Remote Sensing Retrieval of Total Nitrogen in the Pearl River Delta Based on Landsat8
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Survey and Spectral Measurements
2.3. Imagery Acquisition and Preprocessing
2.4. Characteristic Bands Groups and Statistical Retrieval Method
2.4.1. Characteristic Bands Groups
2.4.2. Statistical Retrieval Method
2.4.3. Error Analysis
3. Results
3.1. Statistical Retrieval Method Validation
3.2. Remote Sensing Retrieval Results
4. Discussion
4.1. Spectral Characteristics of TN
4.2. Comparison of TN and Chlorophyll
4.3. Influence of Suspended Sediment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sinha, E.; Michalak, A.M.; Balaji, V. Eutrophication will increase during the 21st century as a result of precipitation changes. Sci. Am. Assoc. Adv. Sci. 2017, 357, 405–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wurtsbaugh, W.A.; Paerl, H.W.; Dodds, W.K. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. WIREs Water 2019, 6, 1373. [Google Scholar] [CrossRef]
- Beaulieu, J.J.; DelSontro, T.; Downing, J.A. Eutrophication will increase methane emissions from lakes and impoundments during the 21st century. Nat. Commun. 2019, 10, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Rodell, M.; Famiglietti, J.S.; Wiese, D.N.; Reager, J.T.; Beaudoing, H.K.; Landerer, F.W.; Lo, M.-H. Emerging trends in global freshwater availability. Nature 2018, 557, 651–659. [Google Scholar] [CrossRef]
- Dodds, W.K.; Smith, V.H. Nitrogen, phosphorus, and eutrophication in streams. Inland Waters 2016, 6, 155–164. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, C. Inversion of Water Quality Parameters of Urban River Network Using Airborne Hyperspectral Remote Sensing. Remote Sens. Inf. 2019, 34, 23–29. [Google Scholar]
- Yu, C.; Huang, X.; Chen, H.; Godfray, H.C.J.; Wright, J.S.; Hall, J.W.; Gong, P.; Ni, S.Q.; Qiao, S.C.; Huang, G.R.; et al. Managing nitrogen to restore water quality in China. Nature 2019, 567, 516–520. [Google Scholar] [CrossRef]
- Xu, P.; Yonghong, L.; Shunshun, Y.; Shengji, L. Input load to river and future projection for nitrogen and phosphorous nutrient controlling of Pearl River Basin. J. Lake Sci. 2017, 29, 1359–1371. [Google Scholar]
- Chu, H.-J.; Kong, S.-J.; Chang, C.-H. Spatio-temporal water quality mapping from satellite images using geographically and temporally weighted regression. Int. J. Appl. Earth Obs. Geoinf. 2018, 65, 1–11. [Google Scholar] [CrossRef]
- Lu, S.; Deng, R.; Liang, Y.; Xiong, L.; Ai, X.; Qin, Y. Remote Sensing Retrieval of Total Phosphorus in the Pearl River Channels Based on the GF-1 Remote Sensing Data. Remote Sens. 2020, 12, 1420. [Google Scholar] [CrossRef]
- Silió-Calzada, A.; Bricaud, A.; Gentili, B. Estimates of sea surface nitrate concentrations from sea surface temperature and chlorophyll concentration in upwelling areas: A case study for the Benguela system. Remote Sens. Environ. 2008, 112, 3173–3180. [Google Scholar] [CrossRef]
- Goes, J.; Saino, T.; Oaku, H.; Jiang, D. A method for estimating sea surface nitrate concentrations from remotely sensed SST and chlorophyll a-a case study for the north Pacific Ocean using OCTS/ADEOS data. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1633–1644. [Google Scholar] [CrossRef]
- Fengkui, M.A.; Qunou, J.; Lidan, X.U.; Yong, L.; Rongcheng, W.; Shuai, S.U. Retrieval of water quality parameters based on BP neural network algorithm in Miyun. Reserv. Ecol. Environ. Sci. 2020, 3, 569–579. [Google Scholar]
