# An Improved Combination Model for the Multi-Scale Prediction of Slope Deformation

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Study Area

#### 2.2. Data Source

#### 2.3. Multiple Linear Regression Model

#### 2.4. Multiple Nonlinear Regression Model

#### 2.5. Modified Deformation Prediction Combination Model Based on GFW-Fisher Optimal Segmentation Method

#### 2.6. Model Accuracy Evaluation

## 3. Results and Discussion

#### 3.1. Slope Deformation Prediction Results

#### 3.2. The Results of Accuracy Evaluation

#### 3.3. Discussion

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Singh, P.; Gupta, A.; Singh, M. Hydrological inferences from watershed analysis for water resource management using remote sensing and GIS techniques. Egypt. J. Remote Sens. Space Sci.
**2014**, 17, 111–121. [Google Scholar] [CrossRef] [Green Version] - Salifu, E.; MacLachlan, E.; Iyer, K.R.; Knapp, C.W.; Tarantino, A. Application of microbially induced calcite precipitation in erosion mitigation and stabilisation of sandy soil foreshore slopes; a preliminary investigation. Eng. Geol.
**2016**, 201, 96–105. [Google Scholar] [CrossRef] [Green Version] - Zhong, B.; Peng, S.; Zhang, Q.; Ma, H.; Cao, S. Using an ecological economics approach to support the restoration of collapsing gullies in southern China. Land Use Policy
**2013**, 32, 119–124. [Google Scholar] [CrossRef] - Zhang, X.; Nie, J.; Cheng, C.; Xu, C.; Zhou, L.; Shen, S.; Pei, Y. Natural and Socioeconomic Factors and Their Interactive Effects on House Collapse Caused by Typhoon Mangkhut. Int. J. Disaster Risk Sci.
**2021**, 12, 121–130. [Google Scholar] [CrossRef] - Che, A.; Yang, H.; Wang, B.; Ge, X. Wave propagations through jointed rock masses and their effects on the stability of slopes. Eng. Geol.
**2016**, 201, 45–56. [Google Scholar] [CrossRef] - Cheng, M.; Hoang, N. A Swarm-Optimized Fuzzy Instance-based Learning approach for predicting slope collapses in mountain roads. Knowl.-Based Syst.
**2015**, 76, 256–263. [Google Scholar] [CrossRef] - Dick, G.J.; Eberhardt, E.; Cabrejo-Liévano, A.G.; Stead, D.; Rose, N.D. Development of an early-warning time-of-failure analysis methodology for open-pit mine slopes utilizing ground-based slope stability radar monitoring data. Can. Geotech. J.
**2015**, 52, 515–529. [Google Scholar] [CrossRef] - Xu, J.; Li, H.; Du, K.; Yan, C.; Zhao, X.; Li, W.; Xu, X. Field investigation of force and displacement within a strata slope using a real-time remote monitoring system. Environ. Earth Sci.
**2018**, 77, 1–11. [Google Scholar] [CrossRef] - He, Z.; Xie, M.; Huang, Z.; Lu, G.; Yan, B.; Wang, J. Method to Realize the Tilt Monitoring and Instability Prediction of Hazardous Rock on Slopes. Adv. Civ. Eng.
**2021**, 2021, 1–14. [Google Scholar] [CrossRef] - Mazzanti, P.; Bozzano, F.; Cipriani, I.; Prestininzi, A. New insights into the temporal prediction of landslides by a terrestrial SAR interferometry monitoring case study. Landslides
**2015**, 12, 55–68. [Google Scholar] [CrossRef] - Li, M.; Zhang, L.; Ding, C.; Li, W.; Luo, H.; Liao, M.; Xu, Q. Retrieval of historical surface displacements of the Baige landslide from time-series SAR observations for retrospective analysis of the collapse event. Remote Sens. Environ.
