The Analytical Solution of an Unsteady State Heat Transfer Model for the Confined Aquifer under the Influence of Water Temperature Variation in the River Channel
Abstract
:1. Introduction
2. Mathematical Model and Its Analytical Solution
2.1. Mathematical Models
2.2. Theoretical Solution
2.3. Analytical Solution
3. Materials and Methods
3.1. Example Overview
3.2. Numerical Simulation
4. Results
4.1. Analysis of Aquifer Temperature Variation Laws Basing on the Analytical Method
- (1)
- at the same flow velocity, the further away from the river canal, the slower the aquifer temperature varies;
- (2)
- at the same distance from the river canal, the smaller the aquifer flow velocity, the slower the temperature changes;
- (3)
- at the same time, the larger the aquifer flow velocity, the smaller the temperature changes caused by the increased distance;
- (4)
- at the same distance from the river canal or at the same flow velocity, the aquifer temperature increases with time until it reaches a stable state.
4.2. Analysis of the Boundary Influence Range Basing on Numerical Simulation
4.3. Comparison of the Results of the Analytical and Numerical Methods
5. Discussion
5.1. Error Analysis between Analytical Results and Numerical Results
- At the same distance from the boundary, the relative error tends to gradually decrease and then slightly increase with time, and the maximum error of the two methods reaches 10.27% at the virtual observation point 2, which is relatively far from the boundary, under the condition of shorter time (such as 5 days in the example).
- Under the condition of the same time, the closer the distance to the boundary, the relative error tends to decrease.
- When the duration of the boundary effect is relatively short (e.g., t < 15 d), the comparison of the results generally shows that the numerical values are larger than the corresponding analytical values.
5.2. The Impact of ∆T0 on Tb(x,t)
5.3. Contributions to the Management of Rivers and Aquifers
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fleuchaus, P.; Godschalk, B.; Stober, I.; Blum, P. Worldwide application of aquifer thermal energy storage—A review. Renew Sust. Energ. Rev. 2018, 94, 861–876. [Google Scholar] [CrossRef]
- Rahman, A.T.M.S.; Hosono, T.; Tawara, Y.; Fukuoka, Y.; Hazart, A.; Shimada, J. Multiple-tracers-aided surface-subsurface hydrological modeling for detailed characterization of regional catchment water dynamics in Kumamoto area, southern Japan. Hydrogeol. J. 2021, 29, 1885–1904. [Google Scholar] [CrossRef]
- Salem, Z.E.; Fathy, M.S.; Helal, A.I.; Afifi, S.Y.; Attiah, A.M. Use of subsurface temperature as a groundwater flow tracer in the environs of Ismailia Canal, Eastern Nile Delta, Egypt. Arab. J. Geosci. 2020, 13, 503. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, E.; Liu, L.; Qi, C. Machine learning-based performance prediction for ground source heat pump systems. Geothermics 2022, 105, 102509. [Google Scholar] [CrossRef]
- Han, J.; Cui, M.; Chen, J.; Lv, W. Analysis of thermal performance and economy of ground source heat pump system: A case study of the large building. Geothermics 2021, 89, 101929. [Google Scholar] [CrossRef]
- Zhu, W.; Su, X.; Li, X.; Sun, Q. The deviation of thermal conductivity under different operating power is analyzed by linear heat source superposition method. Arab. J. Geosci. 2021, 14, 433. [Google Scholar] [CrossRef]
- Wu, Q.; Tu, K.; Sun, H.; Chen, C. Investigation on the sustainability and efficiency of single-well circulation (SWC) groundwater heat pump systems. Renew. Energy 2019, 130, 656–666. [Google Scholar] [CrossRef]
- Xie, Y.; Batlle-Aguilar, J. Limits of heat as a tracer to quantify transient lateral river-aquifer exchanges. Water Resour. Res. 2017, 53, 7740–7755. [Google Scholar] [CrossRef]