- Cheng, B.; Zhang, Y.; Xia, R.; Wang, L.; Zhang, N.; Zhang, X. Spatiotemporal analysis and prediction of water quality in the Han River by an integrated nonparametric diagnosis approach. J. Clean. Prod. 2021, 328, 129583. [Google Scholar] [CrossRef]
- Tang, Z.L.; Zhu, Z.F.; Li, X.H.; Zhong, B.; Xu, L.; Zhuomanta PM, A.; Sun, G. Hyperspectral quantitative inversion model for water quality parameters of lakes in Jiuzhaigou World Natural Heritage Site. Chin. J. Appl. Env. Biol. 2021, 27, 1256–1263. [Google Scholar]
- Zhou, Y.; Hu, J.; Xie, M. Research on Reservoir Water Quality Prediction Based on Grey Model. IOP Conf. Series Earth Environ. Sci. 2021, 621, 012120. [Google Scholar] [CrossRef]
- Lu, H.; Yang, L.; Fan, Y.; Qian, X.; Liu, T. Novel simulation of aqueous total nitrogen and phosphorus concentrations in Taihu Lake with machine learning. Environ. Res. 2021, 204, 111940. [Google Scholar] [CrossRef]
- Liu, Y.; Kai, X.; Hailin, F.; Yiming, F. Inversion of water quality elements in small and micro—size water region using multispectral image by UAV. Acta Sci. Circumstantiae 2019, 4, 1241–1249. [Google Scholar]
- Ma, F.; Gao, Z.; Ye, B. Remote sensing inversion of Tangxun lake water quality based on high score remote sensing satellite image. Water Resour. Dev. Manag. 2021, 5, 69–75. [Google Scholar]
- Wang, X.; Lan, G.; Yong, H.; Li, L.; Jie, H. Spectral Feature Construction and Sensitivity Analysis of Water Quality Parameters Remote Sensing Inversion. Spectrosc. Spect. Anal. 2021, 41, 1880–1885. [Google Scholar]
- Wu, H.; Guo, Q. Study on Water Quality Parameter Inversion based on Landsat8 and Measured Data. Remote Sens. Technol. Appl. 2021, 36, 898–907. [Google Scholar]
- Nong, X.; Shao, D.; Zhong, H.; Liang, J. Evaluation of water quality in the South-to-North Water Diversion Project of China using the water quality index (WQI) method. Water Res. 2020, 178, 115781. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Lu, X.; Tan, H.; Ma, T. Water Quality Monitoring Technology Based on GF-1 Satellite and XGBoost Model. Remote Sens. Inf. 2021, 36, 96–103. [Google Scholar]
- Ji, X.; Zhang, W. Tidal influence on the discharge distribution over the Pearl river Delta, China. Reg. Stud. Mar. Sci. 2019, 31, 100791. [Google Scholar] [CrossRef]
- Wang, X.; Guo, Y.; Ren, J. The Coupling Effect of Flood Discharge and Storm Surge on Extreme Flood Stages: A Case Study in the Pearl River Delta, South China. Int. J. Disaster Risk Sci. 2021, 12, 1–15. [Google Scholar] [CrossRef]
- DNRG. South China Sea Marine Environment Bulletin; Hong Kong Observatory: Hong Kong, China, 2011. [Google Scholar]
- Luo, H.; Chen, X.-H.; Wu, Q.; Luo, N.; Huang, X. Spatio-temporal characteristics of non-point source and sewer overflow pollution and its impacts on water environment in Shenzhen Bay Basin. J. Nat. Resour. 2020, 35, 3018–3028. [Google Scholar] [CrossRef]
- Anderson, G.P.; Felde, G.W.; Hoke, M.L.; Ratkowski, A.J.; Cooley, T.W.; Chetwynd, J.H., Jr.; Gardner, J.A.; Adler-Golden, S.M.; Matthew, M.W.; Berk, A.; et al. MODTRAN4-based atmospheric correction algorithm: FLAASH (fast line-of-sight atmospheric analysis of spectral hypercubes). In Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery VIII.; Shen, S.S., Lewis, P.E., Eds.; International Society for Optics and Photonics: Bellingham, WA, USA, 2002; Volume 4725, pp. 65–71. [Google Scholar]
- Wan, Y.; Mao, X. Simulation and Evaluation on TIN and PO3-4 -P Reduction in Deep Bay, China. Environ. Sci. 2011, 32, 384–391. [Google Scholar]