**2020**, 240, 111695. [Google Scholar] [CrossRef] - Dong, M.; Wu, H.; Hu, H.; Azzam, R.; Zhang, L.; Zheng, Z.; Gong, X. Deformation Prediction of Unstable Slopes Based on Real-Time Monitoring and DeepAR Model. Sensors
**2020**, 21, 14. [Google Scholar] [CrossRef] - Jiang, S.; Lian, M.; Lu, C.; Gu, Q.; Ruan, S.; Xie, X. Ensemble Prediction Algorithm of Anomaly Monitoring Based on Big Data Analysis Platform of Open-Pit Mine Slope. Complexity
**2018**, 2018, 1–13. [Google Scholar] [CrossRef] - Hu, B.; Su, G.; Jiang, J.; Sheng, J.; Li, J. Uncertain Prediction for Slope Displacement Time-Series Using Gaussian Process Machine Learning. IEEE Access
**2019**, 7, 27535–27546. [Google Scholar] [CrossRef] - Zhang, Y.-G.; Tang, J.; He, Z.-Y.; Tan, J.; Li, C. A novel displacement prediction method using gated recurrent unit model with time series analysis in the Erdaohe Landslide. Nat. Hazards
**2021**, 10, 783–813. [Google Scholar] [CrossRef] - Khajehzadeh, M.; Taha, M.R.; Keawsawasvong, S.; Mirzaei, H.; Jebeli, M. An Effective Artificial Intelligence Approach for Slope Stability Evaluation. IEEE Access
**2022**, 10, 5660–5671. [Google Scholar] [CrossRef] - Zhao, X.; Ye, S. Space reconstruction of audiovisual media based on artificial intelligence and virtual reality. J. Intell. Fuzzy Syst.
**2021**, 40, 7285–7296. [Google Scholar] [CrossRef] - Zhang, H.; Nguyen, H.; Bui, X.-N.; Pradhan, B.; Asteris, P.G.; Costache, R.; Aryal, J. A generalized artificial intelligence model for estimating the friction angle of clays in evaluating slope stability using a deep neural network and Harris Hawks optimization algorithm. Eng. Comput.
**2021**, 1–14. [Google Scholar] [CrossRef] - Huang, Y.; Han, X.; Zhao, L. Recurrent neural networks for complicated seismic dynamic response prediction of a slope system. Eng. Geol.
**2021**, 289, 106198. [Google Scholar] [CrossRef] - Elsheikh, A.H.; Panchal, H.; Ahmadein, M.; Mosleh, A.O.; Sadasivuni, K.K.; Alsaleh, N.A. Productivity forecasting of solar distiller integrated with evacuated tubes and external condenser using artificial intelligence model and moth-flame optimizer. Case Stud. Therm. Eng.
**2021**, 28, 101671. [Google Scholar] [CrossRef] - Yang, B.; Yin, K.; Lacasse, S.; Liu, Z. Time series analysis and long short-term memory neural network to predict landslide displacement. Landslides
**2019**, 16, 677–694. [Google Scholar] [CrossRef] - Ozsen, H. Monitoring unstable slopes in an open pit lignite mine using ARIMA. J. S. Afr. Inst. Min. Metall.
**2020**, 120, 173–180. [Google Scholar] [CrossRef] - Gong, C.; Lei, S.; Bian, Z.; Tian, Y.; Zhang, Z.; Guo, H.; Zhang, H.; Cheng, W. Using time series InSAR to assess the deformation activity of open-pit mine dump site in severe cold area. J. Soil. Sediment.
**2021**, 21, 3717–3732. [Google Scholar] [CrossRef] - Momeni, E.; Yarivand, A.; Dowlatshahi, M.B.; Armaghani, D.J. An efficient optimal neural network based on gravitational search algorithm in predicting the deformation of geogrid-reinforced soil structures. Transp. Geotech.
**2021**, 26, 100446. [Google Scholar] [CrossRef] - Barvor, Y.J.; Bacha, S.; Qingxiang, C.; Zhao, C.S.; Siddique, M. Surface mines composite slope deformation mechanisms and stress distribution. Min. Miner. Depos.
