# Numerical Investigation on Influence of Number of Bubbles on Laser-Induced Microjet

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Computational Methods

#### 2.1. Governing Equations

#### 2.2. Simulation Settings and Conditions

#### 2.3. Numerical Schemes

- $\rho -$THINC-MUSCL3

- MP-WENO5-JS

## 3. Result and Discussion

#### 3.1. Microjet Evolution and Time History of Impulse

#### 3.2. Pressure Field Evolution around a Single Bubble

#### 3.3. Pressure Field Evolution around Multi-Bubbles

#### 3.4. Discussion

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## Appendix A. Solver Varidation

**Figure A1.**Result of Gas–liquid Riemann problem. The exact and numerical solutions are compared at $t=0.2$.

## Appendix B. Grid Independence Study

**Figure A2.**Result of the grid independence study using $\rho $-THINC-MUSCL3 on w/o-meniscus setting.

## References

- Tagawa, Y.; Oudalov, M.; Visser, C.W.; Peters, I.R.; Meer, D.; Sun, C.; Prosperetti, A.; Lohse, D. Highly focused supersonic microjets. Phys. Rev. X
**2012**, 2, 31002. [Google Scholar] [CrossRef][Green Version] - Antkowiak, A.; Bremond, N.; Le Dizès, S.; Villermaux, E. Short-term dynamics of a density interface following an impact. J. Fluid Mech.
**2007**, 577, 241–250. [Google Scholar] [CrossRef][Green Version] - Zeff, B.W.; Kleber, B.; Fineberg, J.; Lathrop, D.P. Singularity dynamics in curvature collapse and jet eruption on a fluid surface. Nature
**2000**, 403, 401–404. [Google Scholar] [CrossRef] - Duchemin, L.; Popinet, S.; Josserand, C.; Zaleski, S. Jet formation in bubbles bursting at a free surface. Phys. Fluids
**2002**, 14, 3000. [Google Scholar] [CrossRef] - Bergmann, R.; van der Meer, D.; Gekle, S.; Lohse, D. Controlled impact of a disk on a water surface: Cavity dynamics. J. Fluid Mech.
**2009**, 633, 381–409. [Google Scholar] [CrossRef][Green Version] - Tagawa, Y.; Oudalov, N.; El Ghalbzouri, A.; Sun, C.; Lohse, D. Needle-free injection into skin and soft matter with highly focused microjets. Lab Chip
**2013**, 13, 1357–1363. [Google Scholar] [CrossRef][Green Version] - Kiyama, A.; Endo, N.; Kawamoto, S.; Katsuta, C.; Oida, K.; Tanaka, A.; Tagawa, Y. Visualization of penetration of a high-speed focused microjet into gel and animal skin. J. Vis.
**2019**, 22, 449–457. [Google Scholar] [CrossRef][Green Version] - Krizek, J.; Delrot, P.; Moser, C. Repetitive regime of highly focused liquid microjets for needle-free injection. Sci. Rep.
**2020**, 10, 5067. [Google Scholar] [CrossRef][Green Version] - Miyazaki, Y.; Usawa, M.; Kawai, S.; Yee, J.; Muto, M.; Tagawa, Y. Dynamic mechanical interaction between injection liquid and human tissue simulant induced by needle-free injection of a highly focused microjet. Sci. Rep.
**2021**, 11, 14544. [Google Scholar] [CrossRef] - Delrot, P.; Modestino, M.A.; Gallaire, F.; Psaltis, D.; Moser, C. Inkjet printing of viscous monodisperse microdroplets by laser-induced flow focusing. Phys. Rev. Appl.
**2016**, 6, 24003. [Google Scholar] [CrossRef] - Xiong, S.; Chin, L.K.; Ando, K.; Tandiono, T.; Liu, A.Q.; Ohl, C.D. Droplet generation via a single bubble transformation in a nanofluidic channel. Lab Chip
**2015**, 15, 1451–1457. [Google Scholar] [CrossRef] [PubMed] - Peter, I.R.; Tagawa, Y.; Oudalov, N.; Sun, C.; Prosperetti, A.; Lohse, D.; van der Meer, D. Highly focused supersonic microjets: Numerical simulations. J. Fluid Mech.
