Wastewater Discharge Due to a Sewer Failure. Environ. Process. 2020, 7, 767–780. [Google Scholar] [CrossRef]
- Gallego-Valero, L.; Moral-Parajes, E.; Román-Sánchez, I.M. Wastewater Treatment Costs: A Research Overview through Biblioetric Analysis. Sustainability 2021, 13, 5066. [Google Scholar] [CrossRef]
- Bakhshoodeh, R.; Alavi, N.; Oldham, C.; Santos, R.M.; Babaei, A.A.; Vymazal, J.; Paydary, P. Constructed wetlands for landfill leachate treatment: A review. Ecol. Eng. 2020, 146, 105725. [Google Scholar] [CrossRef]
- Naeem, M.; Ansari, A.A.; Gill, S.S. (Eds.) Contaminants in Agriculture; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Nuamah, L.A.; Li, Y.; Pu, Y.; Nwankwegu, A.S.; Haikuo, Z.; Norgbey, E.; Bofah-Buoh, R. Constructed wetlands, status, progress, and challenges. The need for critical operational reassessment for a cleaner productive ecosystem. J. Clean. Prod. 2020, 269, 122340. [Google Scholar] [CrossRef]
- Oliveira, G.A.; Colares, G.S.; Lutterbeck, C.A.; Dell’Osbel, N.; Machado, Ê.L.; Rodrigues, L.R. Floating treatment wetlands in domestic wastewater treatment as a decentralized sanitation alternative. Sci. Total Environ. 2021, 773, 145609. [Google Scholar] [CrossRef] [PubMed]
- Almeida-Naranjo, C.E.; Guachamín, G.; Guerrero, V.H.; Villamar, C.-A. Heliconia stricta Huber behavior in hybrid constructed wetlands fed with synthetic domestic wastewater. Water 2020, 12, 1373. [Google Scholar] [CrossRef]
- Zitácuaro-Contreras, I.; Vidal-Álvarez, M.; Hernández y Orduña, M.G.; Zamora-Castro, S.A.; Betanzo-Torres, E.A.; Marín-Muñíz, J.L.; Sandoval-Herazo, L.C. Environmental, Economic, and Social Potentialities of Ornamental Vegetation Cultivated in Constructed Wetlands of Mexico. Sustainability 2021, 12, 6267. [Google Scholar] [CrossRef]
- González-Moreno, H.R.; Marín-Muníz, J.L.; Sánchez-De la-Cruz, E.; Nakase, C.; Del Ángel-Coronel, O.A.; Reyes-Gonzalez, D.; Nava-Valente, N.; Sandoval-Herazo, L.C. Bioelectricity Generation and Production of Ornamental Plants in Vertical Partially Saturated Constructed Wetlands. Water 2021, 13, 143. [Google Scholar] [CrossRef]
- Vera-Puerto, I.; Escobar, J.; Rebolledo, F.; Valenzuela, V.; Olave, J.; Tíjaro-Rojas, R.; Correa, C.; Arias, C. Performance Comparison of Vertical Flow Treatment Wetlands Planted with the Ornamental Plant Zantedeschia aethiopica Operated under Arid and Mediterranean Climatic Conditions. Water 2021, 13, 1478. [Google Scholar] [CrossRef]
- Zurita, F.; De Anda, J.; Belmont, M.A. Treatment of domestic wastewater and production of commercial flowers in vertical and horizontal subsurface-flow constructed wetlands. Ecol. Eng. 2009, 35, 861–869. [Google Scholar] [CrossRef]
- Leiva, A.M.; Gutiérrez, E.; Arias, C.A.; Vidal, G. Influence of water quality parameters on the removal of triclosan and ibuprofen in vertical subsurface flow constructed wetlands using multivariate analysis. Environ. Technol. Innov. 2021, 24, 101846. [Google Scholar] [CrossRef]
- Fernández-Echeverría, E.; Herazo, L.S.; Zurita, F.; Betanzo-Torres, E.; Sandoval-Herazo, M. Development of Heliconia latispatha in constructed wetlands, for the treatment of swine/domestic wastewater in tropical climates, with PET as a substitute for the filter medium. Rev. Mex. Ing. Química 2022, 21, IA2811. [Google Scholar] [CrossRef]
- Sandoval, L.; Zamora-Castro, S.; Vidal-Álvarez, M.; Marín-Muñiz, J.L. Role of Wetland Plants and Use of Ornamental Flowering Plants in Constructed Wetlands for Wastewater Treatment: A Review. Appl. Sci. 2019, 9, 685. [Google Scholar] [CrossRef] [Green Version]
- Toledo, M.S.; Teixeira, M.A.; Pimentel, M.M.; Saraiva, C. Efficiency of horizontal subsurface flow-constructed wetlands considering different support materials and the cultivation positions of plant species. Rev. Ambient. Água 2020, 15, 2–13. [Google Scholar]
- Sandoval-Herazo, L.C.; Alvarado-Lassman, A.; Marín-Muñiz, J.L.; Méndez-Contreras, J.M.; Zamora-Castro, S.A. Effects of the use of ornamental plants and different substrates in the removal of wastewater pollutants through microcosms of constructed wetlands. Sustainability 2018, 10, 1594. [Google Scholar] [CrossRef] [Green Version]