**2020**, 14, 1–16. [Google Scholar] [CrossRef] - Deng, L.; Smith, A.; Dixon, N.; Yuan, H. Machine learning prediction of landslide deformation behaviour using acoustic emission and rainfall measurements. Eng. Geol.
**2021**, 293, 106315. [Google Scholar] [CrossRef] - Li, L.; Qiang, Y.; Li, S.; Yang, Z. Research on Slope Deformation Prediction Based on Fractional-Order Calculus Gray Model. Adv. Civ. Eng.
**2018**, 2018, 1–9. [Google Scholar] [CrossRef] - Bacha, S.; Barvor, Y.J.; Qingxiang, C.; Zhao, C.S.; Wang, M. Influence of composite slope geometrical parameters on soft rock slope stability. Min. Miner. Depos.
**2020**, 14, 112–119. [Google Scholar] [CrossRef] - Abdellah, W.R.; Hussein, M.Y.; Imbabi, S.S. Rock slope stability analysis usingshear strength reduction technique (SSRT)–Case histories. Min. Miner. Depos.
**2020**, 14, 16–24. [Google Scholar] [CrossRef] - Jiang, N.; Li, H.; Zhou, J. Quantitative hazard analysis and mitigation measures of rockfall in a high-frequency rockfall region. Bull. Eng. Geol. Environ.
**2021**, 80, 3439–3456. [Google Scholar] [CrossRef] - Luo, D.; Li, H.; Wu, Y.; Li, D.; Yang, X.; Yao, Q. Cloud model-based evaluation of landslide dam development feasibility. PLoS ONE
**2021**, 16, e0251212. [Google Scholar] [CrossRef] - Jiang, F.; Dai, X.; Xie, Z.; Xu, T.; Yin, S.; Qu, G.; Yang, S.; Zhang, Y.; Yang, Z.; Xu, J.; et al. Flood inundation evolution of barrier lake and evaluation of regional ecological spatiotemporal response-a case study of Sichuan-Tibet region. Environ. Sci. Pollut. Res.
**2022**, 29, 71290–71310. [Google Scholar] [CrossRef] [PubMed] - Su, X.; Ma, S.; Qiu, X.; Shi, J.; Zhang, X.; Chen, F. Microblog Topic-Words Detection Model for Earthquake Emergency Responses Based on Information Classification Hierarchy. Int. J. Environ. Res. Public Health
**2021**, 18, 8000. [Google Scholar] [CrossRef] [PubMed] - Sun, X.; Guo, L. Crustal velocity, density structure, and seismogenic environment in the southern segment of the North-South Seismic Belt, China. Earthq. Sci.
**2021**, 34, 471–488. [Google Scholar] [CrossRef] - Lv, M.; Ding, Z.; Xu, X. Seismogenic environments of earthquakes on the southeastern margin of the Tibetan Plateau revealed by double-difference tomography. Tectonophysics
**2022**, 843, 229603. [Google Scholar] [CrossRef] - Lu, X.; Cheng, Q.; Xu, Z.; Xiong, C. Regional seismic-damage prediction of buildings under mainshock-aftershock sequence. Front. Eng. Manag.
**2021**, 8, 122–134. [Google Scholar] [CrossRef] - Jiang, P.; Li, R.; Liu, N. A novel composite electricity demand forecasting framework by data processing and optimized support vector machine. Appl. Energ.
**2020**, 260, 114243. [Google Scholar] [CrossRef] - Zhang, L.; Cai, X.; Wang, Y.; Wei, W.; Liu, B.; Jia, S.; Pang, T.; Bai, F.; Wei, Z. Long-term ground multi-level deformation fusion and analysis based on a combination of deformation prior fusion model and OTD-InSAR for longwall mining activity. Meas. J. Int. Meas. Confed.
**2020**, 161, 107911. [Google Scholar] [CrossRef] - Ottaviani, M.F.; Marco, A.D. Multiple Linear Regression Model for Improved Project Cost Forecasting. Procedia Comput. Sci.