**2013**, 719, 587–605. [Google Scholar] [CrossRef][Green Version] - Hayasaka, K.; Kiyama, A.; Tagawa, Y. Effects of pressure impulse and peak pressure of a shock wave on microjet velocity in a microchannel. Microfluid Nanofluid
**2017**, 21, 116. [Google Scholar] [CrossRef][Green Version] - Vogel, A.; Noack, J.; Nahen, K.; Theisen, D.; Busch, S.; Parliz, U.; Hammer, D.X.; Noojin, G.D.; Rockwell, B.A.; Birngruber, R. Energy balance of optical breakdown in water at nanosecond to femtosecond time scales. Appl. Phys. B
**1999**, 68, 271–280. [Google Scholar] [CrossRef] - Kodama, T.; Hamblin, M.R.; Doukas, A.G. Cytoplasmic molecular delivery with shock waves: Importance of impulse. Biophys. J.
**2000**, 79, 1821–1832. [Google Scholar] [CrossRef][Green Version] - Sankin, G.N.; Simmons, W.N.; Zhu, S.L.; Zhong, P. Shock wave interaction with laser-generated single bubbles. Phys. Rev. Lett.
**2005**, 95, 34501. [Google Scholar] [CrossRef] - Klaseboor, E.; Fong, S.W.; Turangan, C.K.; Khoo, B.C.; Szeri, A.J.; Calvisi, M.L.; Sankin, G.N.; Zhong, P. Interaction of lithotripter shockwaves with single inertial cavitation bubbles. J. Fluid Mech.
**2007**, 593, 33–56. [Google Scholar] [CrossRef] - Ando, K.; Liu, A.-Q.; Ohl, C.-D. Homogeneous nucleation in water in microfluidic channels. Phys. Rev. Lett.
**2012**, 109, 44501. [Google Scholar] [CrossRef] - Quinto-Su, P.A.; Ando, K. Nucleating bubble clouds with a pair of laser-induced shocks and bubbles. J. Fluid Mech.
**2013**, 733, R3. [Google Scholar] [CrossRef] - Hsiao, C.-T.; Choi, J.-K.; Singh, S.; Chahine, G.L.; Hay, T.A.; Ilinskii, Y.A.; Zabolotskaya, E.A.; Hamilton, M.F.; Sankin, G.; Yuan, F.; et al. Modelling single- and tandem-bubble dynamics between two parallel plates for biomedical applications. J. Fluid Mech.
**2013**, 716, 137–170. [Google Scholar] [CrossRef] - Supponen, O.; Obreschkow, D.; Kobel, P.; Tinguely, M.; Dorsaz, N.; Farhat, M. Shock waves from non-spherical cavitation bubbles. Phys. Rev. Fluids
**2017**, 2, 93601. [Google Scholar] [CrossRef][Green Version] - Beig, S.A. A Computational Study of the Inertial Collapse of Gas Bubbles Near a Rigid Surface. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 2018. [Google Scholar]
- Kyriazis, N.; Koukouvinis, P.; Gavaises, M. Numerical investigations on bubble-induced jetting and shock wave focusing: Application on a needle-free injection. Proc. R. Soc. A Math. Phys. Eng. Sci.
**2019**, 475, 20180548. [Google Scholar] [CrossRef] [PubMed] - Kapila, A.K.; Menikoff, R.; Bdzil, J.B.; Son, S.F.; Stewart, D.S. Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations. Phys. Fluids
**2001**, 13, 3002–3024. [Google Scholar] [CrossRef] - Allaire, G.; Clerc, S.; Kokh, S. A five-equation model for the simulation of interfaces between compressible fluids. J. Comput. Phys.
**2002**, 181, 577–616. [Google Scholar] [CrossRef][Green Version] - Shukla, R.K.; Pantano, C.; Freund, J.B. An interface capturing method for the simulation of multi-phase compressible flows. J. Comput. Phys.
**2010**, 229, 7411–7439. [Google Scholar] [CrossRef] - Daramizadeh, A.; Ansari, M.R. Numerical simulation of underwater explosion near air–water free surface using a five-equation reduced model. Ocean Eng.
**2015**, 110, 25–35. [Google Scholar] [CrossRef] - Rasthofer, U.; Wermelinger, F.; Hadijdoukas, P.; Koumoutsakos, P. Large Scale Simulation of Cloud Cavitation Collapse. Procedia Comput. Sci.