- Maiga, Y.; von Sperling, M.; Mihelcic, J.R. Constructed Wetlands. In Water and Sanitation for the 21st Century: Health and Microbiological Aspects of Excreta and Wastewater Management (Global Water Pathogen Project); Rose, J.B., Jiménez-Cisneros, B., Mihelcic, J.R., Verbyla, M.E., Eds.; Part 4: Management Of Risk from Excreta and Wastewater—Section: Sanitation System Technologies, Pathogen Reduction in Sewered System Technologies; Michigan State University, E. Lansing, MI, UNESCO: East Lansing, MI, USA, 2017. [Google Scholar] [CrossRef]
- Haydar, S.; Anis, M.; Afaq, M. Performance evaluation of hybrid constructed wetlands for the treatment of municipal wastewater in developing countries. Chin. J. Chem. Eng. 2020, 28, 1717–1724. [Google Scholar] [CrossRef]
- Dell’Osbel, N.; Stolzenberg, C.G.; Alves, O.G.; Ribeiro, R.L.; Pereira, S.F.; Lawish, R.A.; López, D.A.R.; Lutterbeck, C.A.; Oliveira, S.E.; Kist, T.L.; et al. Hybrid constructed wetlands for the treatment of urban wastewaters: Increased nutrient removal and landscape potential. Ecol. Eng. 2020, 28, 158. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, T.; Xu, Z.; Zhang, L.; Dai, Y.; Tang, X.; Tao, R.I.R.; Yang, Y.; Tai, Y. Effect of heavy metals in mixed domestic-industrial wastewater on performance of recirculating standing hybrid constructed wetlands (RSHCWs) and their removal. Chem. Eng. J. 2020, 379, 122363. [Google Scholar] [CrossRef]
- Saeed, T.; Miah, M.J.; Majed, N.; Alam, M.K.; Khan, T. Effect of effluent recirculation on nutrients and organics removal performance of hybrid constructed wetlands: Landfill leachate treatment. J. Clean. Prod. 2021, 282, 125427. [Google Scholar] [CrossRef]
- Martínez, N.B.; Tejeda, A.; Del Toro, A.; Sánchez, M.P.; Zurita, F. Nitrogen removal in pilot-scale partially saturated vertical wetlands with and without an internal source of carbon. Sci. Total Environ. 2018, 645, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Nakase, C.; Zurita, F.; Nani, G.; Reyes, G.; Fernández-Lambert, G.; Cabrera-Hernández, A.; Sandoval, L. Nitrogen removal from domestic wastewater and the development of tropical ornamental plants in partially saturated mesocosm-scale constructed wetlands. Int. J. Environ. Res. Public Health 2019, 16, 4800. [Google Scholar] [CrossRef] [Green Version]
- O’Dell, J.M. (Ed.) Method 410.4: The Determination of Chemical Oxygen Demand by Semi-Automated Colorimetry; Revision 2.0; Environmental Protection Agency: Cincinnati, OH, USA, 1993.
- Norma Mexicana NMX-AA-026-SCFI-2010; Water Analysis—Determination of Total Kjeldahl Nitrogen in Natural Water, Wastewaters and Treated Wastewaters—Test Method. 2013. Available online: http://www.gob.mx/cms/uploads/attachment/file/166772/NMX-AA-026-SCFI-2010.pdf (accessed on 29 September 2022).
- Garzón-Zúñiga, M.A.; Buelna, G. Characterization of Swine Wastewater and Its Treatment by Different Processes in Mexico. Rev. Int. Contam. Ambient. 2014, 30, 65–79. [Google Scholar]
- Kadlec, R.H.; Wallace, S. Treatment Wetlands, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Vymazal, J. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 2007, 380, 48–65. [Google Scholar] [CrossRef] [PubMed]
- Morandi, C.; Schreiner, G.; Moosmann, P.; Steinmetz, H. Elevated Vertical-Flow Constructed Wetlands for Light Greywater Treatment. Water 2021, 13, 2510. [Google Scholar] [CrossRef]
- Rowan, A.C.; Irala, C.Z.; Zamora, C.Q. Artificial Wetlands, an alternative for Wastewater purification in the Municipality of Mizque, Bolivia. Des. Technol. Dev. 2018, 5, 88–108. [Google Scholar]
- Alarcón Herrera, M.T.; Zurita Martínez, F.; Lara-Borrero, J.A.; Sáez, V.; Gladys, C. Treatment wetlands: Wastewater sanitation alternative applicable in Latin America. Pontif. Univ. Javer. 2018, 1–30. Available online: https://repository.javeriana.edu.co/handle/10554/34519 (accessed on 30 October 2022).
