Occurrence and Risk Assessment of Atrazine and Diuron in Well and Surface Water of a Cornfield Rural Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Sampling and Study Area
2.3. Sample Preparation
2.4. Analysis of Herbicides
2.5. Quality Control
2.6. Geomorphic Analysis
2.7. Risk Assessment
2.8. Statistical Analysis
3. Results and Discussion
3.1. Herbicides in Surface Water
3.2. Spatial Pattern
3.3. Influence of Weather Conditions
3.4. Effect of Catchment Morphology
3.5. Human Health Exposure
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Picó, Y.; Campo, J.; Alfarhan, H.A.; El-Sheikh, M.A.; Barceló, D. A reconnaissance study of pharmaceuticals, pesticides, perfluoroalkyl substances and organophosphorus flame retardants in the aquatic environment, wild plants and vegetables of two Saudi Arabia urban areas: Environmental and human health risk assessment. Sci. Total Environ. 2021, 776, 145843. [Google Scholar] [CrossRef] [PubMed]
- Rani, L.; Thapa, K.; Kanojia, N.; Sharma, N.; Singh, S.; Grewal, A.S.; Srivastav, A.L.; Kaushal, J. An extensive review on the consequences of chemical pesticides on human health and environment. J. Clean. Prod. 2021, 283, 124657. [Google Scholar] [CrossRef]
- Brovini, E.M.; de Deus, B.C.T.; Vilas-Boas, J.A.; Quadra, G.R.; Carvalho, L.; Raquel Fernandes, M.R.; de Oliveira, P.R.; Cardoso, S.J. Three-bestseller pesticides in Brazil: Freshwater concentrations and potential environmental risks. Sci. Total Environ. 2021, 771, 144754. [Google Scholar] [CrossRef] [PubMed]
- Lemos, A.F.E.; Moço, B.R.; Braga, C.Í.; Fillmann, G. Legacy and emerging antifouling biocide residues in a tropical estuarine system (Espirito Santo state, SE, Brazil). Mar. Pollut. Bull. 2021, 166, 112255. [Google Scholar] [CrossRef]
- Severo, S.T.; de Freitas Souza, M.; da Silva Teófilo, T.M.; Dos Santos, M.S.; Formiga, P.M.A.; Martins, S.C.M.; Barbosa, S.J.; Valadão, S.D. Use of neural networks to estimate the sorption and desorption coefficients of herbicides: A case study of diuron, hexazinone, and sulfometuron-methyl in Brazil. Chemosphere 2019, 236, 124333–124348. [Google Scholar] [CrossRef]
- Mohammed, A.M.; Huovinen, M.; Vähäkangas, K.H. Toxicity of diuron metabolites in human cells. Environ. Toxicol. Pharmacol. 2020, 78, 103409. [Google Scholar] [CrossRef]
- Pereira de Albuquerque, F.; de Oliveira, J.L.; Moschini-Carlos, V.; Fernandez, F.L. An overview of the potential impacts of atrazine in aquatic environments: Perspectives for tailored solutions based on nanotechnology. Sci. Total Environ. 2020, 700, 134868. [Google Scholar] [CrossRef]
- Akhtar, N.; Fiaz Khan, M.; Tabassum, S.; Zahran, E. Adverse effects of atrazine on blood parameters, biochemical profile and genotoxicity of snow trout (Schizothorax plagiostomus). Saudi J. Biol. Sci. 2021, 28, 1999–2003. [Google Scholar] [CrossRef]
- Hirano, L.Q.L.; Alves, L.S.; Menezes-Reis, L.T.; Mendonça, J.S.; Simões, K.; Santos, A.L.Q.; Vieira, L.G. Effects of egg exposure to atrazine and/or glyphosate on bone development in Podocnemis unifilis (Testudines, Podocnemididae). Ecotoxicol. Environ. Saf. 2019, 182, 109400. [Google Scholar] [CrossRef]
- Galoppo, G.H.; Tavalieri, Y.E.; Schierano-Marotti, G.; Osti, M.R.; Luque, E.H.; Muñoz-de-Toro, M.M. Long-term effects of in ovo exposure to an environmentally relevant dose of atrazine on the thyroid gland of Caiman latirostris. Environ. Res. 2020, 186, 109410. [Google Scholar] [CrossRef]