**2017**, 108, 1763–1772. [Google Scholar] [CrossRef] - Garrick, D.P.; Hagen, W.A.; Regele, J.D. An interface capturing scheme for modeling atomization in compressible flows. J. Comput. Phys.
**2017**, 344, 260–280. [Google Scholar] [CrossRef] - Yu, J.; Liu, J.; He, B.; Li, H.; Xie, T.; Pei, D. Numerical research of water jet characteristics in underwater explosion based on compressible multicomponent flows. Ocean Eng.
**2021**, 242, 110135. [Google Scholar] [CrossRef] - Baer, M.R.; Nunziato, J.W. A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials. Int. J. Multiph. Flow
**1986**, 12, 861–889. [Google Scholar] [CrossRef] - Tiwari, A.; Freund, J.B.; Pantano, C. A diffuse interface model with immiscibility preservation. J. Comput. Phys.
**2013**, 252, 290–309. [Google Scholar] [CrossRef] [PubMed][Green Version] - Schmidmayer, K.; Bryngelson, S.H.; Colonius, T. An assessment of multicomponent flow models and interface capturing schemes for spherical bubble dynamics. J. Comput. Phys.
**2020**, 402, 109080. [Google Scholar] [CrossRef][Green Version] - Saurel, R.; Petitpas, F.; Berry, R.A. Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures. J. Comput. Phys.
**2009**, 228, 1678–1712. [Google Scholar] [CrossRef] - Métayer, O.L.; Saurel, R. The Noble-Abel Stiffened-Gas equation of state. Phys. Fluids
**2016**, 28, 46102. [Google Scholar] [CrossRef][Green Version] - Saurel, R.; Métayer, O.L.; Massoni, J.; Gavrilyuk, S. Shock jump relations for multiphase mixtures with stiff mechanical relaxation. Shock Waves
**2007**, 16, 209–232. [Google Scholar] [CrossRef] - Gutiérrez-Hernández, U.J.; Colle, F.D.; Ohl, C.-D.; Quinto-Su, P.A. Transient time-delay focusing of shock waves in thin liquids. J. Fluid. Mech.
**2021**, 910, A27. [Google Scholar] [CrossRef] - Tian, B.; Toro, E.F.; Castro, C.E. A path-conservative method for a five-equation model of two-phase flow with an HLLC-type Riemann solver. Comput. Fluids
**2011**, 46, 122–132. [Google Scholar] [CrossRef] - van Leer, B. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys.
**1979**, 32, 101–136. [Google Scholar] [CrossRef] - Roe, P.L. Characteristic-based schemes for the Euler equations. Annu. Rev. Fluid Mech.
**1986**, 18, 337–365. [Google Scholar] [CrossRef] - Skyue, K.M.; Xiao, F. An Eulerian interface sharpening algorithm for compressible two-phase flow: The algebraic THINC approach. J. Comput. Phys.
**2014**, 268, 326–354. [Google Scholar] - Jiang, G.-S.; Shu, C.-W. Efficient Implementation of Weighted ENO Schemes. J. Comput. Phys.
**1996**, 126, 202–228. [Google Scholar] [CrossRef] - Balsara, D.S.; Shu, C.-W. Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy. J. Comput. Phys.
**2000**, 160, 405–452. [Google Scholar] [CrossRef][Green Version] - Coralic, V.; Colonius, T. Finite-volume WENO scheme for viscous compressible multicomponent flows. J. Comput. Phys.
**2014**, 274, 95–121. [Google Scholar] [CrossRef] [PubMed][Green Version] - Tagawa, Y.; Yamamoto, S.; Hayasaka, K.; Kameda, M. On pressure impulse of a laser-induced underwater shock wave. J. Fluid Mech.
**2016**, 808, 5–18. [Google Scholar] [CrossRef][Green Version] - Cocchi, J.P.; Saurel, R.; Loraud, J.C. Treatment of interface problems with Godunov-type schemes. Shock Waves
**1996**, 5, 347–357. [Google Scholar] [CrossRef] - Garrick, D.P.; Owkes, M.; Regele, J.D. A finite-volume HLLC-based scheme for compressible interfacial flows with surface tnsion. J. Comput. Phys.
**2007**, 339, 46–67. [Google Scholar] [CrossRef]