- Mateo, N.; Nani, G.; Montiel, W.; Nakase, C.; Salazar-Salazar, C. Effect of Canna hybrids in partially saturated constructed wetlands for swine water treatments. Int. J. Sustain. Reg. Dev. 2019, 4, 59–68. [Google Scholar]
- Sandoval-Herazo, M.; Nani, G.; Rivera, S.; Fernández-Lambert, G.; Sandoval, L. Performance evaluation of partially saturated vertical constructed wetlands for swine wastewater treatment. Trop. Subtrop. Agroecosyst. 2020, 23, 1–5. [Google Scholar]
- Pacco, A.; Vela, R.; Miglio, R.; Quipuzco, L.; Juscamaita, J.; Álvarez, C.; Fernández-Polanco, F. Proposal of design parameters of a UASB reactor for swine wastewater treatment. Sci. Agropecu. 2018, 9, 381–391. [Google Scholar] [CrossRef] [Green Version]
- Andrés, E.; Araya, F.; Vera, I.; Pozo, G.; Vidal, G. Phosphate removal sing zeolite in treatment wetlands under different oxidation-reduction potentials. Ecol. Eng. 2018, 117, 18–27. [Google Scholar] [CrossRef]
- De La Mora-Orozco, C.; González-Acuña, I.J.; Saucedo-Terán, R.A.; Flores-López, H.E.; Rubio-Arias, H.O.; Ochoa-Rivero, J.M. Removing Organic Matter and Nutrients from Pig Farm Wastewater with a Constructed Wetland System. Int. J. Environ. Res. Public Health 2018, 15, 1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadlec, R.H.; Reddy, K.R. Temperature effects in treatment wetlands. Water Environ. 2001, 73, 543–557. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Dutta, V. Constructed wetland microcosms as sustainable technology for domestic wastewater treatment: An overview. Environ. Sci. Pollut. Res. 2019, 26, 11662–11673. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, F.; Luo, P.; Chen, X.; Chen, J.; Huang, Z.; Peng, J.; Xiao, R.; Wu, J. Stimulation of optimized influent C: N ratios on nitrogen removal in surface flow constructed wetlands: Performance and microbial mechanisms. Sci. Total Environ. 2019, 694, 133575. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, J.; Zhang, N.; Xie, H.; Zhang, J.; Hu, Z.; Wang, Q. Influence of application of manganese ore in constructed wetlands on the mechanisms and improvement of nitrogen and phosphorus removal. Ecotoxicol. Environ. Saf. 2019, 170, 446–452. [Google Scholar] [CrossRef]
- Vymazal, J. The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: A review of a recent development. Water Res. 2013, 47, 4795–4811. [Google Scholar] [CrossRef]
- Blanco, D.; Suárez, J.; Jiménez, J.; González, F.; Álvarez, L.M.; Cabeza, E.; Verde, J. Efficiency of swine waste treatment in plugged lagoon digesters. Pastures 2015, 38, 441–447. Available online: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03942015000400008&lng=es&tlng=es (accessed on 12 February 2022).