- Beaulieu, M.; Cabana, H.; Huot, Y. Adverse effects of atrazine, DCMU and metolachlor on phytoplankton cultures and communities at environmentally relevant concentrations using Fast Repetition Rate Fluorescence. Sci. Total Environ. 2020, 712, 136239. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, Z.; Yao, H.; Liang, Y.; Xing, H.; Xu, S. Effects of atrazine and chlorpyrifos on oxidative stress-induced autophagy in the immune organs of common carp (Cyprinus carpio L.). Fish Shellfish Immunol. 2015, 44, 12–20. [Google Scholar] [CrossRef]
- Podda, M.V.; Deriu, F.; Solinas, A.; Demontis, M.P.; Varoni, M.V.; Spissu, A.; Anania, V.; Tolu, E. Effect of atrazine administration on spontaneous and evoked cerebellar activity in the rat. Pharmacol. Res. 1997, 36, 199–202. [Google Scholar] [CrossRef]
- Das, P.C.; McElroy, W.K.; Cooper, R.L. Differential modulation of catecholamines by chlorotriazine herbicides in pheochromocytoma (PC12) cells in vitro. Toxicol. Sci. 2000, 56, 324–331. [Google Scholar] [CrossRef] [Green Version]
- Kao, C.M.; Ou, W.J.; Lin, H.D.; Eva, A.W.; Wang, T.L.; Chen, S.C. Toxicity of diuron in HepG2 cells and zebrafish embryos. Ecotoxicol. Environ. Saf. 2019, 172, 432–438. [Google Scholar] [CrossRef]
- Sigurnjak, M.; Ukić, Š.; Cvetnić, M.; Markić, M.; Stankov, M.N.; Rasulev, B.; Kušić, H.; Lončarić, A.B.; Rogošić, M.; Bolanča, T. Combined toxicities of binary mixtures of alachlor, chlorfenvinphos, diuron and isoproturon. Chemosphere 2020, 240, 124973. [Google Scholar] [CrossRef]
- Moon, Y.S.; Kim, M.; Hong, C.P.; Kang, J.H.; Jung, J.H. Overlapping and unique toxic effects of three alternative antifouling biocides (Diuron, Irgarol 1051®, Sea-Nine 211®) on non-target marine fish. Ecotoxicol. Environ. Saf. 2019, 180, 23–32. [Google Scholar] [CrossRef]
- Mansano, A.S.; Moreira, R.A.; Dornfeld, H.C.; Freitas, E.C.; Vieira, E.M.; Daam, M.A.; Rocha, O.; Seleghim, M.H. Individual and mixture toxicity of carbofuran and diuron to the protozoan Paramecium caudatum and the cladoceran Ceriodaphnia silvestrii. Ecotoxicol. Environ. Saf. 2020, 201, 110829. [Google Scholar] [CrossRef]
- Da Silva Simões, M.; Bracht, L.; Parizotto, A.V.; Comar, J.F.; Peralta, R.M.; Bracht, A. The metabolic effects of diuron in the rat liver. Environ. Toxicol. Pharmacol. 2017, 54, 53–61. [Google Scholar] [CrossRef]
- Hooghe, R.J.; Devos, S.; Hooghe-Peters, E.L. Effects of selected herbicides on cytokine production in vitro. Life Sci. 2000, 66, 2519–2525. [Google Scholar] [CrossRef]
- Sánchez, O.F.; Lin, L.; Bryan, C.J.; Xie, J.; Freeman, J.L.; Yuan, C. Profiling epigenetic changes in human cell line induced by atrazine exposure. Environ. Pollut. 2020, 258, 113712. [Google Scholar] [CrossRef] [PubMed]
- Huovinen, M.; Loikkanen, J.; Naarala, J.; Vähäkangas, K. Toxicity of diuron in human cancer cells. Toxicol. Vitro 2015, 29, 1577–1586. [Google Scholar] [CrossRef] [PubMed]
- Li, Z. Health and safety assessment and regulatory management of Aldicarb, Atrazine, Diuron, Glyphosate, and Mcpa by theoretical maximum daily intake estimation. J. Chem. Health Saf. 2017, 25, 3–14. [Google Scholar] [CrossRef]
- Cooter, E.J.; Hutzell, W.T. A regional atmospheric fate and transport model for atrazine. 1. Development and implementation. Environ. Sci. Technol. 2002, 36, 4091–4098. [Google Scholar] [CrossRef] [PubMed]
- Urseler, N.; Bachetti, R.; Biolé, F.; Morgante, V.; Morgante, C. Atrazine pollution in groundwater and raw bovine milk: Water quality, bioaccumulation and human risk assessment. Sci. Total Environ. 2022, 852, 158498. [Google Scholar] [CrossRef]
- SIAP (Servicio de Información Agroalimentaria y Pesquera). Panorama Agroalimentario 2020. Secretaria de Agricultura y Desarrollo Rural. Available online: https://nube.siap.gob.mx/gobmx_publicaciones_siap/pag/2020/Atlas-Agroalimentario-2020 (accessed on 29 November 2021).