**2022**, 196, 808–815. [Google Scholar] [CrossRef] - Babar, I.; Ayed, H.; Chand, S.; Suhail, M.; Khan, Y.A.; Marzouki, R. Modified Liu estimators in the linear regression model: An application to Tobacco data. PLoS ONE
**2021**, 16, e0259991. [Google Scholar] [CrossRef] [PubMed] - Yang, K.; Musselman, K.N.; Rittger, K.; Margulis, S.A.; Painter, T.H.; Molotch, N.P. Combining ground-based and remotely sensed snow data in a linear regression model for real-time estimation of snow water equivalent. Adv. Water Resour.
**2022**, 160, 104075. [Google Scholar] [CrossRef] - Tang, S.; Li, T.; Guo, Y.; Zhu, R.; Qu, H. Correction of various environmental influences on Doppler wind lidar based on multiple linear regression model. Renew. Energy
**2022**, 184, 933–947. [Google Scholar] [CrossRef] - Roozbeh, M.; Babaie-Kafaki, S.; Aminifard, Z. A nonlinear mixed-integer programming approach for variable selection in linear regression model. Communications in statistics. Simul. Comput.
**2021**, 1–12, ahead of print. [Google Scholar] [CrossRef] - Jahangir, H.; Bagheri, M.; Delavari, S.M.J. Cyclic Behavior Assessment of Steel Bar Hysteretic Dampers Using Multiple Nonlinear Regression Approach. Iranian journal of science and technology. Trans. Civ. Eng.
**2021**, 45, 1227–1251. [Google Scholar] - Cepowski, T.; Chorab, P.; Łozowicka, D. Application of an Artificial Neural Network and Multiple Nonlinear Regression to Estimate Container Ship Length Between Perpendiculars. Pol. Marit. Res.
**2021**, 28, 36–45. [Google Scholar] [CrossRef] - Zhang, K.; Li, W.; Han, Y.; Geng, Z.; Chu, C. Production capacity identification and analysis using novel multivariate nonlinear regression: Application to resource optimization of industrial processes. J. Clean. Prod.
**2021**, 282, 124469. [Google Scholar] [CrossRef] - Basco, R.; Hair, J.F.; Ringle, C.M.; Sarstedt, M. Advancing family business research through modeling nonlinear relationships: Comparing PLS-SEM and multiple regression. J. Fam. Bus. Strategy
**2022**, 13, 100457. [Google Scholar] [CrossRef] - Kun, Z.; Weibing, F. Prediction of China’s Total Energy Consumption Based on Bayesian ARIMA-Nonlinear Regression Model. IOP conference series. Earth Environ. Sci.
**2021**, 657, 12056. [Google Scholar] - Zhang, W.; Xiao, R.; Shi, B.; Zhu, H.-H.; Sun, Y.-J. Forecasting slope deformation field using correlated grey model updated with time correction factor and background value optimization. Eng. Geol.
**2019**, 260, 105215. [Google Scholar] [CrossRef] - Cai, M.; Koopialipoor, M.; Armaghani, D.J.; Pham, B.T. Evaluating Slope Deformation of Earth Dams Due to Earthquake Shaking Using MARS and GMDH Techniques. Appl. Sci.
**2020**, 10, 1486. [Google Scholar] [CrossRef] [Green Version] - Tan, X.L. Combinatorial Method of Deformation Prediction Based on Multipoint Monitoring for Large Slope and Its Engineering Application. J. Yangtze River Sci. Res. Inst.
**2014**, 31, 143–148. [Google Scholar] - Du, S.; Zhang, J.; Deng, Z.; Li, J. A New Approach of Geological Disasters Forecasting using Meteorological Factors based on Genetic Algorithm Optimized BP Neural Network. Elektron. Ir Elektrotechnika
**2014**, 20, 57–62. [Google Scholar] [CrossRef]