- Ye, H.; Tang, D.; Pan, G. Analysis on the key factors for the population evolution and early warning of harmful algal blooms based on an algal bloom in Shenzhen bay, the South China Sea. Ecol. Sci. 2022, 41, 82–89. [Google Scholar] [CrossRef]
- Huan, Q.; Pang, R.; Zhou, Q.; Leng, K. Variation trends of nitrogen and phosphorus and the relationship with HABs in Shenzhen coastal waters. Mar. Environ. Sci. 2016, 35, 908–914. [Google Scholar]
- Tang, J.; Yu, X.; Liu, J.; Zhang, B.; Jiang, J. Study on classification and distribution characteristics and supervision and management measures of sewage outlets entering the sea in Guangdong Province. Mar. Sci. 2018, 45, 3. [Google Scholar]
- Lei, Y.; Yan, H.; Zhong, C.; Feng, P.; Jiang, S. Regime shift recorded by sediments from the Futian mangrove ecosystem in the Shenzhen Bay. Acta Ecol. Sin. 2020, 40, 8539–8548. [Google Scholar]
- Cao, J.; Tian, Z.; Chu, e.; Niu, Y.; Zheng, B. Nitrogen and phosphorus control thresholds of cyanobacterial blooms in Lake Taihu. J. Lake Sci. 2022, 34, 1075–1089. [Google Scholar] [CrossRef]
- Deng, K.; Li, Y.; Fang, F.; Chen, B.; Wang, W.; Xian, Y.; Guo, J. Inluence of nutrients on the in situ growth of algae. J. Civ. Environ. Eng. 2021, 43, 162–175. [Google Scholar] [CrossRef]
- He, W.; Wang, L.; Wang, C. Relationship between chlorophyll a and nitrogen and phosphorus concentrations in different water bodies and eutrophication studies. Anhui Agric. Sci. Bull 2019, 25, 14. [Google Scholar] [CrossRef]
- Deng, R.; Liu, Q.; Ke, R.; Cheng, L.; Liu, X. Model for water pollution remote sensing based on double scattering and its application in the Zhujiang River outfall. Acta Oceanol. Sin. 2004, 23, 119–127. [Google Scholar]
- Gu, Q.; Li, Q.; Zhou, M. Water Quality Monitoring of the Yangtze Estuary by Using GF-5 Hyperspectral Image. IEEE 2019, 89, 5970. [Google Scholar] [CrossRef]
Sampling Groups | Numbers | Time | TN (mg/L) | Chlorophyll (μg/L) | Suspended Sediment (mg/L) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Max | Min | Mean | Med | Max | Min | Mean | Med | Max | Min | Mean | Med | |||
A | 6 | 2020-11-05 | 2.58 | 1.37 | 1.74 | 1.65 | 58.00 | 4.00 | 14.83 | 6.50 | 13.00 | 3.00 | 8.50 | 9.00 |
B | 10 | 2020-11-12 | 1.02 | 0.18 | 0.48 | 0.48 | 30.00 | 5.00 | 13.40 | 12.50 | 24.00 | 8.00 | 14.80 | 14.00 |
C | 6 | 2020-11-27 | 2.56 | 1.17 | 1.55 | 1.41 | 10.00 | 3.00 | 4.50 | 3.50 | 33.00 | 3.00 | 10.17 | 6.00 |
D | 6 | 2019-09-25 | 4.10 | 1.21 | 2.27 | 2.10 | 22.10 | 1.82 | 7.89 | 5.72 | 8.50 | 3.30 | 5.60 | 5.35 |
E | 4 | 2019-08-22 | 2.00 | 1.79 | 1.88 | 1.87 | −57.00 | 6.00 | 28.50 | 25.50 | 17 | 5.00 | 9.50 | 8.00 |
Landsat8 Band/Band Ratio | Regression Equation | R2 |
---|---|---|
B1 | (1) | 0.25 |
B4/B3 | (2) | 0.28 |
(B4 + B2)/B3 | (3) | 0.37 |
(B4 + B2)/B3,B1/B5 | (4) | 0.55 |
(B2 + B4)/B3, B1/B5, B3/B5 | (5) | 0.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Deng, R.; Li, J.; Hua, Z.; Wang, J.; Zhang, R.; Liang, Y.; Tang, Y. Remote Sensing Retrieval of Total Nitrogen in the Pearl River Delta Based on Landsat8. Water 2022, 14, 3710. https://doi.org/10.3390/w14223710
Guo Y, Deng R, Li J, Hua Z, Wang J, Zhang R, Liang Y, Tang Y. Remote Sensing Retrieval of Total Nitrogen in the Pearl River Delta Based on Landsat8. Water. 2022; 14(22):3710. https://doi.org/10.3390/w14223710
Chicago/Turabian StyleGuo, Yu, Ruru Deng, Jiayi Li, Zhenqun Hua, Jing Wang, Ruihao Zhang, Yeheng Liang, and Yuming Tang. 2022. "Remote Sensing Retrieval of Total Nitrogen in the Pearl River Delta Based on Landsat8" Water 14, no. 22: 3710. https://doi.org/10.3390/w14223710