- Constantz, J. Heat as a tracer to determine streambed water exchanges. Water Resour. Res. 2008, 44, W10D. [Google Scholar] [CrossRef]
- Zhu, J.; Shu, L.; Lu, C. Study on the heterogeneity of vertical hyporheic flux using a heat tracing method. J. Hydraul. Eng. 2013, 44, 818–825. [Google Scholar]
- Zhu, B.; Zhao, J.; Chen, X.; Li, Y. Impacts of reservoir operation on the water stage and temperature in the downstream riparian hyporheic zone. J. Hydraul. Eng. 2015, 46, 1337–1343. [Google Scholar]
- Li, Y.; Zhao, J.; Lv, H.; Chen, B. Investigation on temperature tracer method calculated flow rate of hyporheic layer in riparian zone. Adv. Water Sci. 2016, 27, 423–429. [Google Scholar]
- McLing, T.L.; Smith, R.P.; Smith, R.W.; Blackwell, D.D.; Roback, R.C.; Sondrup, A.J. Wellbore and groundwater temperature distribution eastern Snake River Plain, Idaho: Implications for groundwater flow and geothermal potential. J. Volcanol. Geoth. Res. 2016, 320, 144–155. [Google Scholar] [CrossRef]
- Griebler, C.; Brielmann, H.; Haberer, C.M.; Kaschuba, S.; Kellermann, C.; Stumpp, C.; Hegler, F.; Kuntz, D.; Walker-Hertkorn, S.; Lueders, T. Potential impacts of geothermal energy use and storage of heat on groundwater quality, biodiversity, and ecosystem processes. Environ. Earth Sci. 2016, 75, 1391. [Google Scholar] [CrossRef]
- Xue, Y.; Xie, C. Study on heat transfer in porous media. Geotech. Investig. Surv. 1990, 3, 27–32. [Google Scholar]
- Zhang, Z.; Xue, Y. Study on natural convection in underground hot water migration. Hydrogeol. Eng. Geol. 1995, 4, 16–21. [Google Scholar]
- Ma, Y. The existence and uniqueness of the generalized solution to Burgers’ equation with a viscose term. Math. Numer. Sin. 1989, 2, 30–37. [Google Scholar]
- Chen, M.; Song, J.; Duan, S. Finding a solution to the Cauchy problem of quasilinear heat equation through Cole-Hopf transformation. J. Jiamusi Univ. 2013, 31, 914–915. [Google Scholar]
- Wu, Z.; Song, H. Temperature as a groundwater tracer: Advances in theory and methodology. Adv. Water Sci. 2011, 22, 733–740. [Google Scholar]
- Sun, H.; Wu, Q.; Xu, S.; Zeng, Y.; Liu, S. Research on thermophysical characteristics with swgecche coupled by Stokes-Darcy flow. Acta Energ. Sol. Sin. 2015, 36, 2571–2577. [Google Scholar]
- Li, F.; Xu, T.; Feng, G.; Yuan, Y.; Zhu, H.; Feng, B. Simulation for water-heat coupling process of single well ground source heat pump systems implemented by T2Well. Acta Energ. Sol. Sin. 2020, 41, 278–286. [Google Scholar]
- Chang, C.; Tsai, J. Analysis of the heat transfer in subsurface porous media with considering Robin-type boundaries and arbitrary surface temperature variations. Int. J. Heat Mass Transf. 2021, 173, 121222. [Google Scholar] [CrossRef]
- Samani, S.; Vadiati, M.; Azizi, F.; Zamani, E.; Kisi, O. Groundwater Level Simulation Using Soft Computing Methods with Emphasis on Major Meteorological Components. Water Resour. Manag. 2022, 36, 3627–3647. [Google Scholar] [CrossRef]
- Vadiati, M.; Rajabi Yami, Z.; Eskandari, E.; Nakhaei, M.; Kisi, O. Application of artificial intelligence models for prediction of groundwater level fluctuations: Case study (Tehran-Karaj alluvial aquifer). Environ. Monit. Assess 2022, 194, 619. [Google Scholar] [CrossRef]
- Diersch, H. FEFLOW, 7.0; GmbH, DHI-WASY: Berlin, Germany, 2018. [Google Scholar]
- Karmakar, S.; Tatomir, A.; Oehlmann, S.; Giese, M.; Sauter, M. Numerical Benchmark Studies on Flow and Solute Transport in Geological Reservoirs. Water 2022, 14, 1310. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, M.; Tian, J.; Lu, Z. FEFLOW 6 User’s Guide for Finite Element Groundwater Flow and Solute Transport Simulation System; China Environmental Science Press: Beijing, China, 2012; pp. 22,34,38. [Google Scholar]
- Wolfram Alpha LLC. WolframAlpha Computational Intelligence. Available online: www.wolframalpha.com (accessed on 4 November 2022).