**Figure 1.**Illustration of the generation of microjets by focusing a pulsed laser in liquid-filled capillary. (

**a**) Laser-induced bubbles is created by a focused laser pulse. (

**b**) High-pressure laser-induced bubbles induce pressure waves toward the meniscus. (

**c**) Microjet is generated due to kinematic focusing on the meniscus.

**Figure 2.**Simulation settings for the microchannel with meniscus (w-meniscus setting). This figure shows the setting for the case of two bubbles.

**Figure 3.**Simulation settings for the microchannel without meniscus and multiple laser-induced bubbles (w/o-meniscus setting). This figure shows the setting for the case of two bubbles.

**Figure 4.**Time evolution of microjet by the single bubble. Interfaces are shown by the density gradient.

**Figure 5.**Time history of microjet velocity and microjet formations at the final state. The orange dashed line in (

**b**–

**d**) shows the position of the microjet head in the single bubble case. Interfaces are shown by the density gradient.

**Figure 6.**Time history of the impulse. This result is obtained from the simulation result of the w/o-meniscus setting.

**Figure 7.**Pressure field evolution generated by the single laser-induced bubble at (

**a**) t = 0.0, (

**b**) t = 0.9, (

**c**) t = 1.8, (

**d**) t = 3.3, (

**e**) t = 4.5, and (

**f**) t = 5.4; numerical schlieren at the upper side and pressure distribution at the lower side of each figure.

**Figure 8.**Time history of the pressure at the pressure probe in the case of the single bubble. The blue dashed line shows the arrival time of the pressure wave.

**Figure 9.**Schematics of the path of the pressure wave from the bubble to the pressure probe point. (

**a**) Path of the pressure wave through the wave reflection between the bubble and wall; (

**b**) Path of the pressure wave to the pressure probe through the wave reflection at the wall.

**Figure 10.**Time evolution of the numerical schlieren at the upper side and the pressure distribution at the lower side at (

**a**) t = 0.25, (

**b**) t = 1.0, and (

**c**) t = 2.25. The red dash line shows the inspection surface.

**Figure 12.**Path of the pressure wave from the bubble in the case of multiple bubbles. The path of the pressure wave is the same as the length shown by the dashed line. (

**a**) Path of the pressure wave between the bubbles; (

**b**) Path of the pressure wave to the inspection surface.

Number of Bubbles | 1 | 2 | 3 |
---|---|---|---|

Positions $\left(x,y\right)$ [-] | $\left(0,0\right)$ | $\left(0,-3.5\right),\left(0,3.5\right)$ | $\left(0,-4.67\right),\left(0,0\right),\left(0,4.67\right)$ |

Times [-] | $\mathit{T}$ | ${\mathit{t}}_{1}$ | ${\mathit{t}}_{2}$ | ${\mathit{t}}_{3}$ |
---|---|---|---|---|

Simulation Results (Figure 4) | 2.9 | 2.6 | 3.7 | 6.2 |

Results of Equations (26) and (27) | 2.9 | 2.5 | 3.9 | 6.4 |

Times [-] | $\mathit{T}$ | ${\mathit{t}}_{1}$ | ${\mathit{t}}_{2}$ | ${\mathit{t}}_{3}$ |
---|---|---|---|---|

Simulation Results (Figure 4) | 1.4 | 2.6 | 3.2 | 4.3 |

Results of Equation (26) and Equation (27) | 1.5 | 2.6 | 3.3 | 4.5 |

**Table 4.**Comparison between the simulation and analytical results for the case of the three bubbles.

Times [-] | $\mathit{T}$ | ${\mathit{t}}_{1}$ | ${\mathit{t}}_{2}$ | ${\mathit{t}}_{3}$ |
---|---|---|---|---|

Simulation Results (Figure 4) | 0.9 | 2.4 | 2.6 | 3.0 |

Results of Equation (26) and Equation (27) | 1.0 | 2.5 | 2.6 | 3.1 |

Number of Bubbles | 1 | $2$ | $3$ |
---|---|---|---|

Maximum Pressure [-] | 2.9 | 2.6 | 3.7 |

Time at the Maximum Pressure [-] | 2.9 | 2.5 | 3.9 |

Number of Bubbles | 1 | 2 | 3 |
---|---|---|---|

Time [-] | 2.5 | 1.0 | 0.6 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ishikawa, T.; Nishida, H.; Tagawa, Y.
Numerical Investigation on Influence of Number of Bubbles on Laser-Induced Microjet. *Water* **2022**, *14*, 3707.
https://doi.org/10.3390/w14223707

**AMA Style**

Ishikawa T, Nishida H, Tagawa Y.
Numerical Investigation on Influence of Number of Bubbles on Laser-Induced Microjet. *Water*. 2022; 14(22):3707.
https://doi.org/10.3390/w14223707

**Chicago/Turabian Style**

Ishikawa, Tatsumasa, Hiroyuki Nishida, and Yoshiyuki Tagawa.
2022. "Numerical Investigation on Influence of Number of Bubbles on Laser-Induced Microjet" *Water* 14, no. 22: 3707.
https://doi.org/10.3390/w14223707