- Sandoval-Herazo, M.; Martínez-Reséndiz, G.; Fernández Echeverria, E.; Fernández-Lambert, G.; Sandoval Herazo, L.C. Plant biomass production in constructed wetlands treating swine wastewater in tropical climates. Fermentation 2021, 7, 296. [Google Scholar] [CrossRef]
- Xinshan, S.; Qin, L.; Denghuab, Y. Nutrient Removal by Hybrid Subsurface Flow Constructed Wetlands for High Concentration Ammonia Nitrogen Wastewater. Procedia Environ. Sci. 2010, 2, 1461–1468. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
pH | 8.8 ± 0.1 |
TSS (mg/L) | 1108.8 ± 33.5 |
COD (mg/L) | 1486.1 ± 45.4 |
TP (mg/L) | 30.19 ± 0.7 |
TN (mg/L) | 127.7 ± 1.9 |
N-NH4 (mg/L) | 98.6 ± 1.7 |
N-NO3 (mg/L) | 16.8 ± 1.5 |
Treatments | COD | TSS | pH | TN | N-NH4 | TP | N-NO3 |
---|---|---|---|---|---|---|---|
Entrance | 1486.1 ± 45.4 c | 1108.8 ± 33.5 c | 8.80 ± 0.07 c | 127.7 ± 1.9 d | 98.6 ± 1.70 d | 30.19 ± 0.71 c | 16.8 ± 1.5 e |
PSV-CWs | 97.8 ± 16.4 a | 67.7 ± 5.2 a | 6.78 ± 0.06 a | 40.9 ± 0.5 b | 33.4 ± 0.38 b | 11.95 ± 0.27 a | 5.5 ± 0.7 b |
% efficiency | 93.42 | 93.89 | 23.00 | 67.97 | 66.13 | 60.42 | 67.26 |
FFV-CWs | 112.7 ± 18.1 ab | 114.4 ± 9.4 b | 6.91 ± 0.06 ab | 36.1 ± 0.6 a | 27.7 ± 0.37 a | 11.93 ± 0.25 a | 4.7 ± 0.6 a |
% efficiency | 92.42 | 89.68 | 21.48 | 71.73 | 71.91 | 60.48 | 72.02 |
PSV-CWs-SV | 189.6 ± 47.2 ab | 109.4 ± 9.9 b | 6.81 ± 0.08 ab | 47.2 ± 0.8 c | 36.2 ± 0.75 b | 18.88 ± 0.34 b | 7.0 ± 0.7 d |
% efficiency | 87.24 | 90.13 | 22.61 | 63.04 | 63.28 | 37.46 | 58.33 |
FFV-CWs-SV | 203.9 ± 50.7 b | 122.8 ± 15.4 b | 7.09 ± 0.08 b | 53.7 ± 1.2 c | 43.5 ± 0.77 c | 18.16 ± 0.40 b | 6.1 ± 0.7 c |
% efficiency | 82.28 | 88.92 | 19.43 | 58.00 | 55.89 | 39.85 | 63.70 |
PSV-CWs | FFV-CWs | |||||||
---|---|---|---|---|---|---|---|---|
Day 1 | Day 120 | Day 240 | Day 360 | Day 1 | Day 120 | Day 240 | Day 360 | |
Plant height (cm) | 20 | 96 | 167 | 217.5 | 20 | 67 | 142 | 182 |
Stem thickness (cm) | 0.4 | 1.2 | 1.9 | 2.5 | 0.5 | 1 | 1.9 | 2.3 |
Number of shoots | 0 | 6 | 9 | 13 | 0 | 5 | 9 | 11 |
Number of flowers | 0 | 7 | 13 | 16 | 0 | 6 | 13 | 15 |
CWs | Biomass Aerial | Biomass Root | Total Biomass |
---|---|---|---|
PSV-CWs | 2342.4 | 3354.7 | 5697.1 |
FFV-CWs | 2110.1 | 2985.6 | 5095.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viveros, J.A.F.; Martínez-Reséndiz, G.; Zurita, F.; Marín-Muñiz, J.L.; Méndez, M.C.L.; Zamora, S.; Sandoval Herazo, L.C. Partially Saturated Vertical Constructed Wetlands and Free-Flow Vertical Constructed Wetlands for Pilot-Scale Municipal/Swine Wastewater Treatment Using Heliconia latispatha. Water 2022, 14, 3860. https://doi.org/10.3390/w14233860
Viveros JAF, Martínez-Reséndiz G, Zurita F, Marín-Muñiz JL, Méndez MCL, Zamora S, Sandoval Herazo LC. Partially Saturated Vertical Constructed Wetlands and Free-Flow Vertical Constructed Wetlands for Pilot-Scale Municipal/Swine Wastewater Treatment Using Heliconia latispatha. Water. 2022; 14(23):3860. https://doi.org/10.3390/w14233860
Chicago/Turabian StyleViveros, José Antonio Fernández, Georgina Martínez-Reséndiz, Florentina Zurita, José Luis Marín-Muñiz, María Cristina López Méndez, Sergio Zamora, and Luis Carlos Sandoval Herazo. 2022. "Partially Saturated Vertical Constructed Wetlands and Free-Flow Vertical Constructed Wetlands for Pilot-Scale Municipal/Swine Wastewater Treatment Using Heliconia latispatha" Water 14, no. 23: 3860. https://doi.org/10.3390/w14233860
APA StyleViveros, J. A. F., Martínez-Reséndiz, G., Zurita, F., Marín-Muñiz, J. L., Méndez, M. C. L., Zamora, S., & Sandoval Herazo, L. C. (2022). Partially Saturated Vertical Constructed Wetlands and Free-Flow Vertical Constructed Wetlands for Pilot-Scale Municipal/Swine Wastewater Treatment Using Heliconia latispatha. Water, 14(23), 3860. https://doi.org/10.3390/w14233860