- Tao, W. Heat Transfer, 5th ed.; Higher Education Press: Beijing, China, 2019; pp. 339–340. [Google Scholar]
- Nikulenkov, A.M.; Dvornikov, A.Y.; Rumynin, V.G.; Ryabchenko, V.A.; Vereschagina, E.A. Assessment of Allowable Thermal Load for a River Reservoir Subject to Multi-Source Thermal Discharge from Operating and Designed Beloyarsk NPP Units (South Ural, Russian Federation). Environ. Model. Assess. 2017, 22, 609–623. [Google Scholar] [CrossRef]
Parameter | Unit | Value |
---|---|---|
volume specific heat of solid skeleton, cs | J·(kg·°C)−1 | 1.78 × 103 |
volume specific heat of water, cw | J·(kg·°C)−1 | 4.20 × 103 |
density of solid skeleton, ρs | kg·m−3 | 1.50 × 103 |
thermal conductivity of solid skeleton, λs | W·(m·°C)−1 | 1.92 |
thermal conductivity of water, λw | W·(m·°C)−1 | 0.59 |
porosity, n | - | 0.40 |
Time/d | Analytical Value/°C | Numerical Value/°C | Absolute Error/°C | Relative Error */% |
---|---|---|---|---|
5 | 20.7484 | 21.5715 | 0.8231 | 3.97 |
10 | 21.5121 | 21.7456 | 0.2335 | 1.09 |
15 | 21.7722 | 21.8143 | 0.0421 | 0.19 |
20 | 21.8836 | 21.8565 | 0.0271 | 0.12 |
25 | 21.9372 | 21.8830 | 0.0542 | 0.25 |
30 | 21.9648 | 21.9020 | 0.0628 | 0.29 |
40 | 21.9881 | 21.9280 | 0.0601 | 0.27 |
Time/d | Analytical Value/°C | Numerical Value/°C | Absolute Error/°C | Relative Error */% |
---|---|---|---|---|
5 | 19.1558 | 21.1240 | 1.9682 | 10.27 |
10 | 20.5766 | 21.4733 | 0.8967 | 4.36 |
15 | 21.2641 | 21.6146 | 0.3505 | 1.65 |
20 | 21.6022 | 21.7014 | 0.0992 | 0.46 |
25 | 21.7774 | 21.7563 | 0.0211 | 0.10 |
30 | 21.8721 | 21.7959 | 0.0762 | 0.35 |
40 | 21.9553 | 21.8499 | 0.1054 | 0.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, T.; Tao, Y.; Ren, H.; Lin, F. The Analytical Solution of an Unsteady State Heat Transfer Model for the Confined Aquifer under the Influence of Water Temperature Variation in the River Channel. Water 2022, 14, 3698. https://doi.org/10.3390/w14223698
Wei T, Tao Y, Ren H, Lin F. The Analytical Solution of an Unsteady State Heat Transfer Model for the Confined Aquifer under the Influence of Water Temperature Variation in the River Channel. Water. 2022; 14(22):3698. https://doi.org/10.3390/w14223698
Chicago/Turabian StyleWei, Ting, Yuezan Tao, Honglei Ren, and Fei Lin. 2022. "The Analytical Solution of an Unsteady State Heat Transfer Model for the Confined Aquifer under the Influence of Water Temperature Variation in the River Channel" Water 14, no. 22: 3698. https://doi.org/10.3390/w14223698