- SIACON (Sistema de Información Agroalimentaria de Consulta). Secretaria de Agricultura y Desarrollo Rural. Available online: https://www.gob.mx/siap/documentos/siacon-ng-161430 (accessed on 29 November 2021).
- INEGI. Cuéntame, Información por Entidad. Available online: http://cuentame.inegi.org.mx/monografias/informacion/gro/economia/default.aspx?tema=me&e=12 (accessed on 29 November 2021).
- INEGI. Panorama Sociodemográfico de México. Available online: http://www3.inegi.org.mx/sistemas/biblioteca/ficha.aspx?upc=702825078065 (accessed on 29 November 2021).
- SMN (Servicio Meteorológico Nacional). Statistical Information of the Station 12008 (ARCELIA.; Latitude: 18°19′01″ N.; Longitude: 100°16′48″ W.; Altitude: 414.0 masl.). Available online: https://smn.conagua.gob.mx/es/climatologia/informacion-climatologica/informacion-estadistica-climatologica (accessed on 29 November 2021).
- Nasa JPL. NASA Shuttle Radar Topography Mission Global 3 Arc Second [Data Set]. NASA EOSDIS Land Processes DAAC. 2013. Available online: https://cmr.earthdata.nasa.gov/search/concepts/C204582034-LPDAAC_ECS.html (accessed on 13 October 2022).
- CGIAR. SRTM 90 m DEM Digital Elevation Database. 2018. Available online: https://srtm.csi.cgiar.org/ (accessed on 29 November 2021).
- IRIS (Integrated Risk Information System). Oral Chronic Reference Dose Integrate Risk Information System Database; Toxicity and Chemical Specific Factor Database. Available online: www.epa.gov/iris (accessed on 2 September 2022).
- USEPA. Definitions and General Principles for Exposure Assessment: Guidelines for Exposure Assessment; Office of Pesticide Programs: Washington, DC, USA, 1999. [Google Scholar]
- Roser, M.; Ortiz-Ospina, E.; Ritchie, H. Life Expectancy. Available online: https://ourworldindata.org/life-expectancy (accessed on 14 October 2022).
- INEGI. Mortalidad. Available online: https://www.inegi.org.mx/app/tabulados/interactivos/?pxq=Mortalidad_Mortalidad_09_61312f04-e039-4659-8095-0ce2cd284415 (accessed on 14 October 2022).
- Parlakidis, P.; Rodriguez, M.S.; Gikas, D.G.; Alexoudis, C.; Perez-Rojas, G.; Perez-Villanueva, M.; Perez, C.A.; Fernández-Cirelli, A.; Vryzas, Z. Occurrence of Banned and Currently Used Herbicides, In Groundwater of Northern Greece: A Human Health Risk Assessment Approach. Int. J. Environ. Res. Public Health 2022, 19, 8877. [Google Scholar] [CrossRef]
- Ali, N.; Kalsoom; Khan, S.; Ihsanullah; Rahman, I.; Muhammad, S. Human health risk assessment through consumption of organophosphate pesticide contaminated water of Peshawar Basin, Pakistan. Expo. Health 2018, 10, 259–272. [Google Scholar] [CrossRef]
- Papadakis, N.E.; Vryzas, Z.; Kotopoulou, A.; Kintzikoglou, K.; Makris, C.K.; Papadopoulou-Mourkidou, E. A pesticide monitoring survey in rivers and lakes of northern Greece and its human and ecotoxicological risk assessment. Ecotoxicol. Environ. Saf. 2015, 116, 1–9. [Google Scholar] [CrossRef]
- Matsumoto, M.; Nishimura, T. Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 1998, 8, 3–33. [Google Scholar] [CrossRef] [Green Version]
- Díaz, L.; Uscanga, O.; Rosales, M. Development and comparison of machine learning models for water multidimensional classification. J Hydrol. 2021, 598, 126–132. [Google Scholar] [CrossRef]