**Figure 3.**The results of Fisher optimal segmentation method under the different number of grids. (

**a**) 100 grids; (

**b**) 200 grids.

**Figure 4.**The results of the different prediction combination model at different spatial scales with the different number of grids. (

**a**) Point scale and 100 grids; (

**b**) linear scale and 100 grids; (

**c**) surface scale and 100 grids; (

**d**) point scale and 200 grids; (

**e**) linear scale and 200 grids; and (

**f**) surface scale and 200 grids.

**Figure 5.**The comparing results of combination model, multiple linear regression model, and multiple nonlinear regression model.

Spatial and Scale | Intervals | Weights of Multiple Linear Regression Model | Weights of Multiple Nonlinear Regression Model |
---|---|---|---|

Deformation prediction at point scales with 100 grids | The first interval | 0.594 | 0.406 |

The second interval | 0.205 | 0.795 | |

The third interval | 0.813 | 0.187 | |

The forth interval | 0.322 | 0.678 | |

Deformation prediction at linear scales with 100 grids | The first interval | 0.256 | 0.744 |

The second interval | 0.090 | 0.910 | |

The third interval | 0.369 | 0.631 | |

The forth interval | 0.415 | 0.585 | |

Deformation prediction at surface scales with 100 grids | The first interval | 0.198 | 0.802 |

The second interval | 0.060 | 0.940 | |

The third interval | 0.440 | 0.560 | |

The forth interval | 0.076 | 0.924 | |

Deformation prediction at point scales with 200 grids | The first interval | 0.426 | 0.574 |

The second interval | 0.228 | 0.772 | |

The third interval | 0.330 | 0.670 | |

The forth interval | 0.654 | 0.346 | |

Deformation prediction at linear scales with 200 grids | The first interval | 0.184 | 0.816 |

The second interval | 0.358 | 0.642 | |

The third interval | 0.454 | 0.546 | |

The forth interval | 0.312 | 0.688 | |

Deformation prediction at surface scales with 200 grids | The first interval | 0.727 | 0.273 |

The second interval | 0.117 | 0.883 | |

The third interval | 0.366 | 0.634 | |

The forth interval | 0.366 | 0.634 |

**Table 2.**Determination coefficients (R

^{2}) of the modified slope deformation prediction model at different spatial scales with 100 grids.

Spatial Scale | Linear Combination Model | Weighted Geometric Average Model | Weighted Harmonic Average Model |
---|---|---|---|

Point scale | 0.89 | 0.88 | 0.83 |

Linear scale | 0.77 | 0.79 | 0.84 |

Surface scale | 0.93 | 0.93 | 0.95 |

**Table 3.**Determination coefficients (R

^{2}) of the modified slope deformation prediction model at different spatial scales with 200 grids.

Spatial Scale | Linear Combination Model | Weighted Geometric Average Model | Weighted Harmonic Average Model |
---|---|---|---|

Point scale | 0.88 | 0.87 | 0.88 |

Linear scale | 0.94 | 0.94 | 0.94 |

Surface scale | 0.95 | 0.95 | 0.96 |

Model | RMSE | MAE | Relative Error |
---|---|---|---|

Multiple linear regression model | 20.91% | 19.52% | 96.33% |

Multiple nonlinear regression model | 20.74% | 19.14% | 94.47% |

Linear combination model | 5.62% | 3.14% | 4.33% |

Weight geometric average model | 5.62% | 3.12% | 4.33% |

Weight harmonic average model | 5.57% | 3.11% | 3.98% |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Li, X.; Lei, T.; Qin, J.; Wang, J.; Wang, W.; Chen, D.; Qian, G.; Lu, J.
An Improved Combination Model for the Multi-Scale Prediction of Slope Deformation. *Water* **2022**, *14*, 3667.
https://doi.org/10.3390/w14223667

**AMA Style**

Li X, Lei T, Qin J, Wang J, Wang W, Chen D, Qian G, Lu J.
An Improved Combination Model for the Multi-Scale Prediction of Slope Deformation. *Water*. 2022; 14(22):3667.
https://doi.org/10.3390/w14223667

**Chicago/Turabian Style**

Li, Xiangyu, Tianjie Lei, Jing Qin, Jiabao Wang, Weiwei Wang, Dongpan Chen, Guansheng Qian, and Jingxuan Lu.
2022. "An Improved Combination Model for the Multi-Scale Prediction of Slope Deformation" *Water* 14, no. 22: 3667.
https://doi.org/10.3390/w14223667