- Inoue, M.H.; Oliveira, R.S., Jr.; Regitano, J.B.; Tormena, C.A.; Constantin, J.; Tornisielo, V.L. Sorption kinetics of atrazine and diuron in soils from southern Brazil. J. Environ. Sci. Health Part B 2004, 39, 589–601. [Google Scholar] [CrossRef]
- Raymundo, R.E.; Nikolskii, G.I.; Duwig, C.; Prado, P.B.L.; Moreno, H.C.I.; Gavi, R.F.; Figueroa, S.B. Transporte de atrazina en un andosol y un vertisol de México. Interciencia 2009, 34, 330–337. [Google Scholar]
- World Health Organization. Guidelines for Drinking-Water Quality, 3rd ed.; World Health Organization: Ginebra, Switzerland, 2008; p. 515. [Google Scholar]
- USEPA. List of Drinking Water Contaminants & MCLs; United States Environmental Protection Agency: Washington, DC, USA, 2008; p. 15. [Google Scholar]
- Health Canada. Guidelines for Canadian Drinking Water Quality. Available online: https://www.canada.ca/content/dam/hc-sc/documents/programs/consultation-mcpa-drinking-water/mcpa-gtd-for-consultation-en.pdf (accessed on 9 September 2022).
- DOF. Salud Ambiental. Agua para Uso y Consumo Humano. Límites Permisibles de Calidad del Agua. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=2063863&fecha=31/12/1969#gsc.tab=0 (accessed on 9 September 2022).
- European OJEC. Council Directive 98/83/EC on the Quality of Water Intended for Human Consumption. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A31998L0083 (accessed on 9 September 2022).
- Rodríguez-Aguilar, B.A.; Martínez Rivera, L.M.; Peregrina-Lucano, A.A.; Ortiz-Arrona, C.I.; Cárdenas-Hernández, O.G. Análisis de residuos de plaguicidas en el agua superficial de la cuenca del río Ayuquila-Armería, México. Terra Latinoam. 2019, 37, 151–161. [Google Scholar] [CrossRef]
- Molina-Morales, Y.; Flores-García, M.; Balza-Quintero, A.; Benítez-Díaz, P.; Miranda-Contreras, L. Niveles de plaguicidas en aguas superficiales de una región agrícola del estado Mérida, Venezuela, entre 2008 y 2010. Rev. Int. Contam. Ambie 2012, 28, 289–301. [Google Scholar]
- Mcelroy, J.A.; Gangnon, R.; Newcomb, P.A.; Kanarek, M.S.; Anderson, H.A.; Vanden-Brook, J.; Trentham-Dietz, A.; Remington, P.L. Risk of breast cancer for women living in rural areas from adult exposure to atrazine from well water in Wisconsin. J. Expo. Sci. Environ. Epidemiol. 2007, 17, 207–2014. [Google Scholar] [CrossRef] [Green Version]
- Fraile, P.; Izu, M.; Sáiz, I.; Castiella, J.; Pérez de Ciriza, J.A. Análisis de residuos de herbicidas en aguas procedentes de Navarra mediante lc-ms/ms. An. Sist. Sanit. Navar. 2009, 32, 327–341. Available online: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1137-66272009000500003&lng=es&tlng=es (accessed on 15 November 2021). [CrossRef]
- Carafa, R.; Wollgast, J.; Canuti, E.; Ligthart, J.; Dueri, S.; Hanke, G.; Eisenreich, S.J.; Viaroli, P.; Zaldívar, J.M. Seasonal variations of selected herbicides and related metabolites in water, sediment, seaweed and clams in the Sacca di Goro coastal lagoon (Northern Adriatic). Chemosphere 2007, 69, 1625–1637. [Google Scholar] [CrossRef]
- Ma, W.T.; Cai, Z.; Jiang, G.B. Determination of atrazine, deethylatrazine and simazine in water at parts-per-trillion levels using solid-phase extraction and gas chromatography/ion trap mass spectrometry. Rapid Commun. Mass Spectrom. 2003, 17, 2707–2712. [Google Scholar] [CrossRef]
- Field, J.A.; Reed, R.L.; Sawyer, T.E.; Griffith, S.M.; Wigington, P.J. Diuron occurrence and distribution in soil and surface and ground water associated with grass seed production. J. Environ Qual. 2003, 32, 171–179. [Google Scholar] [CrossRef]
- Green, P.G.; Young, T.M. Loading of the Herbicide Diuron into the California Water System. Environ. Eng. Sci. 2006, 23, 545–551. [Google Scholar] [CrossRef]
- Guo, L.; Nordmark, C.E.; Spurlock, F.C.; Johnson, B.R.; Li, L.; Lee, J.M.; Goh, K.S. Characterizing Dependence of Pesticide Load in Surface Water on Precipitation and Pesticide Use for the Sacramento River Watershed. Environ. Sci. Technol. 2004, 38, 3842–3852. [Google Scholar] [CrossRef] [PubMed]
- Bacigalupo, M.A.; Meroni, G. Quantitative Determination of Diuron in Ground and Surface Water by Time-Resolved Fluoroimmunoassay: Seasonal Variations of Diuron, Carbofuran, and Paraquat in an Agricultural Area. J. Agric. Food Chem. 2007, 55, 3823–3828. [Google Scholar] [CrossRef] [PubMed]
- Hladik, M.L.; Calhoun, D.L. Analysis of the Herbicide Diuron, Three Diuron Degradates, and Six Neonicotinoid Insecticides in Water—Method Details and Application to Two Georgia Streams. US Geol. Surv. Sci. Investig. Rep. 2012, 5206, 10. [Google Scholar]
- Naveen, J.; Sangster, J.; Topping, M.; Shannon Bartelt-Hunt, S.; Kolok, S.A. Evaluating the impact of turbidity, precipitation, and land use on nutrient levels and atrazine concentrations in Illinois surface water as determined by citizen scientists. Sci. Total Environ. 2022, 850, 158081–158498. [Google Scholar] [CrossRef]
- Baillie, B.R. Herbicide concentrations in waterways following aerial application in a steepland planted forest in New Zealand. N. Z. J. For. Sci. 2016, 46, 2–10. [Google Scholar] [CrossRef] [Green Version]
- Battaglin, W.A.; Furlong, E.T.; Burkhardt, M.R.; Peter, C.J. Occurrence of sulfonylurea, sulfonamide, imidazolinone, and other herbicides in rivers, reservoirs and ground water in the Midwestern United States. Sci. Total Environ. 1998, 248, 123–133. [Google Scholar] [CrossRef]
- Fallen, J.D.; Thurman, E.M. Determining the relative age, transport, and three-dimensional distribution of atrazine in a reservoir using immunoassay. In Proceedings of the U.S. Geological Survey Toxic Substances Hydrology Program Proceedings of the Technical Meeting, Colorado Springs, CO, USA, 20–24 September 1993; Water-Resources Investigations Report, 94-4015; Morganwalp, D.W., Aronson, D.A., Eds.; U.S. Geological Survey: Tallahasse, FL, USA, 1996; Volume 1, pp. 499–504. [Google Scholar]
- Goolsby, D.A.; Battaglin, W.A.; Fallen, J.D.; Aga, D.S.; Kolpin, D.W.; Thurman, E.M. Persistence of herbicides in selected reservoirs in the Midwestern United States some preliminary result. In Selected Papers on Agricultural Chemicals in Water Resources of the Midcontinental United States; U.S. Geological Survey Open-File Report, 93-18; Goolsby, D.A., Boyer, L.L., Mallard, G.E., Eds.; U.S. Geological Survey: Tallahasse, FL, USA, 1993; pp. 51–74. [Google Scholar]
- Thurman, E.M.; Scribner, E.A. A decade of measuring, monitoring, and studying the fate and transport of triazine herbicides and their degradation products in groundwater, surface water, reservoirs, and precipitation by the US Geological Survey. In The Triazine Herbicides, 50 Years Revolutionizing Agriculture; LeBaron, H.M., McFarland, J.E., Burnside, O.C., Eds.; Elsevier: San Diego, CA, USA, 2008; pp. 451–475. [Google Scholar]
- Lerch, R.N.; Groves, C.G.; Polk, J.S.; Miller, B.V.; Shelley, J. Atrazine Transport through a Soil–Epikarst System. J. Environ. Qual. 2018, 47, 1205–1213. [Google Scholar] [CrossRef] [Green Version]
- Ayele, J.; Leclerc, V.; Couillault, P. Efficiency of three powdered activated carbons for the adsorption of atrazine and diuron—Use of some models. J. Water Supply Res. Technol. AQUA 1998, 47, 41–45. [Google Scholar] [CrossRef]
Herbicide | ng/L | Type of Water | Country | Reference |
---|---|---|---|---|
Atrazine | 90,000 ± 200,000 140,000 ± 290,000 | Surface | Mexico | [49] |
1.00–1990 | Surface | Venezuela | [50] | |
20–450 | Well | Greece | [37] | |
5.77–402 | Surface and well | México | This study | |
180–360 | Well | EE.UU | [51] | |
90.00 ± 10.00 | Well | Spain | [52] | |
2.38–8.18 | surface | Italy | [53] | |
0.057–0.102 | Surface | China | [54] | |
Diuron | 2000–28,000 | Surface and ground | EE.UU | [55] |
130–1780 | Reservoir’s surface | EE.UU | [56] | |
50–400 | Surface water | EE.UU | [57] | |
2–180 | Ditch and surface | Italy | [58] | |
15.45–157.66 | Surface | Mexico | This Study | |
10.4–87 | Stream surface | EE.UU | [59] |
Land Use | 8 September 2016 | 12 July 2018 | 5 October 2020 | Average | Std. Dev. |
---|---|---|---|---|---|
Agriculture | 41.9 | 66.5 | 58.1 | 55.5 | 10.2 |
Bare ground | 20.0 | 5.2 | 6.0 | 10.4 | 6.8 |
deciduous/Oak Forest | 73.7 | 58.9 | 71.6 | 68.1 | 6.6 |
Total Surface * | 135.7 | 130.6 | 135.7 |
Children | Adults | |||||||
---|---|---|---|---|---|---|---|---|
Atrazine | Diuron | Atrazine | Diuron | |||||
Site | Mean (SD) | 95% CI | Mean (SD) | 95% CI | Mean (SD) | 95% CI | Mean (SD) | 95% CI |
Azul | 3.57 × 10−1 (1.39 × 10−1) | (3.55 × 10−1, 3.60 × 10−1) | 3.38 × 10−1 (1.32 × 10−1) | (3.35 × 10−1, 3.40 × 10−1) | 1.66 × 10−1 (6.47 × 10−1) | (1.64 × 10−1, 1.67 × 10−1) | 1.57 × 10−1 (6.11 × 10−1) | (1.55 × 10−1, 1.58 × 10−1) |
Brocal | 7.21 × 10−3 (3.00 × 10−3) | (7.15 × 10−3, 7.26 × 10−3) | - | - | 3.34 × 10−3 (1.30 × 10−3) | (3.32 × 10−3, 3.37 × 10−3) | - | - |
Tello | 1.51 × 10−2 (6.00 × 10−3) | (1.50 × 10−2, 1.52 × 10−2) | - | - | 6.99 × 10−3 (2.70 × 10−3) | (6.94 × 10−3, 7.05 × 10−3) | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lagunas-Basave, B.; Brito-Hernández, A.; Saldarriaga-Noreña, H.A.; Romero-Aguilar, M.; Vergara-Sánchez, J.; Moeller-Chávez, G.E.; Díaz-Torres, J.d.J.; Rosales-Rivera, M.; Murillo-Tovar, M.A. Occurrence and Risk Assessment of Atrazine and Diuron in Well and Surface Water of a Cornfield Rural Region. Water 2022, 14, 3790. https://doi.org/10.3390/w14223790
Lagunas-Basave B, Brito-Hernández A, Saldarriaga-Noreña HA, Romero-Aguilar M, Vergara-Sánchez J, Moeller-Chávez GE, Díaz-Torres JdJ, Rosales-Rivera M, Murillo-Tovar MA. Occurrence and Risk Assessment of Atrazine and Diuron in Well and Surface Water of a Cornfield Rural Region. Water. 2022; 14(22):3790. https://doi.org/10.3390/w14223790
Chicago/Turabian StyleLagunas-Basave, Brenda, Alhelí Brito-Hernández, Hugo Albeiro Saldarriaga-Noreña, Mariana Romero-Aguilar, Josefina Vergara-Sánchez, Gabriela Eleonora Moeller-Chávez, José de Jesús Díaz-Torres, Mauricio Rosales-Rivera, and Mario Alfonso Murillo-Tovar. 2022. "Occurrence and Risk Assessment of Atrazine and Diuron in Well and Surface Water of a Cornfield Rural Region" Water 14, no. 22: 3790. https://doi.org/10.3390/w14223790